A Scalable Randomized SVD with Multiple Sketches for Big Data Analysics

Weichung Wang
Institute of Applied Mathematical Sciences
National Taiwan University

Collaborators

Su-Yun Huang, Ting-Li Chen

Institute of Statistical Science, Academia Sinica

Hung Chen, Dawei D. Chang, Mu Yang, Chen-Yao Lin
Institute of Applied Mathematical Sciences, National Taiwan University

Data Driven Discoveries

- Large scientific/internet/experimental datasets are censored, measured, collected, computed
- Data driven analysis
- Information of m objects with n features
- Correlations between all pairs of m objects
- Connectivity between all pairs of m nodes in a network
iSVD
integrated singular value decomposition

Leading-k SVD

R1~~R

\boldsymbol{U}_{k} is an $m \times k$ orthonormal matrix that $k<m, \boldsymbol{\Sigma}_{k}$ is a $k \times k$ diagonal matrix, and \boldsymbol{V}_{k} is an $n \times k$ orthonormal matrix. The columns of \boldsymbol{U}_{k} and \boldsymbol{V}_{k} are the leading left singular vectors and right singular vectors of \boldsymbol{A}, respectively. The diagonal entries of $\boldsymbol{\Sigma}_{k}$ are the k largest singular values of \boldsymbol{A}.

- Well-studied

numerical linear algebra, applied mathematics, statistics, computer sciences, data analytics, physical sciences, and engineering,...

- Many applications
imaging, medicine, social networks, signal processing, machine learning, information compression, principal component analysis, finance,...

Random Sketches

- In many cases, one random sketch for a subspace is sufficient*
- Our idea
- multiple sketches and then integrate the multiple subspaces
- higher accuracy and higher stability
- suitable for parallel computers and big matrices

Integrated SVD (iSVD)

- Multiple random sketching

$$
\boldsymbol{Y}_{[i]} \leftarrow \boldsymbol{A} \boldsymbol{\Omega}_{[i]}, \quad i=1, \ldots, N
$$

- Orthonormal basis of each sketched subspace

$$
\boldsymbol{Q}_{[i]} \leftarrow \operatorname{Orth}\left(\boldsymbol{Y}_{[i]}\right) \quad \leftarrow \operatorname{Orth}(\|)
$$

- Integration of the basis matrices

$$
\overline{\boldsymbol{Q}} \leftarrow\left\{\boldsymbol{Q}_{[i]}\right\}_{i=1}^{N}
$$

- Post-processing: SVD on the QQ $^{\top}$-projected subspace

$$
\overline{\boldsymbol{Q}}\left(\overline{\boldsymbol{Q}}^{\top} \boldsymbol{A}\right)=\overline{\boldsymbol{Q}}\left(\widehat{\boldsymbol{W}}_{\ell} \widehat{\boldsymbol{\Sigma}}_{\ell} \widehat{\boldsymbol{V}}_{\ell}^{\top}\right)=\widehat{\boldsymbol{U}}_{\ell} \widehat{\boldsymbol{\Sigma}}_{\ell} \widehat{\boldsymbol{V}}_{\ell}^{\top}, \quad \ell=k+p
$$

rSVD

iSVD

Integration

Sketching

Gaussian Projection

Column Sampling

Orthogonalization

Canonical
Gramian
Tall-Skinny QR

Integration

| Kolmogorov-Nagumo | Wen-Yin | Multilevel Pairwise |
| :--- | :--- | :--- | :--- |

Post-processing
Canonical
Gramian \square
\square
Tall-Skinny QR
Symmetric

1000 Genomes Project Phase 1

- 1,092 $\times 36,781,560$ matrix \boldsymbol{A}
- iSVD
- Column-block Gaussian projection sketching (CPU/GPU)
- Row-block Gramian orthogonalization
- Row-block Wen-Yin integration
- Column-block Gramian former

1000 Genomes Project $(1,092 \times 36,781,560)$

Integration

Integrated SVD (iSVD)

- Multiple random sketching

$$
\boldsymbol{Y}_{[i]} \leftarrow \boldsymbol{A} \boldsymbol{\Omega}_{[i]}, \quad i=1, \ldots, N
$$

