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Statistics and Computation

« A Grand Challenge of our era: tradeoffs between
statistical inference and computation

— most data analysis problems have a time budget
— and they’re often embedded in a control problem
« Optimization has provided the computational model
for this effort (computer science, not so much)
— it's provided the algorithms and the insights

« Statistics has quite a few good lower bounds
— which have delivered fundamental understanding

— placing them in contact with computational lower bounds
will deliver further fundamental understanding
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— millions of variables, millions of terms, sampling issues,
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Statistics and Computation (cont)

 Modern large-scale statistics has posed new
challenges for optimization
— millions of variables, millions of terms, sampling issues,
nonconvexity, need for confidence intervals, parallel—
distributed platforms, etc
« Current focus: what can we do with the following
ingredients?
— gradients
— stochastics
— acceleration



Nonconvex Optimization in Machine Learning

« Bad local minima used to be thought of as the main
problem on the optimization side of machine
learning

* But many machine learning architectures either
have no local minima (see list later), or stochastic
gradient seems to have no trouble (eventually)
finding global optima

« But saddle points abound in these architectures,
and they cause the learning curve to flatten out,
perhaps (nearly) indefinitely



The Importance of Saddle Points

Strict saddle point Non-strict saddle point

 How to escape?
— need to have a negative eigenvalue that's strictly negative

* How to escape efficiently?
— in high dimensions how do we find the direction of escape?
— should we expect exponential complexity in dimension?



Part |: How to Escape Saddle Points
Efficiently

with Chi Jin, Rong Ge, Sham Kakade, and Praneeth
Netrapalli



A Few Facts

Gradient descent will asymptotically avoid saddle
points (Lee, Simchowitz, Jordan & Recht, 2017)

Gradient descent can take exponential time to
escape saddle points (Du, Jin, Lee, Jordan, & Singh,
2017)

Stochastic gradient descent can escape saddle
points in polynomial time (Ge, Huang, Jin & Yuan,
2015)

— but that'’s still not an explanation for its practical success
Can we prove a stronger theorem?



Optimization

Consider problem:
min f(x)

xERI

Gradient Descent (GD):

Xer1 = Xe — NV (Xe).
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Optimization

Consider problem:
min f(x)
xERI
Gradient Descent (GD):
Xer1 = Xe — NV (Xe).

Convex: converges to global minimum; dimension-free iterations.

—
-

\ﬁt
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Nonconvex Optimization

Non-convex: converges to Stationary Point (SP) Vf(x) = 0.

SP : local min / local max / saddle points

Many applications: no spurious local min (see full list later).
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Some Well-Behaved Nonconvex Problems

« PCA, CCA, Matrix Factorization

* Orthogonal Tensor Decomposition (Ge, Huang, Jin,
Yang, 2015)

« Complete Dictionary Learning (Sun et al, 2015)
 Phase Retrieval (Sun et al, 2015)

« Matrix Sensing (Bhojanapalli et al, 2016; Park et al,
2016)

« Symmetric Matrix Completion (Ge et al, 2016)

« Matrix Sensing/Completion, Robust PCA (Ge, Jin,
Zheng, 2017)

* The problems have no spurious local minima and all
saddle points are strict



Convergence to FOSP

Function 7(-) is {-smooth (or gradient Lipschitz)

W, xa, |[VF(xa) = VF()I| < b — x|

Point x is an e-first-order stationary point (e-FOSP) if

V()N < e
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Convergence to FOSP

Function 7(-) is {-smooth (or gradient Lipschitz)

W, xa, |[VF(xa) = VF()I| < b — x|

Point x is an e-first-order stationary point (e-FOSP) if

[VE(x)|| < e

GD Converges to FOSP (Nesterov, 1998)
For ¢-smooth function, GD with n = 1/¢ finds e-FOSP in iterations:
20(f(x0) — ")

€2

*Number of iterations is dimension free.
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Definitions and Algorithm

Function f(-) is p-Hessian Lipschitz if

Vx1,xe, [[V2F(x1) = V2F(x2)]| < plixa — xall-

Point x is an e-second-order stationary point (e-SOSP) if

IVE) <e,  and  Amn(V?F(x)) > —\/pe
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Definitions and Algorithm

