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Project Overview: Investigate the Pliocene-Pleistocene Transition (PPT)
via conceptual mathematical models

Hansen J.E., Sato M. (2012) Paleoclimate Implications for Human-Made Climate Change. In: Berger A., Mesinger F., Sijacki D. (eds) Climate 
Change. Springer.
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J. Knies et al. (2014). The emergence of modern sea ice cover in the Arctic Ocean. Nature Communications| DOI: 10.1038/ncomms6608

Phase I (~5 Mya) Dense vegetation in high northern latitudes.
Arctic Ocean mainly ice-free or covered by first-year winter ice.
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Phase II (~3.9 Mya) Arctic sea ice expanded to its modern summer limits.
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J. Knies et al. (2014). The emergence of modern sea ice cover in the Arctic Ocean. Nature Communications| DOI: 10.1038/ncomms6608

Phase III (~2.6 Mya) Arctic sea ice expanded to its modern winter limits.
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can be adjusted to find a stable climate appropriate for current times, as well as
a stable climate appropriate for the deepest of ice ages, points to the power and
utility of this relatively simple coupled EBM.

The present work considers discontinuous albedo functions—in which case (12)
is said to be of “Budyko-type”—and di↵usive heat transport. In the following two
sections we present the analysis of the coupled temperature–ice line model assuming
di↵usive heat transport (11) and albedo functions (7) and (27), respectively. For
completeness, in section 5 we then revisit and expand upon the quadratic approxi-
mation approaches to analyzing system (13) presented in [24] and [37].

3. Di↵usive heat transport: standard albedo. In this section we consider the
system

R
@T

@t
= Qs(y)(1� ↵(y, ⌘))� (A+BT ) +D

@

@y
(1� y

2)
@T

@y
(14a)

d⌘

dt
= "(T (⌘, t)� Tc), (14b)

with albedo function ↵(y, ⌘) given by (7).
We note equation (14a) comes with the boundary conditions that the gradient

of the temperature profile T (y, t) equals zero at the equator and at the North Pole.

3.1. The spectral method. Recall functions appearing in (14) are even functions
of y, due to the assumed symmetry about the equator. We approximate system
(14) by expanding each function of y in terms of the first N + 1 even Legendre
polynomials, arriving at a system of N+2 ODE as follows. Consider the expression

T (y, t) =
NX

n=0

T2n(t)p2n(y), (15)

and first note

dp2n

d✓
=

dp2n

dy
cos ✓ = 0

at the equator and North Pole. Hence expression (15) satisfies the prescribed bound-
ary conditions.

Substitute (15) and (6) into equation (14a) to arrive at

R

NX

n=0

Ṫ2np2n(y) = Q

NX

n=0

(s2n � ↵2n)p2n(y)�A�B

NX

n=0

T2np2n(y) (16)

�D

NX

n=0

2n(2n+ 1)T2np2n(y),
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is said to be of “Budyko-type”—and di↵usive heat transport. In the following two
sections we present the analysis of the coupled temperature–ice line model assuming
di↵usive heat transport (11) and albedo functions (7) and (27), respectively. For
completeness, in section 5 we then revisit and expand upon the quadratic approxi-
mation approaches to analyzing system (13) presented in [24] and [37].

3. Di↵usive heat transport: standard albedo. In this section we consider the
system

R
@T

@t
= Qs(y)(1� ↵(y, ⌘))� (A+BT ) +D

@

@y
(1� y

2)
@T

@y
(14a)

d⌘

dt
= "(T (⌘, t)� Tc), (14b)

with albedo function ↵(y, ⌘) given by (7).
We note equation (14a) comes with the boundary conditions that the gradient

of the temperature profile T (y, t) equals zero at the equator and at the North Pole.

3.1. The spectral method. Recall functions appearing in (14) are even functions
of y, due to the assumed symmetry about the equator. We approximate system
(14) by expanding each function of y in terms of the first N + 1 even Legendre
polynomials, arriving at a system of N+2 ODE as follows. Consider the expression

T (y, t) =
NX

n=0

T2n(t)p2n(y), (15)

and first note

dp2n

d✓
=

dp2n

dy
cos ✓ = 0

at the equator and North Pole. Hence expression (15) satisfies the prescribed bound-
ary conditions.

Substitute (15) and (6) into equation (14a) to arrive at

R

NX
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NX
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NX
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2n(2n+ 1)T2np2n(y),
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would grow, increasing the albedo and further lowering temperatures, leading to an ever

larger ice sheet. A warming climate would lead to a smaller ice sheet and reduced albedo,

thereby raising temperatures and further reducing the size of the ice sheet.

