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Stochastic population models?
Stochastic processes have been rigorously studied in many fields:
probability theory, math finance, physics ...

These models have tremendous potential in math biology to capture the
inherent complexity and uncertainty in the systems.

Black and McKane, “Stochastic formulation of
ecological models and their applications,”
Trends in Ecology & Evolution (2012).

Immigration

Colonisation

 

Extinction

N patches

Uncertainty and randomness - modeled as noise (stochasticity)
External: environmental factors including climatic effects, natural
enemies, or inter-specific competition
Internal: random interactions of individuals in a population or demography

Stochastic population models Snowbird 2017 2 / 29



Applications in Epidemiology

Control and eradication of infectious diseases would have important
societal benefits.

Where do we observe extinction in disease data?
I Local extinction of a disease, but reintroduced later in time (fadeout)
I Extinction more common in smaller populations

Dengue Incidence for
Chiang Mai province, Thailand.
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Measles Incidence by
Thailand province (1980-2001).
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**Data provided by Derek Cummings (JHU).
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The Classical Problem - Extinction

There has been a significant amount of work to understand extinction in
simple epidemiological systems.

Simulation of an extinction event in an endemic model.
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The Classical Problem - Extinction
There has been a significant amount of work to understand extinction in
simple epidemiological systems.

Simulation of an extinction event in an endemic model.

Endemic Disease
Free

Mean -eld, Stable for R0 > 1

How?
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Extinction = escape from a potential well
Doering, et al., Multiscale Model. Simul. (2005); Dykman, et al., PRL 101 (2008); Schwartz, et al.,
J Stat Mech, P01005 (2009), ... many, many others

We want to extend this understanding of extinction to more complex topologies and
develop optimal control methods.

Stochastic population models Snowbird 2017 4 / 29



The Dynamical Systems Fun

We can analyze the deterministic system
–even if it is more complicated!

xExtinct

Endemic
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The Dynamical Systems Fun

By incorporating the effect of the noise,
we double the dimension and allow escape.

x

Deterministic

Stochastic Extinction

Endemicp

Extinct

New dynamics to be explored!

Areas of study:

higher dimensions

networks of steady states

time-dependent parameters

numerical simulations

Heteroclinic trajectories connect
the saddle steady states.
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Outline

Background: Stochastic master equation, large deviation theory

SIR example (the basic set-up)

Seasonality: extinction in models with time varying parameters

Ebola: invasion and extinction in a high dimensional model

Conclusions
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Master Equation Approach (Review)

Consider a well-mixed finite population of size N

Discrete state vector X = (x1, x2, . . . , xn) .
Random state transition rates: W (X, r).
Probability ρ(X, t) of finding the system in state X at time t :

The master equation definition

∂ρ(X, t)
∂t

=
∑

r

[W (X− r; r)ρ(X− r, t)︸ ︷︷ ︸
the gain to state X

from state X-r

−W (X; r)ρ(X, t)︸ ︷︷ ︸
the loss of state X

to other states

].

It is the gain-loss equation for the probabilities of the separate states X.

Van Kampen, N.G., Stochastic processes in physics and chemistry, Elsevier (1992).
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Approximating switching/extinction events
The master equation

∂ρ(X, t)
∂t

=
∑

r

[W (X− r; r)ρ(X− r, t)−W (X; r)ρ(X, t)].

Assume the Eikonal approximation:

ρ(X, t) = exp(−NS(q)), for q = X/N.

Since S satisfies the PDE of Hamilton-Jacobi form:
∂S
∂t

+ H
(

q,
∂S
∂q

)
= 0,

S is known as the action, and the Hamiltonian is given by

H(q;p) =
∑

r

w(q; r)[exp(p · r)− 1]

Define the conjugate momenta p = ∂S/∂q.

We assume the distribution is quasi-stationary,
∂S
∂t

= 0. (Rare event)

Kubo, et al., J. Stat. Phys. 9 (1973); Gang, PRA, 36 (1987); Dykman, et al., J. Chem Phys, 100 (1994);

Elgart, et al., PRE, 70 (2004); and many others.
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The most likely observed paths to extinction

The shape of the distribution is described by Hamilton’s eqns:

q̇ = ∂pH(q,p; t),
ṗ = −∂qH(q,p; t),

We study this deterministic system to describe
the dynamics of the stochastic system.

Cost: it doubles the dimension of the system
Benefit: Heteroclinic trajectories connect the saddle steady states

Call the manifold connected to the desired state the optimal path: popt(q),
where the action is minimized so that the probability (ρ) is maximized.

