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�3Data Driven Discoveries

DRAFT

4 CSE AND THE DATA REVOLUTION: THE SYNERGY BETWEEN COMPUTATIONAL SCIENCE AND
DATA SCIENCE

be readily synthesized, inexpensive, and thermally and chemically stable under expected operating conditions.
Breakthrough progress has recently been made in developing effective constrained search and optimization algo-
rithms for precisely this purpose [41, 8, 12], with this process recognized in large funding initiatives such as the
multiagency U.S. Materials Genome Initiative [11]. This success has radically changed the nature of computation
in the field. Less than ten years ago most computations were generated and analyzed by a human, whereas now
99.9% of computations are machine generated and processed as part of automated searches that are generating vast
databases with results of millions of calculations to correlate structure and function [25, 28]. In addition to opening
important new challenges in robust and reliable computation, the tools and workflows of big data are now crucial
to further progress.

Computation and big data also meet in characterization of physical material samples using techniques such
as X-ray diffraction and adsorption, neutron scattering, pytchography, transmission electron, and atomic micro-
scopes. Only for essentially perfect crystals or simple systems can one directly invert the experimental data and
determine the structure from measurements. Most real systems, typically with nanoscale features and no long range
order, are highly underdetermined [5]. Reliable structure determination requires fusion of multiple experimental
data sources (now reaching multiple terabytes in size) and computational approaches. Computation provides a
forward simulation (e.g., given a structure, what spectrum or diffraction pattern results), and techniques from
uncertainty quantification are among those proving successful in making progress.

Figure 10: Visualization of a topological analysis and volume rendering of one time step in a large-scale, multi-
terabyte combustion simulation. The topological analysis identifies important physical features (ignition and ex-
tinction events) within the simulation, while the volume rendering allows viewing the features within the spatial
context of the combustion simulation. Simulation by Jackie Chen, Sandia National Laboratories; Visualization by
the Scientific Computing and Imaging Institute.

In scientific visualization, new techniques are being developed to give visual insight in the deluge of data that is
transforming scientific research. For example, Figure 10 displays novel topological analysis techniques that allow
combustion researchers to automatically identify important physical features in multi-terabyte simulation results.
Data analysis and visualization are key technologies for enabling future advances in simulation and data-intensive
based science, as well as in several domains beyond the sciences. Specific big data visual analysis challenges and
opportunities include in-situ interactive analysis; user-driven data reduction; scalable and multilevel hierarchical
algorithms; representing evidence and uncertainty; heterogeneous data fusion; data summarization and triage for
interactive queries; and analysis of temporally evolved features [18, 19, 40].

In high-energy particle physics, the Large Hadron Collider at the European Organization for Nuclear Re-
search (CERN) is producing more than 50 petabytes of experimental data annually. Breakthrough scientific re-
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• Large scientific/internet/experimental datasets are censored, measured, collected, computed  

• Data driven analysis 
• Information of m objects with n features  
• Correlations between all pairs of m objects  
• Connectivity between all pairs of m nodes in a network
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iSVD 
integrated singular value decomposition 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• Well-studied 
numerical linear algebra, applied mathematics, statistics, computer sciences, data analytics, 
physical sciences, and engineering,…  

• Many applications 
imaging, medicine, social networks, signal processing, machine learning, information compression, 
principal component analysis, finance,…

Leading-k SVD

A ⇡ Uk⌃kV
>
k
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• In many cases, one random sketch for a subspace is sufficient* 

• Our idea 
• multiple sketches and then integrate the multiple subspaces 
• higher accuracy and higher stability 
• suitable for parallel computers and big matrices 

Random Sketches

*Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp. "Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions." SIAM review 53.2 (2011): 217-288.

