A Scalable Randomized SVD with Multiple Sketches for Big Data Analysics

Weichung Wang

Institute of Applied Mathematical Sciences National Taiwan University

SIAM CSE, Spokane Convention Center, Spokane, Washington, USA, 2019/2/27

Collaborators

Su-Yun Huang, Ting-Li Chen Institute of Statistical Science, Academia Sinica

Hung Chen, Dawei D. Chang, Mu Yang, Chen-Yao Lin

Institute of Applied Mathematical Sciences, National Taiwan University

Data Driven Discoveries

- Data driven analysis
 - Information of *m* objects with *n* features
 - Correlations between all pairs of *m* objects
 - Connectivity between all pairs of *m* nodes in a network

Large scientific/internet/experimental datasets are censored, measured, collected, computed

isvd

 Σ_k are the k largest singular values of A.

Well-studied

numerical linear algebra, applied mathematics, statistics, computer sciences, data analytics, physical sciences, and engineering,...

 Many applications principal component analysis, finance,...

Leading-k SVD $A \approx U_k \Sigma_k V_k$

 U_k is an $m \times k$ orthonormal matrix that k < m, Σ_k is a $k \times k$ diagonal matrix, and V_k is an $n \times k$ orthonormal matrix. The columns of U_k and V_k are the leading left singular vectors and right singular vectors of A, respectively. The diagonal entries of

imaging, medicine, social networks, signal processing, machine learning, information compression,

Random Sketches

- In many cases, one random sketch for a subspace is sufficient*
- Our idea

 - higher accuracy and higher stability
 - suitable for parallel computers and big matrices

*Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp. "Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions." SIAM review 53.2 (2011): 217-288. *Rokhlin, Vladimir, Arthur Szlam, and Mark Tygert. "A randomized algorithm for principal component analysis." SIAM Journal on Matrix Analysis and Applications 31.3 (2009): 1100-1124.

multiple sketches and then integrate the multiple subspaces

Integrated SVD (iSVD)

- Multiple random sketching $\boldsymbol{Y}_{[i]} \leftarrow \boldsymbol{A}\boldsymbol{\Omega}_{[i]}, \;\; i=1,...,N$
- Orthonormal basis of each sketched subspace $m{Q}_{[i]} \leftarrow \operatorname{Orth}(m{Y}_{[i]})$
- Integration of the basis matrices $\overline{Q} \leftarrow \{Q_{[i]}\}_{i=1}^N$ \leftarrow
- Post-processing: SVD on the QQ^T-projected subspace $\overline{\boldsymbol{Q}}(\overline{\boldsymbol{Q}}^{\top}\boldsymbol{A}) = \overline{\boldsymbol{Q}}(\widehat{\boldsymbol{W}}_{\ell}\ \widehat{\boldsymbol{\Sigma}}_{\ell}\ \widehat{\boldsymbol{V}}_{\ell}^{\top}) = \widehat{\boldsymbol{U}}_{\ell}\ \widehat{\boldsymbol{\Sigma}}_{\ell}\ \widehat{\boldsymbol{V}}_{\ell}^{\top}, \ \ \ell = k + p$

 \leftarrow

 $\leftarrow \operatorname{Orth}(\)$

Sketching

Orthogonalization

Post-processing

Sketching

Orthogonalization

Integration

Post-processing

Naïve Parallelism

Row-Block Parallelism

Column-Block Parallelism

1000 Genomes Project Phase 1

• 1,092 × 36,781,560 matrix *A*

iSVD

- Column-block Gaussian projection sketching (CPU/GPU)
- Row-block Gramian orthogonalization
- Row-block Wen-Yin integration
- Column-block Gramian former

1000 Genomes Project (1,092 × 36,781,560)

Integration

Integrated SVD (iSVD)

- Multiple random sketching ${Y}_{[i]} \leftarrow A\Omega$
- Orthonormal basis of each sketched subspace