Find the action along the path

Sopt =

∫ q1

q2

popt(q)dq

to approximate the mean time to extinction (MTE): MTE = B eNSopt

Since ρ(X, t) = e−NS(q)
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SIR model (Deterministic)
Captures dynamics of most common childhood diseases that confer
long-lasting immunity: chickenpox, measles, mumps, rubella, etc.

Population of individuals: susceptible (S), infected (I ) or recovered (R).
Mass action assumption. Total population: N = S + I + R.

Mean field equations:
dS
dt

= µN − β

N
SI − µS

dI
dt

=
β

N
SI − κI − µI

dR
dt

= κI − µR

S I RµN
β/N κ

µµµ

Basic reproduction #: R0 = β
µ+κ

R0 > 1→ endemic stable

Steady states:

disease free, (S, I) = (N,0)
endemic, (S, I) = ( N

R0
, µN

β (R0 − 1))
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The stochastic SIR model

S IµN
βSI/N

µI

κI

µS νbgSc
Master equation approach: susceptible (S = X1) or infected (I = X2).

W
(
(X1,X2); (1,0)

)
= µN, birth

W
(
(X1,X2); (−1,1)

)
= βX1X2/N, infection of susceptible

W
(
(X1,X2); (−1,0)

)
= µX1, death for susceptible

W
(
(X1,X2); (0,−1)

)
= µX2, death for infected

W
(
(X1,X2); (0,−1)

)
= κX2, recovery for infected

W
(
(X1,X2); (−bgX1c ,0)

)
= ν, vaccination.
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Stochastic SIR model - optimal path
The Hamiltonian equation (q = (x1, x2))

H(q,p) = µ(ep1 − 1) + β(t)x1x2(e−p1+p2 − 1) + κx2(e−p2 − 1)
+µx1(e−p1 − 1) + µx2(e−p2 − 1).

Hamilton’s eqns:

ẋ1 = ∂p1H(x1, x2,p1,p2; t), ẋ2 = ∂p2H(x1, x2,p1,p2; t),
ṗ1 = −∂x1H(x1, x2,p1,p2; t), ṗ2 = −∂x2H(x1, x2,p1,p2; t),
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Lindley & Schwartz, Physica D (2013) [Iterative action minimizing method]
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The stochastic SIR model - validation
Compare the optimal path to the simulations
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Probability density of extinction prehistory. Optimal path approximation.

Schwartz, et al., J R Soc Interface, 2011
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Stochastic SIR - Time varying parameters

Mathematical models with periodic forcing developed to capture seasonal
variation.

– Vary the contact rate β(t) periodically

Mean field equations:
dS
dt

= µN − β(t)
N

SI − µS

dI
dt

=
β(t)
N

SI − κI − µI

β(t) = β0(1 + δ cos(2πt))

Stochastic simulations
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Deterministic steady states:

disease free, (S, I) = (N,0)

endemic, (S, I) =
(

(γ+µ)N
β(t) , µN

β(t) (
β(t)
γ+µ − 1)

)
**periodic orbit, careful with stability
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Stochastic SIR model - Finding the optimal path

The Hamiltonian equation (q = (x1, x2))

H(q,p; t) = µ(ep1 − 1) + β(t)x1x2(e−p1+p2 − 1) + κx2(e−p2 − 1)

+µx1(e−p1 − 1) + µx2(e−p2 − 1).

Problem: The existence of the perturbed hyperbolic fixed points is a necessary but not
sufficient condition for the existence of a heteroclinic trajectory (optimal path).

Linear expansion of Hamiltonian: 0 < δ � 1 for β(t) = β0(1 + δ cos(2πt)),

H(q,p; t) = H0(q,p; t) + δH1(q,p; t).

Assume the existence of a perturbed optimal path: q(t , t0), p(t , t0)
and the action along this path:

S =

∫ ∞
−∞

(
p(t , t0) · dq(t , t0)

dt
− H0(q(t , t0),p(t , t0); t)− δH1(q(t , t0),p(t , t0), t)

)
dt
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Stochastic SIR model - Finding the optimal path
The change in the action: S = S0 + ∆S, approximation to first order, **

∆S(t0) = −δ
∫ ∞
−∞

H1 (q(t − t0, t0),p(t − t0, t0), t) dt .

To find the optimal correction to the action, minimize S(t0) with respect to t0.
Consider the zeros of its derivative,

dS(t0)

dt0
= −δ

∫ ∞
−∞
{H0,H1}0 dt = 0,

{H0,H1}0 is the Poisson bracket evaluated on the unperturbed optimal path.∫∞
−∞{H0,H1}0 dt is the Melnikov function of the perturbed problem. It is proportional to

the distance between the unstable and stable manifolds of perturbed fixed points.

