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• Originally meant merging all developer changes into the repository
multiple times per day, to fail fast and fix integration issues fast.

• Required automated build and automated testing,
typically before every check-in

• People used build servers to continuously test the repository

• Today, the term is used more broadly to include most ways of 
testing changes when they are integrated into the mainline.

• Nighty testing
• Testing pull requests when they are submitted 
• Testing commits as they are added to master branch
• Automatically committing contributions that pass tests

• CI requires:
• Access to the repository by automated systems
• A way to run jobs automatically on test systems of interest

What is Continuous Integration?



Basic CI is free and extremely easy to set up (for cloud projects)

• Tools like Travis CI popularized simple 
configuration and free cloud services for CI

• Just edit a YAML file in your repo, and your 
tests run in the cloud, for free!

• Limited set of environments for typical HPC
development

• Basic Linux, Windows environments
• Mostly x86_64
• No advanced architectures, GPUs (need to set 

up your own)

• Still good for basic unit testing of HPC projects.



Continuous Integration tools pose a number of security challenges 
for large, multi-user HPC centers.

1. CI server is a persistent service; not suited to HPC batch model.
— Runner daemons need to be persistent
— Batch jobs typically have a fixed time limit, but HPC centers built around batch.

2. Need to run arbitrary code on machines, automatically.
— Often in response to external repository check-ins
— How do we know who ran the code?
— How do we trust users, and who do we blame if it the code is malicious?

3. Job runners on most systems don’t run as specific HPC users
— Can’t allow different users’ jobs to share data.
— Need isolation between jobs run by user A and jobs run by user B
— Users could set up their own runners, but this has steep maintenance 

requirements.



CI Working Group

ECP convened a working group in 2017 to assess CI requirements

1. Enumerate security requirements for 
DOE HPC facilities

2. Design a statement of work to add 
features to some existing CI solution

3. Find a subcontractor to implement all
of the features
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The working group produced a call for proposals.
DOE selected GitLab as the CI system, and Onyx Point as the implementor.

Done-------------------------------------------------------------------------
• Milestone 1: Single-center SetUID Runners

• Milestone 2: Single-center Batch Runners

To-do ------------------------------------------------------------------------
• Milestone 3: Securely run-as team user

• Milestone 4:  Cloud UI to enable runners at multiple centers.

• Milestone 5:  Enhanced auditing
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Enhancements over current Gitlab CI
● Facilities deploy and maintain trusted runners (not users)
● Runners run as users (trust GitLab server to say who to run as)
● Facilities set whitelists and blacklists for both users and groups, 

per runner
● final authority on who to run as is with the runner

On a normal GitLab instance, there would not be sufficient isolation 
between runners to meet the needs of HPC sites.

source: www.gitlab.com

Milestone 1:  SetUID runner - completed

GitLab
Server

GitLab and runners are trusted
Runners run as users 
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Batch runners are special SetUID runners

Enhancements over regular SetUID runners
● Runners use batch system, and do not block when running jobs

● Allows sites to leverage all their HPC resources
● Integration with SLURM, LSF, Cobalt batch systems
● Users can specify parallel resource requests in .gitlab-ci.yml

source: www.gitlab.com

Milestone 2:  Batch runner - completed

GitLab
Server

Runners run as users;
submit jobs to batch system;

don’t block while jobs run
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The interface is nearly the same as GitLab.com or any other GitLab instance

• .gitlab-ci.yml is a simple YAML file that controls what tests are runs.
• Contains a list of jobs, each with its own script.

• Facilities administer runners, so users don’t have to do anything but edit this file
• Tests are run on pushes, pull requests, and other changes to the repository
• Frequency and other options are customizable.

Add a simple .gitlab-ci.yml file at the top level of your repository
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There are some things to keep in mind for HPC: Tags

• CI systems like this were designed with a 
homogeneous Linux cloud in mind
• Tests run on Linux
• Scripts work the same everywhere
• No arch differences, etc.

• HPC is more complex!
• Different runners have different 

characteristics
• Login vs. batch
• x86_64 vs. Power vs. ARM

• Runners will be tagged to indicate these 
differences
• Jobs can specify tags to say where 

they should run

• Scheduler parameters are specified as 
variables
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Ability to run as team users will give more control to users and facilities

• Many teams want to run as a “service 
user” dedicated to CI
• Provides a clean testing environment 

free of particular users’ setup
• Only certain users on the team can run 

as these service users
• User varies by team

• Will be specified in .gitlab-ci.yml with a 
service user variable

• Facilities will have control over who runs 
as which service user
• Customizable security logic to check 

access
• Each facility can do this their own way
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Onyx Point is working to upstream these features to GitLab

Upstream

• SetUID runners are generally usable at other sites
• GitLab is interested in integrating this feature into their product
• Other features TBD

• We have tried to make ECP general enough to release
• Target simplicity – try not to be HPC specific unless we have to

• We expect open source contributions from ECP to have a lasting effect.
• Any HPC site will be able to do this with GitLab, not just labs
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The remainder of the project focuses on enabling 
continuous integration across DOE sites

Done-------------------------------------------------------------------------
• Milestone 1: Single-center SetUID Runners

• Milestone 2: Single-center Batch Runners

To-do ------------------------------------------------------------------------
• Milestone 3: Securely run-as team user

• Milestone 4:  Cloud UI to enable runners at multiple centers.