Budyko found that for a range of Q-values there exist ⌘1 < ⌘2 with T ⇤
⌘i(⌘i) = Tc =

�10�C, i = 1, 2, with ⌘1 in lower latitudes and ⌘2 nearer the North Pole. If Q decreased

su�ciently, however, there were no such ⌘-values, with the implication being that the ice

line would be positioned at the equator for these Q-values (a so-called Snowball Earth

event). This was viewed as a consequence of ice-albedo feedback. Notably, previous

analyses of Budyko’s model lacked any treatment of the stability of the “preferred”

equilibrium temperature distributions having T ⇤
⌘ (⌘) = Tc (or, indeed, of T ⇤

⌘ (y) for any

⌘) from a dynamical systems perspective, that is, in the infinite-dimensional setting

intrinsic to (1).

Additionally, Budyko’s model lacks any mechanism by which the ice line ⌘ is allowed

to respond to changes in temperature. This limitation was remedied by E. Widiasih

in [35] through the addition of an ODE for the evolution of ⌘, leading to the integro

di↵erential system

R
@T

@t
= Qs(y)(1� ↵(y, ⌘))� (A+BT )� C(T � T ) (7a)

d⌘

dt
= ⇢(T (⌘, t)� Tc). (7b)

Here, ⇢ > 0 is a parameter governing the relaxation time of the ice sheet. The tempera-

ture distribution T (y, t) evolves according to Budyko’s equation (7a), while the dynamics

of ⌘ are determined by the temperature at the ice line, relative to the critical tempera-

ture. The ice sheet retreats toward the pole if T (⌘, t) > Tc, and moves equatorward if

T (⌘, t) < Tc.

Working in the infinite-dimensional setting and with parameters as in Budyko’s work

(the left column in Table 1), Widiasih proved the existence of equilibrium temperature–

ice line pairs (T⌘i(y), ⌘i), i = 1, 2, for ⇢ su�ciently small. The ice line y = ⌘2 corresponds

to a stable, small ice cap, while ice line y = ⌘1 corresponds to a large, unstable ice

sheet (in particular, there are no oscillations of the ice sheet in the model). This work

provided Budyko’s pioneering and influential model with a modern dynamical systems

perspective.

3 The approximation of McGehee and Widiasih

Recall equilibrium solutions of Budyko’s equation (1) are even and piecewise quadratic,

with a discontinuity at ⌘, when using albedo function (5) and expression (4). This
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can be adjusted to find a stable climate appropriate for current times, as well as
a stable climate appropriate for the deepest of ice ages, points to the power and
utility of this relatively simple coupled EBM.

The present work considers discontinuous albedo functions—in which case (12)
is said to be of “Budyko-type”—and di↵usive heat transport. In the following two
sections we present the analysis of the coupled temperature–ice line model assuming
di↵usive heat transport (11) and albedo functions (7) and (27), respectively. For
completeness, in section 5 we then revisit and expand upon the quadratic approxi-
mation approaches to analyzing system (13) presented in [24] and [37].

3. Di↵usive heat transport: standard albedo. In this section we consider the
system
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@
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(14a)

d⌘

dt
= "(T (⌘, t)� Tc), (14b)

with albedo function ↵(y, ⌘) given by (7).
We note equation (14a) comes with the boundary conditions that the gradient

of the temperature profile T (y, t) equals zero at the equator and at the North Pole.

3.1. The spectral method. Recall functions appearing in (14) are even functions
of y, due to the assumed symmetry about the equator. We approximate system
(14) by expanding each function of y in terms of the first N + 1 even Legendre
polynomials, arriving at a system of N+2 ODE as follows. Consider the expression

T (y, t) =
NX

n=0

T2n(t)p2n(y), (15)

and first note

dp2n

d✓
=

dp2n

dy
cos ✓ = 0

at the equator and North Pole. Hence expression (15) satisfies the prescribed bound-
ary conditions.

Substitute (15) and (6) into equation (14a) to arrive at
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would grow, increasing the albedo and further lowering temperatures, leading to an ever

larger ice sheet. A warming climate would lead to a smaller ice sheet and reduced albedo,

thereby raising temperatures and further reducing the size of the ice sheet.

Budyko found that for a range of Q-values there exist ⌘1 < ⌘2 with T ⇤
⌘i(⌘i) = Tc =

�10�C, i = 1, 2, with ⌘1 in lower latitudes and ⌘2 nearer the North Pole. If Q decreased

su�ciently, however, there were no such ⌘-values, with the implication being that the ice

line would be positioned at the equator for these Q-values (a so-called Snowball Earth

event). This was viewed as a consequence of ice-albedo feedback. Notably, previous

analyses of Budyko’s model lacked any treatment of the stability of the “preferred”

equilibrium temperature distributions having T ⇤
⌘ (⌘) = Tc (or, indeed, of T ⇤

⌘ (y) for any

⌘) from a dynamical systems perspective, that is, in the infinite-dimensional setting

intrinsic to (1).

