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INTRODUCTION



PDE PROBLEM

Find u ∈ X (Ω) ⊂ B(Ω) such that

F [u] ≡ F (D2u,∇u,u, x) = 0 x ∈ Ω ⊂ Rd , (PDE)

u = g x ∈ ∂Ω. (BC)

[
D2u

]
k`
≡ ∂2

∂xk∂x`
u = uxk x`

[
∇u
]

k
≡ ∂

∂xk
u = uxk

Application Areas of Fully Nonlinear PDEs:

I Differential geometry
I Mass transportation
I Astrophysics

I Optimal control
I Semigeostrophic flow
I Meteorology
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STRUCTURE ASSUMPTIONS

I F [u] is said to be (degenerate) elliptic if

F (A,q, v , x) ≤ F (B,q, v , x) ∀A,B ∈ SL(n), A− B ≥ 0,

where SL(n) denotes real, symmetric n × n matrices and A− B ≥ 0 means
A− B is positive definite.

I F [u] is said to be proper elliptic if, in addition to being degenerate elliptic,

F (A,q, v , x) ≤ F (A,q,w , x) ∀v ,w ∈ R, v − w ≤ 0.

I The problem F [u] = 0 satisfies a comparison principle if for any upper
semi-continuous function u and lower semi-continuous function v on Ω such
that u is a viscosity subsolution and v is a viscosity supersolution, then u ≤ v
on Ω.

The comparison principle holds for proper elliptic equations and is often referred to
as a strong uniqueness property.

TOM LEWIS EMAIL: tllewis3@uncg.edu NUMERICAL MOMENTS AND FULLY NONLINEAR PDES



VISCOSITY SOLUTIONS

Assume F is elliptic in a function class A ⊂ C0(Ω),

(I) u ∈ A is called a viscosity subsolution of F [u] = 0 if
∀ϕ ∈ C2(Ω), when u − ϕ has a local maximum at x0 ∈ Ω,

F (D2ϕ(x0),∇ϕ(x0),u(x0), x0)≤0

(II) u ∈ A is called a viscosity supersolution of F [u] = 0 if
∀ϕ ∈ C2(Ω), when u − ϕ has a local minimum at x0 ∈ Ω,

F (D2ϕ(x0),∇ϕ(x0),u(x0), x0)≥0

(III) u ∈ A is called a viscosity solution of F [u] = 0 if u is both a
sub- and supersolution of F [u] = 0.
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MOTIVATION FOR THE DEFINITION

Suppose v(x0) = 0 is a relative
maximum.

I "vx (x0) = 0"

I "vxx (x0) ≤ 0" by concavity.

Let v = u − ϕ for ϕ ∈ C2(Ω).

I "ux (x0) = ϕx (x0)"

I "uxx (x0) ≤ ϕxx (x0)"

Ellipticity:

F (ϕxx (x0), ϕx (x0), ϕ(x0), x0) ≤ “F (uxx (x0), ux (x0), u(x0), x0) = ” 0
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GOAL

Directly approximate viscosity solutions in C(Ω) using a DG framework to allow for
flexibility and increased accuracy.

The discretization should either remove numerical artifacts or naturally pair with a
solver that allows for selectivity.

Background on Numerical Methods:
I Most (non-problem-specific) methods are based on Finite Difference (FD)

and the monotonicity framework of Barles-Souganidis.

For nonlinear problems that depend on uxk x` with k 6= `, monotonicity typically
implies wide-stencils.

I Wide-Stencil (semi-Lagrangian, meshless) schemes are less natural in the
DG framework for higher-degree elements.

I Many methods require a higher regularity assumption on the viscosity
solution.

I Review Paper: X. Feng, R. Glowinski, M. Neilan, "Recent developments in numerical
methods for second order fully nonlinear PDEs", SIAM Rev., 55(2):205–267, 2013.
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NUMERICAL MOMENTS AND A NARROW-STENCIL
FINITE DIFFERENCE METHOD



FINITE DIFFERENCE METHOD FOR F (D2u,∇u, u, x) = 0

[
∇±h
]

k ≡ δ
±
xk ,h

[
Dµν

h

]
k` ≡ δ

µ
xk ,hδ

ν
x`,h

F̂
(
D++

h Uα,D+−
h Uα,D−+

h Uα,D−−h Uα,∇+
h Uα,∇−h Uα,Uα, xα

)
= 0

Criteria for F̂ :

I Consistency: F̂ (P,P,P,P,q,q,u, x) = F (P,q,u, x),

I Generalized Monotonicity: F̂ (↑, ↓, ↓, ↑, ↓, ↑,u, x).