 Integration of the basis matrices $\overline{Q} \leftarrow$

Post-processing: SVD on the QQ^T-projected subspace

 $\overline{\boldsymbol{Q}}(\overline{\boldsymbol{Q}}^{\top}\boldsymbol{A}) = \overline{\boldsymbol{Q}}(\widehat{\boldsymbol{W}}_{\ell}\ \widehat{\boldsymbol{\Sigma}}_{\ell}\ \widehat{\boldsymbol{V}}_{\ell}^{\top}) = \widehat{\boldsymbol{U}}_{\ell}\ \widehat{\boldsymbol{\Sigma}}_{\ell}\ \widehat{\boldsymbol{V}}_{\ell}^{\top}, \ \ell = k + p$

$$\mathbf{2}_{[i]}, i = 1, ..., N$$

 $Q_{[i]} \leftarrow \operatorname{Orth}(Y_{[i]})$

$$\{ Q_{[i]} \}_{i=1}^{N}$$

Target Optimization Problem

Optimal Representation

Best representation of the projections

$$\overline{\boldsymbol{Q}} = \operatorname{argmin}_{\boldsymbol{Q} \in \mathcal{S}_{m,\ell}} \sum_{i=1}^{N} \left\| \boldsymbol{Q}_{[i]} \boldsymbol{Q}_{[i]}^{\mathsf{T}} - \boldsymbol{Q} \boldsymbol{Q}^{\mathsf{T}} \right\|_{F}^{2}$$

- Invariant of rotations:
- I₂-discrepancy
- Stiefel Manifold

$$\mathcal{S}_{m,\ell} = \left\{ oldsymbol{Q} \in \mathbb{R}^{m imes \ell}
ight\}$$

$$(oldsymbol{Q}_{[i]}oldsymbol{R}_{ heta})(oldsymbol{Q}_{[i]}oldsymbol{R}_{ heta})^{\intercal}=oldsymbol{Q}_{[i]}oldsymbol{Q}_{[i]}^{\intercal}$$

$\ell : \boldsymbol{Q}^{\mathsf{T}} \boldsymbol{Q} = \boldsymbol{I} \text{ and } m \geq \ell \}$

- Canonical SVD (The SVD routine in MATLAB or LAPACK...)
- Optimization by line search method proposed by Wen and Yin⁺
- Multi-level pairwise integration

*Fiori, Simone, Tetsuya Kaneko, and Toshihisa Tanaka. "Mixed maps for learning a Kolmogorov-Nagumo-type average element on the compact Stiefel manifold." Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. IEEE, 2014. *Kaneko, Tetsuya, Simone Fiori, and Toshihisa Tanaka. "Empirical arithmetic averaging over the compact Stiefel manifold." IEEE Transactions on Signal Processing 61.4 (2013): 883-894.

+ Wen, Zaiwen, and Wotao Yin. "A feasible method for optimization with orthogonality constraints." *Mathematical Programming* (2013): 1-38.

Integration Methods

Statistical average by Kolmogorov-Nagumo average on Stiefel Manifold*

Uniqueness of Local Maximizer

Kolmogorov-Nagumo Average A Statistical View

One Step Moving in KN Average

Wen-Yin Optimization

An Optimization View

A Gradient Ascent Method with Line Search

Multilevel Pairwise Integration

A Fast and Parallel Approach

Uniqueness of Local Maximizer

Integrated Subspace of Two Sketched Subspaces²⁶

The integrated subspace of a pair of sketched subspaces (N=2) is

$$\overline{\boldsymbol{Q}} = \operatorname*{argmin}_{\boldsymbol{Q} \in \mathcal{S}_{m,\ell}} \left\| \boldsymbol{Q}_{[1]} \boldsymbol{Q}_{[1]}^{\top} - \boldsymbol{Q} \boldsymbol{Q}^{\top} \right\|_{F}^{2} + \left\| \boldsymbol{Q}_{[2]} \boldsymbol{Q}_{[2]}^{\top} - \boldsymbol{Q} \boldsymbol{Q}^{\top} \right\|_{F}^{2}$$

- The optimal solution of the above optimization problem is • the leading ℓ eigenvectors of $Q_{[1]}Q_{[1]}^{\top} + Q_{[2]}Q_{[2]}^{\top}$ • or equivalently, the leading ℓ singular vectors of $[Q_{[1]}|Q_{[2]}]$