*Rokhlin, Vladimir, Arthur Szlam, and Mark Tygert. "A randomized algorithm for principal component analysis." SIAM Journal on Matrix Analysis and Applications 31.3 (2009): 1100-1124.
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• Multiple random sketching 

• Orthonormal basis of each sketched subspace 
 

• Integration of the basis matrices  
 

• Post-processing: SVD on the QQT-projected subspace 
 

Integrated SVD (iSVD)
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Orthogonalization
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Canonical Gramian 

Kolmogorov-Nagumo Wen-Yin

Canonical Gramian

Multilevel Pairwise

Tall-Skinny QR

Tall-Skinny QR

Column Sampling 

Symmetric

Gaussian Projection

Sketching

Post-processing

Naïve  
Parallelism

Row-Block 
Parallelism

Column-Block 
ParallelismpiSVD (2018)
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• 1,092 × 36,781,560 matrix 𝑨 

• iSVD 
• Column-block Gaussian projection sketching (CPU/GPU) 
• Row-block Gramian orthogonalization 
• Row-block Wen-Yin integration 
• Column-block Gramian former

1000 Genomes Project Phase 1



�111000 Genomes Project (1,092 × 36,781,560)
Se

co
nd

s

0

1000

2000

3000

4000

iSVD in MATLAB (CPU) iSVD in C++ (CPU) iSVD in C++ (CPU+GPU)
42.97887.602

3769.142
1X

43X 88X

Reedbush-H
4 Nodes, 144 cores, 8 GPUs
𝑃 = 8, 𝑁 = 64, 𝑘 = 20, 𝑝 = 12

1 Node with 24 cores
(Two Intel Xeon E5-2650 v4)

𝑁 = 256, 𝑘 = 20, 𝑝 = 12 



Integration



�13

• Multiple random sketching 

• Orthonormal basis of each sketched subspace 
 

• Integration of the basis matrices  
 

• Post-processing: SVD on the QQT-projected subspace 
 

Integrated SVD (iSVD)
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Canonical Gramian 

Kolmogorov-Nagumo Wen-Yin

Canonical Gramian

Multi-level Pairwise

Tall-Skinny QR

Tall-Skinny QR

Column Sampling 

Symmetric

Gaussian Projection

Variations of iSVD

Sketching

Post-processing



�15

Target Optimization Problem



• Best representation of the projections 
 
 

• Invariant of rotations: 
• l2-discrepancy  

• Stiefel Manifold

�16Optimal Representation

Sm,` =
�
Q 2 Rm⇥` : Q|Q = I and m � `
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• Canonical SVD (The SVD routine in MATLAB or LAPACK…) 

• Statistical average by Kolmogorov-Nagumo average on Stiefel Manifold* 

• Optimization by line search method proposed by Wen and Yin+ 

• Multi-level pairwise integration

Integration Methods

*Fiori, Simone, Tetsuya Kaneko, and Toshihisa Tanaka. "Mixed maps for learning a Kolmogorov-Nagumo-type average element on the compact Stiefel manifold." Acoustics, 
Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. IEEE, 2014.

*Kaneko, Tetsuya, Simone Fiori, and Toshihisa Tanaka. "Empirical arithmetic averaging over the compact Stiefel manifold." IEEE Transactions on Signal Processing 61.4 
(2013): 883-894.

+ Wen, Zaiwen, and Wotao Yin. "A feasible method for optimization with orthogonality constraints." Mathematical Programming (2013): 1-38.
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Solution of

argmin
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Kolmogorov-Nagumo Average
A Statistical View



�20One Step Moving in KN Average

Lifting ft. 

Average



�21One Step Moving in KN Average

Restriction ft. 