Function f(-) is p-Hessian Lipschitz if
Vx1, %2, [[V2F(x1) — V2F(x2)l| < pllx1 — xall.
Point x is an e-second-order stationary point (e-SOSP) if
IVE) <€, and  Amin(V?F(x)) > —y/pe

Perturbed Gradient Descent (PGD)

1. fort=0,1,...do

2. if perturbation condition holds then

3. Xt < Xt + &, & uniformly ~ Bo(r)
4. Xey1 4 Xe — nVIE(xe)

Only adds perturbation when ||V f(x.)|| < €; no more than once per T steps.
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PGD Converges to SOSP (This Work)

For ¢-smooth and p-Hessian Lipschitz function f, PGD with » = O(1/¢) and
proper choice of r, T w.h.p. finds e-SOSP in iterations:

o (40t 1)

€

*Dimension dependence in iteration is log*(d) (almost dimension free).
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Geometry and Dynamics around Saddle Points

Challenge: non-constant Hessian + large step size n = O(1/¢).
Around saddle point, stuck region forms a non-flat “pancake” shape.
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Geometry and Dynamics around Saddle Points

Challenge: non-constant Hessian + large step size n = O(1/¢).
Around saddle point, stuck region forms a non-flat “pancake” shape.

Key Observation: although we don’t know its shape, we know it's thin!
(Based on an analysis of two nearly coupled sequences)
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* Does acceleration help in escaping saddle points?

 What other kind of stochastic models can we use to
escape saddle points?

« How do acceleration and stochastics interact?



Next Questions

Does acceleration help in escaping saddle points?

What other kind of stochastic models can we use to
escape saddle points?

How do acceleration and stochastics interact?

To address these questions we need to understand
develop a deeper understanding of acceleration than
has been available in the literature to date



Part |: Variational, Hamiltonian and
Symplectic Perspectives on Acceleration

with Andre Wibisono, Ashia Wilson and Michael Betancourt
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Integration

* The 300-yr-old fields: Physics, Statistics

— cf. Lagrange/Hamilton, Laplace expansions, saddlepoint
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* The numerical disciplines
— e.g.,. finite elements, Monte Carlo
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Interplay between Differentiation and
Integration

* The 300-yr-old fields: Physics, Statistics

— cf. Lagrange/Hamilton, Laplace expansions, saddlepoint
expansions

* The numerical disciplines
— e.g.,. finite elements, Monte Carlo
* Optimization?
— to date, almost entirely focused on differentiation



Accelerated gradient descent
Setting: Unconstrained convex optimization

min f
XE]IRd (X)

» Classical gradient descent:
Xk+1 = Xk — BV F(xk)
obtains a convergence rate of O(1/k)

> Accelerated gradient descent:

Ye+1 = Xk — BVF(xk)
41 = (= X)Yit1 + Ay

obtains the (optimal) convergence rate of O(1/k?)



Accelerated methods: Continuous time perspective

» Gradient descent is discretization of gradient flow
Xt - _Vf(Xt)

(and mirror descent is discretization of natural gradient flow)

» Su, Boyd, Candes '14: Continuous time limit of accelerated
gradient descent is a second-order ODE

. 3.

» These ODEs are obtained by taking continuous time limits. Is
there a deeper generative mechanism?

Our work: A general variational approach to acceleration

A systematic discretization methodology



Bregman Lagrangian
Define the Bregman Lagrangian:

L(x,x,t) = eVt (Dh(x + e Yx,x) — eﬁff(x))

v

Function of position x, velocity x, and time t

Dw(y,x) = h(y) = h(x) = (Vh(x),y = x)
is the Bregman divergence

v

Dy (y, )

v

h is the convex distance-generating function

v

f is the convex objective function




Bregman Lagrangian

L(x,x,t) = erto <Dh(x + e %%, x) — e f(x))

Variational problem over curves:

n /E(Xt,Xt, t) dt

Optimal curve is characterized by Euler-Lagrange equation:

! t
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Bregman Lagrangian

L(x,x,t) = erto <Dh(x + e %%, x) — e f(x))