Integration by A Fast Pairwise Sketched Subspace Average²⁷

• Let
$$M = [Q_1 | Q_2] = L\Sigma R^T \approx L_\ell \Sigma_\ell R_\ell^T$$
 and $Q_1^T Q_2 = USV^T$. We have
 $M^\top M = \begin{bmatrix} I_\ell & Q_1^\top Q_2 \\ Q_2^\top Q_1 & I_\ell \end{bmatrix}$
 $= \begin{bmatrix} I_\ell & USV^\top \\ VSU^\top & I_\ell \end{bmatrix}$
 $= \begin{pmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} U & U \\ V & -V \end{bmatrix} \end{pmatrix} \begin{bmatrix} I+S \\ I-S \end{bmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} U & U \\ V & -V \end{bmatrix} \end{pmatrix}^\top$.
 $M^T M = R\Sigma^2 R^T$

$$oldsymbol{\Sigma}_{\ell}^2 = oldsymbol{I} + oldsymbol{S}, \ oldsymbol{R}_{\ell} = rac{1}{\sqrt{2}} egin{bmatrix} oldsymbol{U} \\ oldsymbol{V} \end{bmatrix}$$
 and $oldsymbol{L}_{\ell} = oldsymbol{M} rac{1}{\sqrt{2}} egin{bmatrix} oldsymbol{U} \\ oldsymbol{V} \end{bmatrix} (oldsymbol{I} + oldsymbol{S})^{-rac{1}{2}} = (oldsymbol{Q}_1 oldsymbol{U} + oldsymbol{Q}_2 oldsymbol{V}) (2(oldsymbol{I} + oldsymbol{S}))^2$

Algorithm and Complexity

Loop for pairs

 $O(\ell^3)$

Total: $O(Nm\ell^2 + N\ell^3)$

Comparison of Integration Methods

KN Average WL Optimization	Multilevel Pairwise Integration

 $O(Nm\ell^2 \# Iter)$

 $O(Nm\ell^2)$

Close to integrated subspace for few interaction steps. Exactly the integrated subspace while converged.

Approximation of integrated subspace.

Numerical Experiments

Setting and Environment

- The desired rank in all tests is k = 10.
- The oversampling number is p = 12.
- The test codes are implemented in MATLAB without optimization on speed.
- 2.6 GHz Intel Core i5. 2 cores. 4 threads. Memory: 8 GB 1600 MHz
- The tests are done in different machine due to the issue of memory size. • All the timing tests are done in MacBook Pro (Mid. 2014). (Processor: DDR3)

- The test matrices in the following tests are generated by
 - where H_m, H_n denote the Hadamard matrix with size $m = 2^d, n = 2^{d+1}$. The diagonal matrix Σ is given by different entries in different test matrices for k = 10.

$$A_H(10^{-1}): \sigma_{i,i} = \begin{cases} (10^{-1})^{\frac{i-1}{k}} & \text{if } i \le k \\ \frac{10^{-1}(m-i)}{m-k-1} & \text{otherwise} \end{cases} \quad A_H(10^{-3}): \sigma_{i,i} = \begin{cases} (10^{-3})^{\frac{i-1}{k}} & \text{if } i \le k \\ \frac{10^{-3}(m-i)}{m-k-1} & \text{otherwise} \end{cases}$$

Some matrices from SuiteSparse matrix collection

Test Matrices

$oldsymbol{A} = oldsymbol{H}_m oldsymbol{\Sigma} oldsymbol{H}_n^ op$

Error Measurement

- Singular vector similarity
 - Inner product of each columns between Q_{test} and Q_{true} • The angle of each singular vectors

 - The values are close to 1 if the approximation is good
- Canonical angles
 - Singular values of the matrix $Q_{test}^{\top}Q_{true}$
 - Distance of two subspaces
 - The values are close to 1 if the approximation is good

Comparison of Different N

Singular Values of Test Matrices

 The larger the difference between each singular values, the easier to capture the leading singular vectors by Gaussian projection.

 $\bullet \bullet \bullet$

SuiteSparse Test Matrix: Mittelmann_fome13

First 27 singular values of test matrix

SuiteSparse Test Matrix: Mittelmann_fome13

First 27 singular values of test matrix

SuiteSparse Test Matrix: ANSYS_Delor338K

First 27 singular values of test matrix

SuiteSparse Test Matrix: Barbasi_NotreDame_actors⁴⁰

First 27 singular values of test matrix

SuiteSparse Test Matrix: JGD_GL7d_GL7d22

First 27 singular values of test matrix

Timing Results

• Each points represent a test case with N = 1, 4, 16, 32, 64, 128, 256

- Multiple random sketches based SVD
- Multilevel pairwise integration is a fast approximate method in iSVD
- Can be easily paralleled
- Can be used as an initial guess for KN average or WL optimization

Summary