• Milestone 5:  Enhanced auditing
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• SetUID functionality allows HPC sites to administer runners on behalf of users
• Existing solutions at HPC sites put these burdens on users, now facilities manage them

• Batch runners provide integration with existing resource management (SLURM, LSF, Cobalt)
• Users can make CI suites with parallel tests
• Facilities can control queues and allocations used for CI
• Allows for gradual phase-in of CI – learning period as sites discover user needs

• Only locally administered GitLab instances are possible
• Facilities can use only their own runners

Milestones so far allow HPC facilities to run CI for their own local users

Server

LLNL

Server

ANL

Server

ORNL
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Milestone 4: Federation will allow us to bring together
facilities and users from across ECP

LLNLANLORNL

• OSTI will host an ECP GitLab instance alongside their 
existing DOE Code GitLab site

• Why OSTI?
• Staff already know how to host GitLab for all of DOE
• Staff already know how to vet DOE accounts from all labs
• Staff already run a secure (FIPS moderate) data center
• Well positioned to help with this effort!

• Facilities will deploy separate runners for OSTI GitLab

OSTI

Server
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Federation brings new security challenges!

ORNL

OSTI

Server

• How does OSTI GitLab know about facility accounts?

• Current plan:
• Facilities provide an OAuth Interface to allow external 

authentication (note: NOT login)
• When runners are registered, they are associated with an OAuth 

domain for their site by an administrator
• Users will be able to authenticate with facility credentials to gain 

ability to run at different sites.

• Only users with accounts at specific facilities can run there

• Facilities have final say (via runners) over who runs jobs
• Can revoke access or shut down runners at any time

• Onyx Point will integrate this support into the existing SetUID
runner implementation and into the GitLab server.

External OAuth
interface
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We do not want to force all users onto GitLab

• Many (likely most) projects are hosted in GitHub

• One of the reasons we chose GitLab was because you can 
mirror from external repositories and do CI on their behalf
• GitLab acts like Travis with special, fancier resources

• We are still working out the security agreements necessary 
for this use case
• Likely need to make certain assertions about users 

committing to the GitHub repo 
• Final Auditing milestone may help

LLNLANLORNL

OSTI

Server

Mirroring



18

The ECP CI system has long-term ramifications for software robustness

• It has been extremely difficult for developers to test their 
software and keep it up to date
• This system will enable us to automatically test in the 

environments we care most about

• Teams can test their software as they develop
• Prevent regressions
• Avoid tedious manual builds
• Find bugs early!

• We expect that this system will make capability class 
systems much easier to use
• Software will be available and tested
• Facilities can rely on a much more robust software stack
• Software can be built and available before users need it
• Efforts can be leveraged across sites
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ECP CI has potential not only for individual teams,

but for larger-scale software testing and distribution

• Spack is the software deployment technology used across ECP

• From-source builds of complex software for HPC systems
• Spack allows others to reproduce builds with different options
• Spack also provides a binary packaging capability

• We can use ECP CI to automatically run Spack builds

• Builds can “rot” over time as environments change
• Ensure that packages don’t go out of date
• Notify developers when packages need to be updated

• The Spack teams at LLNL and Kitware have developed a 

package build pipeline that relies on GitLab CI

• We are positioned to leverage the work of the ECP CI team
• This would make a binary distribution for HPC feasible for the first time @spackpm

github.com/spack/spack
https://spack.io

+
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We are building CI infrastructure for source and
binary distribution in Spack

User

Amazon S3 
source mirror

Source archives

Binary packages

Amazon S3
binary mirror

HPC Centers

Pull requests
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There are many potential benefits to a curated, automated 
ECP software distribution

• No more waiting for source builds
• Optimized binaries would be available pre-built for exascale systems

• Facilities and users can leverage the same builds using Spack
• Binaries are relocatable
• Same binary can be installed for site-wide use or in user home directory
• Facilities can customize modules, but the actual installation is the same

• Optimizations done for one team can be used by many!
• Spack provides a repository for build knowledge
• Packages leverage collaborative efforts of many developers

• Potential for greater software assurance through automation
• OSTI GitLab and Spack CI provide a central place where binaries could be 

scanned for malicious code.
• Binaries are signed, so facilities and users would have assurance of their 

provenance and of the measures taken to vet them.
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Many challenges remain ahead, but we hope ECP CI work 
will have a lasting effect on the HPC software ecosystem

• We are working on security approvals
• Inter-site agreements are needed for OSTI GitLab
• Also needed for a model for mirroring from GitHub
• Major collaborative effort between labs and facilities

• Working with facilities to manage CI resource demands will be an 
ongoing process

• We need to balance CI with production work
• Containerized build environments provide a potential avenue to 

enable builds to run off of costly HPC resources
• We could build for HPC systems in the cloud, or on private clouds of 

build nodes at different site

• The potential for developers and for software robustness is huge!
• This kind of collaboration would not be possible without ECP


