A novel Hf precursor with linked cyclopentadienyl-amido ligand for thermal atomic layer deposition of HfO₂ thin film

Jeong Do Oh, Min Hyuk Nim, Jae Seok An, Jang Hyeon Seok*, Jung Woo Park Hansol Chemical, 873, Gwahak-ro, Bongdong-eup, Wanju_Gun, Jeollabuk-do, 55321, Republic of Korea

INTRODUCTION

- HfO₂ has been widely used as gate oxide layer in the CMOS device as well as DRAM due to suitable band offset with Si, high thermodynamic stability on Si, and high permittivity.
- In this study, we investigated a novel Hf precursor, CMENHa, which is coordinated by cyclopentadienyl-amido ligand.
- Also we compared the properties of the HfO₂ thin film of CMENHa to those of commonly used CpTDMAH (CpHf(NMe₂)₃) by thermal atomic layer deposition.

(%)

2.48

0.61

350

400

RESULT AND DISCUSSION

> Physical properties

> Film Characteristics

Film composition •

> ALD Characteristics

Precursor saturation

Reactant saturation

CpTDMAH +O ₃ (@300°C)	1.9	2
CMENHa +O ₃ (@300°C)	1.9	0
CMENHa +H ₂ O (@290°C)	1.7	5~8

* **Step coverage**

Trench (Aspect ratio, 40:1)	Step Coverage		TEM Image		
	Middle /Top	Bottom /Top	Тор	Middle	Bottom
CpTDMAH +O ₃ (@300°C)	95%	92%	<u>100 nm</u>	<u>100 nm</u>	100 nm
CMENHa +O ₃ (@300°C)	100%	99%	<u>100 nm</u>	<u>100 nm</u>	100 nm

Growth linearity •

> Electrical properties

Process Temp (°C)	Dielectric Constant		Leakage current @ -1MV/cm (A/cm ²)	
	CMENHa	CpTDMAH	CMENHa	CpTDMAH
280	18.5	24.7	1.6 x 10 ⁻⁷	2.7 x 10 ⁻⁵
200	22.0		1 2 1 10-8	2.0×10^{-7}

Process Temperature (^OC)

CONCLUSION

- As compare to CpTDMAH precursor, CMENHa precursor showed higher thermal stability due to chelate effect of bidentate ligand, lower residue (0.6%) and lower viscosity (8.9 cP)
- CMENHa was observed wide ALD window in range of 250-400°C with low carbon impurity contents and good electrical properties such as high dielectric constant and low leakage current density.
- Based on excellent step coverage, electric properties and wide ALD window, the CMENHa precursor has demonstrated potential as dielectric material for use in CMOS device and DRAM capacitor.