- Orthonormal basis of each sketched subspace

$$
\boldsymbol{Q}_{[i]} \leftarrow \operatorname{Orth}\left(\boldsymbol{Y}_{[i]}\right) \quad \mid \leftarrow \operatorname{Orth}(\|)
$$

- Integration of the basis matrices

$$
\overline{\boldsymbol{Q}} \leftarrow\left\{\boldsymbol{Q}_{[i]}\right\}_{i=1}^{N}
$$

- Post-processing: SVD on the QQT-projected subspace

$$
\overline{\boldsymbol{Q}}\left(\overline{\boldsymbol{Q}}^{\top} \boldsymbol{A}\right)=\overline{\boldsymbol{Q}}\left(\widehat{\boldsymbol{W}}_{\ell} \widehat{\boldsymbol{\Sigma}}_{\ell} \widehat{\boldsymbol{V}}_{\ell}^{\top}\right)=\widehat{\boldsymbol{U}}_{\ell} \widehat{\boldsymbol{\Sigma}}_{\ell} \widehat{\boldsymbol{V}}_{\ell}^{\top}, \quad \ell=k+p
$$

Variations of iSVD

Sketohing

Gaussian Projection Column Sampling

Post-processing

Target Optimization Problem

Optimal Representation

- Best representation of the projections

$$
\overline{\boldsymbol{Q}}=\operatorname{argmin}_{\boldsymbol{Q} \in \mathcal{S}_{m, \ell}} \sum_{i=1}^{N}\left\|\boldsymbol{Q}_{[i]} \boldsymbol{Q}_{[i]}^{\top}-\boldsymbol{Q} \boldsymbol{Q}^{\boldsymbol{\top}}\right\|_{F}^{2}
$$

- Invariant of rotations: $\left(\boldsymbol{Q}_{[i]} \boldsymbol{R}_{\theta}\right)\left(\boldsymbol{Q}_{[i]} \boldsymbol{R}_{\theta}\right)^{\boldsymbol{\top}}=\boldsymbol{Q}_{[i]} \boldsymbol{Q}_{[i]}^{\top}$
- l2-discrepancy
- Stiefel Manifold

$$
\mathcal{S}_{m, \ell}=\left\{\boldsymbol{Q} \in \mathbb{R}^{m \times \ell}: \boldsymbol{Q}^{\top} \boldsymbol{Q}=\boldsymbol{I} \text { and } m \geq \ell\right\}
$$

Integration Methods

- Canonical SVD (The SVD routine in MATLAB or LAPACK...)
- Statistical average by Kolmogorov-Nagumo average on Stiefel Manifold*
- Optimization by line search method proposed by Wen and Yin+
- Multi-level pairwise integration
*Fiori, Simone, Tetsuya Kaneko, and Toshihisa Tanaka. "Mixed maps for learning a Kolmogorov-Nagumo-type average element on the compact Stiefel manifold." Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. IEEE, 2014.
*Kaneko, Tetsuya, Simone Fiori, and Toshihisa Tanaka. "Empirical arithmetic averaging over the compact Stiefel manifold." IEEE Transactions on Signal Processing 61.4 (2013): 883-894.
+ Wen, Zaiwen, and Wotao Yin. "A feasible method for optimization with orthogonality constraints." Mathematical Programming (2013): 1-38.

Kolmogorov-Nagumo Average

A Statistical View

One Step Moving in KN Average

One Step Moving in KN Average

Wen-Yin Optimization

An Optimization View

Multilevel Pairwise Integration

A Fast and Parallel Approach

Integrated Subspace of Two Sketched Subspaces ${ }^{26}$

- The integrated subspace of a pair of sketched subspaces $(\mathrm{N}=2)$ is

$$
\overline{\boldsymbol{Q}}=\underset{\boldsymbol{Q} \in \mathcal{S}_{m, \ell}}{\operatorname{argmin}}\left\|\boldsymbol{Q}_{[1]} \boldsymbol{Q}_{[1]}^{\top}-\boldsymbol{Q} \boldsymbol{Q}^{\top}\right\|_{F}^{2}+\left\|\boldsymbol{Q}_{[2]} \boldsymbol{Q}_{[2]}^{\top}-\boldsymbol{Q} \boldsymbol{Q}^{\top}\right\|_{F}^{2}
$$