Additionally, Budyko’s model lacks any mechanism by which the ice line ⌘ is allowed

to respond to changes in temperature. This limitation was remedied by E. Widiasih

in [35] through the addition of an ODE for the evolution of ⌘, leading to the integro

di↵erential system

R
@T

@t
= Qs(y)(1� ↵(y, ⌘))� (A+BT )� C(T � T ) (7a)

d⌘

dt
= ⇢(T (⌘, t)� Tc). (7b)

Here, ⇢ > 0 is a parameter governing the relaxation time of the ice sheet. The tempera-

ture distribution T (y, t) evolves according to Budyko’s equation (7a), while the dynamics

of ⌘ are determined by the temperature at the ice line, relative to the critical tempera-

ture. The ice sheet retreats toward the pole if T (⌘, t) > Tc, and moves equatorward if

T (⌘, t) < Tc.

Working in the infinite-dimensional setting and with parameters as in Budyko’s work

(the left column in Table 1), Widiasih proved the existence of equilibrium temperature–

ice line pairs (T⌘i(y), ⌘i), i = 1, 2, for ⇢ su�ciently small. The ice line y = ⌘2 corresponds

to a stable, small ice cap, while ice line y = ⌘1 corresponds to a large, unstable ice

sheet (in particular, there are no oscillations of the ice sheet in the model). This work

provided Budyko’s pioneering and influential model with a modern dynamical systems

perspective.

3 The approximation of McGehee and Widiasih

Recall equilibrium solutions of Budyko’s equation (1) are even and piecewise quadratic,

with a discontinuity at ⌘, when using albedo function (5) and expression (4). This
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Glacial state Interglacial state

Ablation rate bG is smaller
Diffusion coeff. DG is smaller

Ablation rate bI is larger
Diffusion coeff. DI is larger
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dt
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dt
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dt
= ✏(bI(⌘ � ⇠)� a(1� ⌘))

Switching boundary ⌃ = {(⌘, ⇠) : b(⌘ � ⇠)� a(1� ⌘) = 0}
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dt
= ⇢h(⌘, DI) critical ablation rate b 2 (bG, bI)
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dt
= ✏(bI(⌘ � ⇠)� a(1� ⌘))

Switching boundary ⌃ = {(⌘, ⇠) : b(⌘ � ⇠)� a(1� ⌘) = 0}
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dt
= ⇢h(⌘, DI) critical ablation rate b 2 (bG, bI)
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dt
= ✏(bI(⌘ � ⇠)� a(1� ⌘))
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Switching boundary ⌃ = {(⌘, ⇠) : b(⌘ � ⇠)� a(1� ⌘) = 0} DG = 0.3 DI = 0.394 N = 1
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Interglacial
retreat

Glacial
advance
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Switching boundary ⌃ = {(⌘, ⇠) : b(⌘ � ⇠)� a(1� ⌘) = 0} DG = 0.3 DI = 0.43 N = 3
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dt
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dt
= ✏(bI(⌘ � ⇠)� a(1� ⌘))

Phase III 

9 unique (nonsmooth)

limit cycle for ✏ su↵.

small
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Interglacial
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Flux at 
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limit cycle for ✏ su↵.
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Watts (scaled)
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Obliquity 
forcing
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• Attracting curve of rest points ⇤ when ⇢ = 0
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= ��n(Tn � fn(⌘)), n = 0, 1, .., N
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NX

n=0
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(similar expansions for functions s(y) and s(y)↵(y, ⌘))

T (y, t) =

NX

n=0

Tn(t)pn(y), pn(y) - nth even Legendre polynomial

• T (y, t) – zonal annual mean temperature

at y = sin ✓ (✓ latitude) ⇠ �

• ⌘ – albedo line

• ⇠ – glacier’s edge

⇡ stable unstable
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±
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±
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Jormungand

state

(high CO2) (low CO2) saddle node nonsmooth fold
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Switching boundary ⌃ = {(⌘, ⇠) : b(⌘ � ⇠)� a(1� ⌘) = 0} DG = 0.3 DI = 0.394 N = 1

d⌘

dt
= ⇢h(⌘, DI) critical ablation rate b 2 (bG, bI) h(⌘, D) ⌘

d⇠

dt
= ✏(bI(⌘ � ⇠)� a(1� ⌘))

d⌘

dt
= ⇢h(⌘, DG)

d⇠

dt
= ✏(bG(⌘ � ⇠)� a(1� ⌘))

d⌘

dt
= ⇢h(⌘, DI)

d⇠

dt
= ✏(bI(⌘ � ⇠)� a(1� ⌘))

Obliquity forcing
Decrease CO2?

Phase II?



SIAM DS19, May 23, 2019 
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J. Knies et al. (2014). The emergence of modern sea ice cover in the Arctic Ocean. Nature Communications| DOI: 10.1038/ncomms6608

Data indicates: “threshold behavior,” an “abrupt transition” in 
the intensification of Northern Hemishphere ice sheet growth
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J. Knies et al. (2014). The emergence of modern sea ice cover in the Arctic Ocean. Nature Communications| DOI: 10.1038/ncomms6608

Data indicates: “threshold behavior,” an “abrupt transition” in 
the intensification of Northern Hemishphere ice sheet growth

Thank you!