A sufficient condition for the existence of the perturbed optimal path is for the Melnikov
function to have simple zeros. These zeros are the critical points of the action, which
yields the minimal action along the optimal path of the perturbed problem.

**Assaf, et al.,"Population extinction in a time-modulated environment" PRE 78(4), (2008)
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Stochastic SIR model - Finding the optimal path

After finding the zeros and the approximating the phase shift for the
minimizing t0, we find the optimal path to extinction
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[LB and Forgoston, Ricerche di Matematica, to appear 2017]
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Optimal Control
Khasin, Dykman, and Meerson, “Speeding up disease extinction with a
limited amount of vaccine," PRE, 81 (2010) 051925.

“The optimal vaccination strategy for periodic vaccination is to apply
the vaccine in the form of δ-like pulses. Tuning these pulses in
resonance with the system dynamics leads to a further exponential
enhancement of the effect of the vaccination.”

MC Simulation (Time Series) Phase Plane
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Invasion
Ebola Virus... no vaccine yet, some data

June 2016 – WHO declares the end of Ebola virus transmission in the Republic of Guinea and in Liberia.

The basic reproductive number is estimated to be R0 ≤ 2
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Ebola Virus Disease
- an infectious zoonosis found in several mammals including humans, bats, and apes.

Note that EVD transmission can occur though both infectious human contact and an
animal reservoir (random).
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Ebola Virus Disease

The transition events and transition rates for the stochastic EVD model

Event Transition Rate
Healthy Birth ∅ → S µ N

EVD Transmission (human) S→ E (βi I+βd D+βh H) S
N

EVD Transmission (animal) S→ E κ S
Latency to Infectious E→ I σ E

Recovery I→ R γir I
EVD Death I→ D µe I

Hospitalisation I→ H τ I
Burial D→ ∅ δ D

Death from Hospital H→ ∅ µe H
Recovery from Hospital H→ R γhr H

Natural Death {S,E,I,D,H,R}→ ∅ µ {S,E,I,D,H,R}
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Ebola Virus Disease

The deterministic mean-field equations:

dxS

dt
= µ− βixIxS − βd xDxS − βhxHxS − µxS −κxS

dxE

dt
= βixIxS + βd xDxS + βhxHxS − (µ+ σ)xE +κxS

dxI

dt
= σxE − (γir + µe + τ + µ)xI

dxD

dt
= µexI − (δ + µ) xD

dxH

dt
= τxI − (γhr + µe + µ) xH

dxR

dt
= γir xI + γhr xH − µxR .

Steady states for κ = 0,

Disease free equilibrium: (xS
(i), xE

(i), xI
(i), xD

(i), xH
(i), xR

(i)) = (1, 0, 0, 0, 0, 0).

Endemic equilibrium: (xS
(e), xE

(e), xI
(e), xD

(e), xH
(e), xR

(e))
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Ebola Virus Disease - Optimal Path (Extinction)
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A 12 dimensional optimal extinction path for a stochastic EVD system with κ = 0 found
by the IAMM method (2400 blue points).

The path is overlaid on the probability density of extinction prehistories for 10, 000
stochastic realizations for a population N = 10, 000, 000.
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Ebola Virus Disease - Center Manifold
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Additional verification of our numerically computed optimal path is achieved by
projecting it onto the lower-dimensional stochastic center manifold.

xI =
σ(xE − xE

(e))

(γir + τ + µe + µ)
+ xI

(e).
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The other side - Invasion

Stochastic population models Snowbird 2017 25 / 29



Ebola Virus Disease - Intervention

A measure of intervention effectiveness – the impact of limiting the contact rate with the
infectious EVD group (βi ) and increasing the burial rate for deceased EVD group (δ)
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Remarks

Stochastic modeling allows one to make quantitative, statistical
predictions, while simultaneously providing qualitative descriptions of
system dynamics.
We present the foundation for the analysis of stochastic epidemiological
models with seasonal forcing.
We also described invasion dynamics and the qualitative use of the
traditional basic reproduction number.
Stochastic models can help quantify the impact of intervention methods,
such as behavioral changes.
A lot more work to be done:

I approximation for the mean time to extinction in these systems
I devise and optimize improved control methods
I understand/quantify invasion dynamics
I experimental verification ... (ecological systems)
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Ebola Virus Disease

Hu, K., Bianco, S., Edlund, S. & Kaufman, J. 2015 Social computing, behavioral-cultural modeling, and

prediction, chap. The Impact of Human Behavioral Changes in 2014 West Africa Ebola Outbreak, pp. 75-84.
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