Example: Lax-Friedrich’s-like numerical operator

F̂ [u] ≡ F (P, q, u, x)− ~b ·
(
q+ − q−

)︸ ︷︷ ︸
Numerical Viscosity

+ A :
(
P++ − P+− − P−+ + P−−

)︸ ︷︷ ︸
Numerical Moment
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THE NUMERICAL VISCOSITY AND NUMERICAL MOMENT

The Numerical Viscosity:

−
d∑

k=1

(
δ+

xk ,hUα − δ−xk ,hUα
)

= −
d∑

k=1

hk δ
2
xk ,hUα

The Numerical Moment:
d∑

k,`=1

([
D++

h Uα
]

k` −
[
D+−

h Uα
]

k` −
[
D−+

h Uα
]

k` +
[
D−−h Uα

]
k`

)

=

d∑
k,`=1

hk h` δ2
xk ,hδ

2
x`,hUα

I bk = −1: Numerical viscosity approximates h∆u.

I Ak` = 1: Numerical moment approximates h2∆2u.

The corresponding FD method is a direct realization of the vanishing
moment method of Feng and Neilan.
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CONVERGENCE

THEOREM

Suppose the PDE satisfies the comparison principle, has a unique continuous
viscosity solution u, the Dirichlet boundary data is continuous, and the opera-
tor F is proper elliptic and Lipschitz. Let uh be a piecewise constant extension
of the FD solution U.

Then uh converges to u locally uniformly as h → 0+ assuming the mesh and
the coefficient matrices A and ~β are chosen appropriately.

I A will be strictly positive definite and diagonally dominant with negative
off-diagonal entries.

I The Hamilton-Jacobi-Bellman equation satisfies the Lipschitz assumption.

Without a Lipschitz assumption, the coefficients for the numerical moment
would need to be chosen adaptively.

I The Lipschitz assumption and choice of numerical moment are sufficient for
ensuring consitency, admissibility, and `∞ stability of the scheme.
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STABILIZATION RESULTS

Let v ∈ USC(Ω) have a relative maximum at x0 ∈ Ω and i ∈ {1, 2, . . . ,∞}. Then

lim inf
hi→0+

(
δ++

xi ,hi
+ δ−−xi ,hi

− δ+−
xi ,hi
− δ−+

xi ,hi

)
v(x0) ≥ 0.

The numerical moment acts as a positive stabilization term.

Let v ∈ USC(Ω) have a relative maximum at x0 ∈ Ω and i ∈ {1, 2, . . . ,∞}.
If lim suphi→0+ δ2

xi ,hi
v(x0) = −∞, then

lim inf
hi→0+

(
Cδ++

xi ,hi
+ Cδ−−xi ,hi

− δ+−
xi ,hi
− δ−+

xi ,hi

)
v(x0) ≥ 0

for any constant 1 ≤ C ≤ 2.

The factor of C allows for control of mixed-derivatives without using a wide-stencil.

The numerical moment steers the approximation towards being a sub/supersolution
when the underlying viscosity solution has low regularity.
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LDG METHODS



FORMULATION

F
(
D2u,∇u,u, x

)
= 0 in Ω

Th denotes a locally quasi-uniform triangularization of Ω.
V h

r ≡
∏

K∈Th
Pr (K ) for r ≥ 0.

Standard Local Discontinuous Galerkin (LDG):

(
F (qh, uh, x) , φh

)
Th

= 0 ∀φh ∈ V h
r(

[qh]k , ϕ
h
k

)
Th

+
(

uh, ∂xkϕ
h
k

)
Th

=
〈

ûh, ϕ
h
k nk

〉
Eh

∀ϕh
k ∈ V h

r
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FORMULATION

F
(
D2u,∇u,u, x

)
= 0 in Ω

No integration by parts:
I Form a gradient and Hessian approximation.
I Use an L2-projection of the nonlinear equation.