Variational problem over curves:

n /E(Xt,Xt, t) dt

Optimal curve is characterized by Euler-Lagrange equation:

! t

oL oL -
dt {8 (Xt7Xt7 )} = a(XhXt) t)

E-L equation for Bregman Lagrangian under ideal scaling:

. . . —1
X + (€% — )X, + e2o+h [v%(xt tex,)| VF(X)=0



General convergence rate

Theorem
Theorem Under ideal scaling, the E-L equation has convergence
rate

F(X:) — F(x*) < O(e™™)

Proof. Exhibit a Lyapunov function for the dynamics:
Ec = Dy (X", Xe+ €720X,) + e™(F(Xe) — F(x")
Ee = —e“ TP De(x*, X)) + (B — ™)™ (F(X;) — f(x*)) < 0

O

Note: Only requires convexity and differentiability of f, h



Mysteries

Why can’t we discretize the dynamics when we are
using exponentially fast clocks?

What happens when we arrive at a clock speed that
we can discretize?

How do we discretize once it's possible?



Mysteries

Why can’t we discretize the dynamics when we are
using exponentially fast clocks?

What happens when we arrive at a clock speed that
we can discretize?

How do we discretize once it's possible?

The answers are to be found in symplectic
Integration



Symplectic Integration

Consider discretizing a system of differential
equations obtained from physical principles

Solutions of the differential equations generally
conserve various quantities (energy, momentum,
volumes in phase space)

Is it possible to find discretizations whose solutions
exactly conserve these same quantities?

Yes!

— from a long line of research initiated by Jacobi, Hamilton,
Poincare’ and others



Towards A Symplectic Perspective

« We've discussed discretization of Lagrangian-based
dynamics

« Discretization of Lagrangian dynamics is often fragile
and requires small step sizes

« We can build more robust solutions by taking a Legendre
transform and considering a Hamiltonian formalism:

L(q,v,t) = H(q,p,t,&)

dg dv IR dg dp dt d€
dt’ dt dr’' d7’ dr’ dr




Symplectic Integration of Bregman

Hamiltonian
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Part |l: Acceleration and Saddle Points

with Chi Jin and Praneeth Netrapalli



Acceleration in the Nonconvex Setting

Existing literature:

» AGD finds ¢—SP in O(1/¢) iterations [Ghadimi and Lan, 2016]

» Nested-loop gradient algorithm finds e—SP in O(1/¢"7°) iterations
[Carmon et al, 2017]

» Nested-loop Hessian-vector algorithms finds e—SOSP in O(1/¢"7) iters
[Agarwal et al. 2016; Carmon et al 2016]
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Acceleration in the Nonconvex Setting

Existing literature:

» AGD finds ¢—SP in O(1/¢) iterations [Ghadimi and Lan, 2016]

» Nested-loop gradient algorithm finds e—SP in O(1/¢"7°) iterations
[Carmon et al, 2017]

» Nested-loop Hessian-vector algorithms finds e—SOSP in O(1/¢"7) iters
[Agarwal et al. 2016; Carmon et al 2016]

Question: Can AGD find ¢—~SOSP efficiently? Faster than GD?
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Problem Setup

Smooth Assumption: f(-) is smooth:

» (-gradient Lipschitz, i.e. Vx1,x2, [|[Vf(x1) — VF(x2)|| < £||x1 — x2|.
> p-Hessian Lipschitz, i.e. Vx1,%2, ||[V2f(x1) — V2f(x2)|| < p||x1 — x2||.
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Problem Setup

Smooth Assumption: f(-) is smooth:

» (-gradient Lipschitz, i.e. Vx1,x2, [|[Vf(x1) — VF(x2)|| < £||x1 — x2|.
> p-Hessian Lipschitz, i.e. Vx1,%2, ||[V2f(x1) — V2f(x2)|| < p||x1 — x2||.

Goal: find second-order stationary point (SOSP):

VE(x) =0, Amn(V>f(x)) > 0.