- The optimal solution of the above optimization problem is
- the leading ℓ eigenvectors of $\boldsymbol{Q}_{[1]} \boldsymbol{Q}_{[1]}^{\top}+\boldsymbol{Q}_{[2]} \boldsymbol{Q}_{[2]}^{\top}$
- or equivalently, the leading ℓ singular vectors of $\left[Q_{[1]} \mid \boldsymbol{Q}_{[2]}\right]$

Integration by A Fast Pairwise Sketched Subspace Average ${ }^{27}$

$$
\begin{aligned}
& \text { Let } M=\left[Q_{1} \mid Q_{2}\right]=L \Sigma R^{T} \approx L_{\ell} \Sigma_{\ell} \boldsymbol{R}_{\ell}^{T} \text { and } Q_{1}^{T} Q_{2}=U S V^{T} \text {. We have } \\
& \qquad \begin{aligned}
& \boldsymbol{M}^{\top} \boldsymbol{M}=\left[\begin{array}{cc}
\boldsymbol{I}_{\ell} & \boldsymbol{Q}_{1}^{\top} \boldsymbol{Q}_{2} \\
\boldsymbol{Q}_{2}^{\top} \boldsymbol{Q}_{1} & \boldsymbol{I}_{\ell}
\end{array}\right] \\
&=\left[\begin{array}{cc}
\boldsymbol{I}_{\ell} & \boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{\top} \\
\boldsymbol{V} \boldsymbol{S} \boldsymbol{U}^{\top} & \boldsymbol{I}_{\ell}
\end{array}\right] \\
&=\left(\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
\boldsymbol{U} & \boldsymbol{U} \\
\boldsymbol{V} & -\boldsymbol{V}
\end{array}\right]\right)\left[\begin{array}{cc}
\boldsymbol{I}+\boldsymbol{S} & \\
& \boldsymbol{I}-\boldsymbol{S}
\end{array}\right]\left(\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
\boldsymbol{U} & \boldsymbol{U} \\
\boldsymbol{V} & -\boldsymbol{V}
\end{array}\right]\right)^{\top} \\
& M^{T} \boldsymbol{M}=R \Sigma^{2} R^{T}
\end{aligned}
\end{aligned}
$$

$$
\boldsymbol{\Sigma}_{\ell}^{2}=\boldsymbol{I}+\boldsymbol{S}, \boldsymbol{R}_{\ell}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
\boldsymbol{U} \\
\boldsymbol{V}
\end{array}\right] \text { and } \boldsymbol{L}_{\ell}=\boldsymbol{M} \frac{1}{\sqrt{2}}\left[\begin{array}{l}
\boldsymbol{U} \\
\boldsymbol{V}
\end{array}\right](\boldsymbol{I}+\boldsymbol{S})^{-\frac{1}{2}}=\left(\boldsymbol{Q}_{1} \boldsymbol{U}+\boldsymbol{Q}_{2} \boldsymbol{V}\right)(2(\boldsymbol{I}+\boldsymbol{S}))^{-\frac{1}{2}}
$$

Algorithm and Complexity

Algorithm 2-2 Hierarchical Reduction
Require: The orthogonal matrices to be integrated $\boldsymbol{Q}_{[1]}, \boldsymbol{Q}_{[2]}, \ldots, \boldsymbol{Q}_{[N]}$.
Ensure: The average $\overline{\boldsymbol{Q}}$.
1: Set $n=N$.
2: while $n>1$ do Loop for levels
$\begin{array}{ll}\text { 3: } & \text { Set } m=\left\lfloor\frac{n}{2}\right\rfloor \\ \text { 4: } & \text { for } i=1,2, \ldots, m \text { do } \quad \text { Loop for pairs }\end{array}$
5: \quad Find SVD of $\boldsymbol{Q}_{[2 i-1]}^{\top} \boldsymbol{Q}_{[2 i]}$ as $\boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{\top}$. $\quad O\left(\ell^{3}\right)$
6:

$$
\boldsymbol{Q}_{[i]} \leftarrow\left(\boldsymbol{Q}_{[2 i-1]} \boldsymbol{U}+\boldsymbol{Q}_{[2 i]} \boldsymbol{V}\right)(2(\boldsymbol{I}+\boldsymbol{S}))^{-\frac{1}{2}} . O\left(m \ell^{2}\right)
$$

end for
8: $\quad n \leftarrow\left\lceil\frac{n}{2}\right\rceil$
9: end while
10: $\overline{\boldsymbol{Q}}=\boldsymbol{Q}_{[1]}$.
Total: $O\left(N m \ell^{2}+N \ell^{3}\right)$