(
F (Ph, qh, uh, x) , φh

)
Th

= 0 ∀φh ∈ V h
r(

[qh]k , ϕ
h
k

)
Th

+
(

uh, ∂xkϕ
h
k

)
Th

=
〈

ûh, ϕ
h
k nk

〉
Eh

∀ϕh
k ∈ V h

r(
[Ph]k`, ψ

h
k`

)
Th

+
(

[qh]k , ∂x`ψ
h
k`

)
Th

=
〈

[̂qh]k , ψ
h
k`n`

〉
Eh

∀ψh
k` ∈ V h

r

The individual components of the (discrete) gradient and Hessian form the auxiliary
variables.
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FORMULATION

F
(
D2u,∇u,u, x

)
= 0 in Ω

Low regularity for u: Form multiple gradient and Hessian approximations.

D2
hv(x0) ≤ 0 is not guaranteed at a relative maximum when v has low regularity.

Find uh ∈ V h
r , q+

h , q
−
h ∈ [V h

r ]d , P++
h ,P+−

h ,P−+
h ,P−−h ∈ [V h

r ]d×d such that(
F̂
(
P++

h ,P+−
h ,P−+

h ,P−−h , q+
h , q

−
h , uh, x

)
, φh

)
Th

= 0 ∀φh ∈ V h
r([

qµh
]

k , ϕ
µ
k

)
Th

+
(

uh, ∂xkϕ
µ
k

)
Th

=
〈

ûh
µ
, ϕµk nk

〉
Eh

∀ϕµk ∈ V h
r([

Pµνh

]
k`, ψ

µν
k`

)
Th

+
([

qµh
]

k , ∂x`ψ
µν
k`

)
Th

=
〈[̂

qµh
]

k

ν

, ψµνk` n`
〉
Eh

∀ψµνk` ∈ V h
r

for all k , ` = 1, 2, . . . , d , for all µ, ν ∈ {+,−}
Use upwind/downwind fluxes to define the interior traces.

Corresponding DG differential operators can be formed to eliminate the auxiliary
equations and reduce the number of unknowns to those for uh.
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CONVERGENCE

For r = 0 on uniform Cartesian meshes the formulation is equivalent
to the (narrow-stencil) generalized monotone finite difference
methods of Feng, L.

Heuristically, for r > 0, the convergence properties are maintained
while accuracy is increased.

The methods naturally extend the direct LDG methods of Yan and
Osher for first order fully nonlinear equations / Hamilton-Jacobi

equations.
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THE NUMERICAL VISCOSITY AND NUMERICAL MOMENT

The Numerical Viscosity:

−~b ·
(

q+
h − q−h , ϕh

)
Th

=
d∑

k=1

βk

〈[
uh
]
,
[
ϕh
]

nk

〉
E I

h

The Numerical Moment:

A :
(

P++
h − P+−

h − P−+
h + P−−h , ϕh

)
Th

=

d∑
k,`=1

ak`

〈[
q−k − q+

k
]
,
[
ϕh
]

n`
〉
E I

h

The numerical moment is a new type of jump-stabilization term based
on the difference of two different gradient approximations.
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SPLIT SOLVER

IDEA: Iterate over the Laplacian of uh to take advantage of the elliptic structure and
the strong monotonicity guaranteed by the numerical moment.

1. Pick an initial guess for uh.

2. Let the auxiliary variables be defined by q±h = ∇±h uh and Pµνh = Dµνh uh.
3. Set

[G]k ≡ F (Ph, qh, uh, x)− ~β ·
(
q+

h − q−h
)

+

d∑
i,j=1

i 6=j

Aij
[
P−−h − P−+

h − P+−
h + P++

h

]
ij

+γ
[
P−−h − P−+

h − P+−
h + P++

h

]
kk

for some fixed constant γ > 0 and solve(
[G]k , φk

)
Th

= 0 ∀φk ∈ V h
r

for
[(

P−+
h + P+−

h

)
/2
]

kk for all k = 1, 2, . . . , d .

For sufficiently large γ and a differentiable operator F , the above set of
equations has a negative definite Jacobian.

4. Solve ∆huh = tr
(
P−+

h + P+−
h

)
/2 using the DWDG method (L., Neilan).

5. Repeat steps 2 - 4.
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NUMERICAL MOMENT TEST IN ONE DIMENSION

F [u] ≡ 1− u2
xx = 0, on (0, 1),

u(0) = 0, u(1) = 1/2.

I Two classical solutions:

u+(x) =
1
2

x2, u−(x) = −1
2

x2 + x .

I Infinitely many C1 ∩ H2 artifacts (a.e. solutions) such as:

µ(x) =

{
1
2 x2 + 1

4 x , for x < 1
2 ,

− 1
2 x2 + 5

4 x − 1
4 , for x ≥ 1

2 .