Relaxed version: ¢-second-order stationary point (e-SOSP):

IVF(x)| <€, and Amn(V3F(x)) > —\/pe
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Algorithm

Perturbed Accelerated Gradient Descent (PAGD)

1.
2
3
4.
5
6
.

fort =0,1,... do

if ||[Vf(x¢)|| < € and no perturbation in last T steps then
Xt X¢ + &, & uniformly ~ Bo(r)

ye < xe + (1 — 0)ve

Xe41 = Ye — NVE(Ye);  Ver1 < Xep1 — X

if £(xe) < F(ye) + (VF(ye), xe — ye) = 3l|xe — ye||* then

X1 < NCE(X¢, Ve, 8); Ver1 < 0
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Algorithm

Perturbed Accelerated Gradient Descent (PAGD)
1. fort=0,1,... do

2. if |Vf(x¢)|| < € and no perturbation in last T steps then
3 Xt X¢ + &, & uniformly ~ Bo(r)

4.y < xe+ (1 —0)v:

5 Xer1 <= Ye — NVIE(Ye):  Ver1 ¢ Xep1 — Xe

6. if £(x:) < F(ye) + (VF(y)xe — o) — Zlxe — ye? then
7

X1 < NCE(X¢, Ve, 8); Ver1 < 0

v

Perturbation (line 2-3);
Standard AGD (line 4-5);
Negative Curvature Exploitation (NCE, line 6-7)
> 1) simple (two steps), 2) auxiliary. [inspired by Carmon et al. 2017]

v

v
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Convergence Result

PAGD Converges to SOSP Faster (Jin, Netrapalli and Jordan, 2017)
For ¢-gradient Lipschitz and p-Hessian Lipschitz function f, PAGD with
proper choice of 1,0, r, T,7,s w.h.p. finds e-SOSP in iterations:

5 (el/zp“‘*(f(xo) - f*))

67/4
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Convergence Result

PAGD Converges to SOSP Faster (Jin, Netrapalli and Jordan, 2017)
For ¢-gradient Lipschitz and p-Hessian Lipschitz function f, PAGD with
proper choice of 1,0, r, T,7,s w.h.p. finds e-SOSP in iterations:

5 (el/zp“‘*(f(xo) - f*))

67/4

‘ Strongly Convex ‘ Nonconvex (SOSP)
. {-grad-Lip & {-grad-Lip &
Assumptions . .
a-str-convex p-Hessian-Lip
(Perturbed) GD o)) O(Ar - 1/€?)
(Perturbed) AGD O(\/2/) O(As - 02 s Jeh)
Condition x la L/\/pe
Improvement VE VE
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The Hamiltonian

GD: Function value f(x;) decreases monotonically. Not true for AGD.
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The Hamiltonian

GD: Function value f(x;) decreases monotonically. Not true for AGD.

vy
For AGD, in the convex case, the Hamiltonian decreases monotonically:
Ee = F(x) + o lvell
t — t 277 t

In the nonconvex case, this isn't true, but it is “nearly true”; i.e., the
non-monotonicity is small enough such that NCE suffices to ensure progress
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Part Ill: Acceleration and Stochastics

with Xiang Cheng, Niladri Chatterji and Peter
Bartlett



Acceleration and Stochastics

« Can we accelerate diffusions?
* There have been negative results...
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Acceleration and Stochastics

Can we accelerate diffusions?
There have been negative results...

...but they’ve focused on classical overdamped
diffusions

Inspired by our work on acceleration, can we accelerate
underdamped diffusions?



Overdamped vs Underdamped

« Classical overdamped Langevin diffusion

dry = —V f(x)dt + v 2d By

« Underdamped Langevin diffusion

dvy = —yvedt — uV f(xy)dt + /2vud By
dilft — ”Utdt



Results

« Recent result: for log-concave functions, the
convergence rate of classical overdamped Langevin
diffusion is O(d/eQ) (Dalalyan, 2015, Durmus &
Moulines, 2016)



Results

« Recent result: for log-concave functions, the
convergence rate of classical overdamped Langevin
diffusion is O(d/€?) (Dalalyan, 2015, Durmus &
Moulines, 2016)

« We've studied an underdamped Langevin diffusion and
shown that the convergence rate improves to O (+/d/¢)
(Cheng, Chatteriji, Bartlett & Jordan, 2017)