Comparison of Integration Methods

Complexity	$O\left(N^{2} m \ell^{2}\right)$	$O\left(N m \ell^{2} \#\right.$ Iter $)$	$O\left(N m \ell^{2}\right)$
Contal SVD	KN Average WL Optimization	Multilevel Pairwise Integration	
Theoretical Accuracy			
of Result	Exactly the integrated subspaces defined previously.	Close to integrated subspace for few interaction steps. Exactly the integrated subspace while converged.	Approximation of integrated subspace.

Numerical Experiments

Setting and Environment

- The desired rank in all tests is $k=10$.
- The oversampling number is $p=12$.
- The test codes are implemented in MATLAB without optimization on speed.
- The tests are done in different machine due to the issue of memory size.
- All the timing tests are done in MacBook Pro (Mid. 2014). (Processor: 2.6 GHz Intel Core i5. 2 cores. 4 threads. Memory: 8 GB 1600 MHz DDR3)

Test Matrices

- The test matrices in the following tests are generated by

$$
\boldsymbol{A}=\boldsymbol{H}_{m} \boldsymbol{\Sigma} \boldsymbol{H}_{n}^{\top}
$$

where $\boldsymbol{H}_{m}, \boldsymbol{H}_{n}$ denote the Hadamard matrix with size $m=2^{d}, n=2^{d+1}$. The diagonal matrix $\boldsymbol{\Sigma}$ is given by different entries in different test matrices for $k=10$.

$$
A_{H}\left(10^{-1}\right): \sigma_{i, i}=\left\{\begin{array}{ll}
\left(10^{-1}\right)^{\frac{i-1}{k}} & \text { if } i \leq k \\
\frac{10^{-1}(m-i)}{m-k-1} & \text { otherwise }
\end{array} \quad A_{H}\left(10^{-3}\right): \sigma_{i, i}= \begin{cases}\left(10^{-3}\right)^{\frac{i-1}{k}} & \text { if } i \leq k \\
\frac{10^{-3}(m-i)}{m-k-1} & \text { otherwise }\end{cases}\right.
$$

- Some matrices from SuiteSparse matrix collection

Error Measurement

- Singular vector similarity
- Inner product of each columns between $Q_{\text {test }}$ and $Q_{\text {true }}$
- The angle of each singular vectors
- The values are close to 1 if the approximation is good
- Canonical angles
- Singular values of the matrix $\boldsymbol{Q}_{\text {test }}^{\top} \boldsymbol{Q}_{\text {true }}$
- Distance of two subspaces
- The values are close to 1 if the approximation is good

Comparison of Different N

- Repeat each case for 30 times and plot in box plot.

Size of A: 524288×1048576

$$
\boldsymbol{A}_{\boldsymbol{H}}\left(10^{-1}\right)
$$

Size of A: 524288×1048576

Singular Values of Test Matrices

- The larger the difference between each singular values, the easier to capture the leading singular vectors by Gaussian projection.

SuiteSparse Test Matrix: Mittelmann_fome13

Similarities

First 27 singular values of test matrix

SuiteSparse Test Matrix: Mittelmann_fome13

Canonical Angles

First 27 singular values of test matrix

SuiteSparse Test Matrix: ANSYS_Delor338K

First 27 singular values of test matrix

SuiteSparse Test Matrix: Barbasi_NotreDame_actors ${ }^{40}$

First 27 singular values of test matrix

SuiteSparse Test Matrix: JGD_GL7d_GL7d22

First 27 singular values of test matrix

Timing Results

- Each points represent a test case with $N=1,4,16,32,64,128,256$

Summary

- Multiple random sketches based SVD
- Multilevel pairwise integration is a fast approximate method in iSVD
- Can be easily paralleled
- Can be used as an initial guess for KN average or WL optimization

Thank
 you.

Questions/comments/collaborations are welcome!