I Unique viscosity solution: u+:

Fuxx

∣∣
u+ = −2uxx

∣∣
u+ = −1 < 0 =⇒ elliptic
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NUMERICAL MOMENT TEST IN ONE DIMENSION (CONTINUED)

(a) r = 0 and A = 1
h . (b) r = 0 and A = 0. (c) r = 0 and A = − 1

h .

(d) r = 2 and A = 1
h . (e) r = 2 and A = 0. (f) r = 2 and A = − 1

h .

u(0)
h =

3
4
µ+

1
4

u, Split Solver
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NUMERICAL MOMENT TEST IN ONE DIMENSION (CONTINUED)

u(0)
h = u, Newton Solver

r Norm h = 1/4 h = 1/8 h = 1/16 h = 1/32
Error Error Order Error Order Error Order

0 L2 7.1e-02 3.5e-02 1.02 1.4e-02 1.30 7.5e-03 0.92
L∞ 1.3e-01 8.7e-02 0.57 5.3e-02 0.73 2.9e-02 0.87

1 L2 1.6e-02 5.0e-03 1.67 1.3e-03 1.90 3.4e-04 1.95
L∞ 2.2e-02 6.3e-03 1.84 1.6e-03 2.00 3.9e-04 2.00

2 L2 3.1e-13 3.0e-13 3.0e-13 3.1e-13
L∞ 7.4e-13 6.1e-13 6.7e-13 7.1e-13

Figure: LDG with A = 10.

µ is a C1 solution of the problem in the test space V h
2 . The split solver

steered away from the artifact while the Newton solver converged to
an artifact when the initial guess was not convex with r ≥ 2.
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MONGE-AMPÈRE PROBLEM IN 2D WITH u(x , y) = |x | ∈ H1(Ω)

F [u] ≡ −det D2u = −uxx uyy + uxy uyx = f , Ω = (0, 1)× (0, 1),

u = g, ∂Ω

Viscosity solution: u(x , y) = |x | ∈ H1(Ω).

Initial guess u(0)
h = 0.

(a) FD with A = 10I,~b = 1. (b) LDG with r = 0 and A = I. (c) LDG with r = 1 and A = I.
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MONGE-AMPÈRE PROBLEM IN 2D (CONTINUED) WITH u(x , y) = |x | ∈ H1(Ω)

β = 1 β = 0
h `∞ Error Order `∞ Error Order

1.01e-01 2.80e-01 2.18e-01
8.84e-02 2.44e-01 1.01 1.87e-01 1.14
7.86e-02 2.18e-01 0.98 1.65e-01 1.06
7.07e-02 1.97e-01 0.95 1.49e-01 1.00

FD with A = 10I.

hx L∞ norm order
1.33E-01 1.87E-01
8.00E-02 1.30E-01 0.71
5.71E-02 1.02E-01 0.72
4.44E-02 8.51E-02 0.74
3.64E-02 7.33E-02 0.74

LDG with r = 0, A = 24I, and hy = 1
4 fixed.

hx L∞ norm order L2 norm order
2.50E-01 3.86E-02 3.42E-02
1.25E-01 2.08E-02 0.89 1.85E-02 0.88
8.33E-02 1.38E-02 1.02 1.24E-02 0.99

r = 1, A = I, and hy = 1
3 fixed. Odd number of intervals in the x-direction.
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IP-DG METHODS



FORMULATION – MIXED FORM OF THE PDE

F
(
D2u,∇u,u, x

)
= 0 in Ω

Find u,P+,P,P− such that

F̂ (P+,P,P−,∇u, u, x) = 0,

P+(x)− D2u(x+) = 0,

P(x)− D2u(xa) = 0,

P−(x)− D2u(x−) = 0

for all x ∈ Ω, where D2u(xa) can be thought of as the arithmetic average of
D2u(x+) and D2u(x−).