Qc := Q+
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Wen-Yin Optimization
An Optimization View



�23A Gradient Ascent Method with Line Search
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Multilevel Pairwise Integration
A Fast and Parallel Approach
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• The integrated subspace of a pair of sketched subspaces (N=2) is  
 
 
 

• The optimal solution of the above optimization problem is 
• the leading   eigenvectors of 
• or equivalently, the leading   singular vectors of 

�26Integrated Subspace of Two Sketched Subspaces
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• Let                                                       and                          We have  

Integration by A Fast Pairwise Sketched Subspace Average

M = [Q1 |Q2] = LΣRT ≈ LℓΣℓRT
ℓ QT

1 Q2 = USVT .

MTM = RΣ2RT
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Q[1] Q[5]Q[2] Q[6]Q[3] Q[7]Q[4] Q[8]

Q[12] Q[56]Q[34] Q[78]

Q[1234] Q[5678]

Q

Level 1

Level 2

Level 3  
Integration

Level 0



Algorithm 1 2-2 Hierarchical Reduction

Require: The orthogonal matrices to be integrated Q[1], Q[2], . . . , Q[N ].

Ensure: The average Q.
1: Set n = N .
2: while n > 1 do
3: Set m = �n

2 �
4: for i = 1, 2, . . . , m do
5: Find SVD of Q�

[2i�1]Q[2i] as USV �.

6: Q[i] � (Q[2i�1]U + Q[2i]V )(2(I + S))� 1
2 .

7: end for
8: n � �n

2 �
9: end while

10: Q = Q[1].

�29Algorithm and Complexity

O(�3)

O(m�2)

Loop for levels

Loop for pairs

O(Nm�2 + N�3)Total:



�30Comparison of Integration Methods

Canonical SVD KN Average 
WL Optimization

Multilevel Pairwise 
Integration

Complexity

Theoretical Accuracy 
of Result

Exactly the integrated 
subspaces defined 

previously.

Close to integrated 
subspace for few 
interaction steps. 

Exactly the integrated 
subspace while 

converged.

Approximation of 
integrated subspace.

O(N2m�2) O(Nm�2#Iter) O(Nm�2)



Numerical Experiments
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• The desired rank in all tests is k = 10. 
• The oversampling number is p = 12. 
• The test codes are implemented in MATLAB without optimization on 

speed. 
• The tests are done in different machine due to the issue of memory size. 
• All the timing tests are done in MacBook Pro (Mid. 2014). (Processor: 

2.6 GHz Intel Core i5. 2 cores. 4 threads. Memory: 8 GB 1600 MHz 
DDR3)

Setting and Environment
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• The test matrices in the following tests are generated by 
 
where                denote the Hadamard matrix with size m = 2d, n = 2d+1. 
The diagonal matrix     is given by different entries in different test 
matrices for k = 10.  

• Some matrices from SuiteSparse matrix collection

Test Matrices

A = HmΣH⊤
n

Hm,Hn

Σ

AH(10−1) : σi,i =

⎧
⎪⎨

⎪⎩

(10−1)
i−1
k if i ≤ k

10−1(m− i)

m− k − 1
otherwise

AH(10−3) : σi,i =

⎧
⎪⎨

⎪⎩

(10−3)
i−1
k if i ≤ k

10−3(m− i)

m− k − 1
otherwise
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• Singular vector similarity 
• Inner product of each columns between          and           
• The angle of each singular vectors 
• The values are close to 1 if the approximation is good 

• Canonical angles 
• Singular values of the matrix 
• Distance of two subspaces 
• The values are close to 1 if the approximation is good

Error Measurement

Qtest Qtrue

Q�
testQtrue
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• Repeat each case for 30 times and plot in box plot.

Comparison of Different N
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• The larger the difference between each singular values, the easier to capture 
the leading singular vectors by Gaussian projection.

Singular Values of Test Matrices
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First 27 singular values of test matrix
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• Each points represent a test case with N = 1, 4, 16, 32, 64, 128, 256

Timing Results
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• Multiple random sketches based SVD 
• Multilevel pairwise integration is a fast approximate method in iSVD 
• Can be easily paralleled 
• Can be used as an initial guess for KN average or WL optimization

Summary



Thank you.
Questions/comments/collaborations are welcome!