I The nonlinear equation is simply projected into the DG space using an L2

projection.
I The three different Hessians correspond to the three jump formulas:[

v w
]

= v−
[
w
]

+
[
v
]
w+,[

v w
]

=
{

v
}[

w
]

+
[
v
]{

w
}
,[

v w
]

= v+
[
w
]

+
[
v
]
w−

I The gradient is the piecewise gradient operator.
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THREE HESSIAN APPROXIMATIONS

(
P∗k`, φ

∗h
k`

)
Th

+ a∗k`
(

uh, φ
∗h
k`

)
= f∗k`

(
φ
∗h
k`

)
∀φ∗h

k` ∈ V h

for all k, ` = 1, 2, . . . , d and ∗ takes +,−, and empty value.

a+
k` (u, φ) = b+

k` (u, φ)−
〈

u+
xk
,
[
φ
]
n`
〉
E I

h

+ ε
+
k`

〈[
u
]
, φ

+
xk

n`
〉
E I

h

,

ak` (u, φ) = bk` (u, φ)−
〈{

uxk

}
,
[
φ
]
n`
〉
E I

h

+ εk`

〈[
u
]
,
{
φxk

}
n`
〉
E I

h

,

a−k` (u, φ) = b−k` (u, φ)−
〈

u−xk
,
[
φ
]
n`
〉
E I

h

+ ε
−
k`

〈[
u
]
, φ
−
xk

n`
〉
E I

h

,

f∗k`(φ) = ε
∗
k`

∑
e∈EB

H

〈
g, φxk n`

〉
ẽ

+
∑

e∈EB
h

γ0∗
k`

he

〈
g, φ

〉
e
,

with b∗k` : H1(Th)× H1(Th)→ R defined by

b∗k`(v,w) =
(

vxk ,wx`

)
Th

−
〈

vxk ,w n`
〉
EB

h

+ ε
∗
k`

〈
v,wxk n`

〉
EB

h

+
∑

e∈E I
h

γ0∗
k`

he

〈[
v
]
,
[
w
]〉

e
+
∑

e∈EB
h

γ0∗
k`

he

〈
v,w

〉
e
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NUMERICAL MOMENT

For simplicity, we assume the three symmetrization constants are the same, i.e.,
ε+ = ε = ε−. Then,(

P+h
k` − 2Ph

k` + P−h
k` , φ

)
Th

=
∑

e∈EB
h

γ0+
k` − 2γ0

k` + γ0−
k`

he

〈
g − uh, φ

〉
e

−
∑
e∈E I

h

γ0+
k` − 2γ0

k` + γ0−
k`

he

〈[
uh
]
,
[
φ
]〉

e

for all φ ∈ V h.

The numerical moment corresponds to a jump penalization term that weakly
enforces the boundary condition when the coefficient matrix is chosen
appropriately.

For simplicity we choose γ0+ = γ0− < γ0 in which case the moment is the
difference of two "central" Hessians with different
penalty constants.
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SOLVER

1. Pick initial guesses for uh, P+
h , Ph, and P−h .

2. Set

[
G
]

k ≡ F (Ph,∇uh, uh, x) +

d∑
i,j=1

i 6=j

aij
[
P+

h − 2Ph + P−h
]

ij

+ γ
[
P+

h − 2Ph + P−h
]

kk

for a fixed constant γ > 0, and solve([
G
]

k , φk

)
Th

= 0 ∀φ` ∈ V h

for [Ph]kk for all k = 1, 2, . . . , d .

3. Set Λh =
∑d

k=1 [Ph]kk . Find uh by solving Poisson’s equation for the given value
of Λh as a source using the IP-DG formulation corresponding to Ph.

4. Update P±h using uh.

5. Repeat Steps 2 - 4.
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NUMERICAL TEST: MONGE-AMPÈRE WITH u(x , y) = |x | USING THE SPLIT SOLVER

(d) 1 iteration (e) 20 iterations 2D (f) 20 iterations

(g) 100 iterations (h) 150 iterations

Figure: r = 2, α = 100 I, γ0+ = γ0− = 20 1, γ0 = 40 1, ε∗ = 0, h =
7.071068e-01 with initial guess u(0)

h = 0.
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CONCLUSION



SUMMARY

I A numerical moment requires having two distinct Hessian approximations.

I The numerical moment is a key tool in designing narrow-stencil convergent
finite difference methods that can naturally be extended to LDG methods.

I The numerical moment acts as a stabilization / positive penalty term for finite
difference methods with regards to the "differentiation-by-parts" definition of a
viscosity solution.

I The numerical moment is a direct realization of the vanishing moment
method for finite difference methods.

I The numerical moment acts as a penalization term when using DG methods.

For LDG methods it penalizes the difference of two gradient approximations.
For IP-DG methods it penalizes the continuity of the underlying
approximation.

I The numerical moment can be used to design solvers that are more selective
for a given discretization.

Thank You!
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finite difference methods that can naturally be extended to LDG methods.

I The numerical moment acts as a stabilization / positive penalty term for finite
difference methods with regards to the "differentiation-by-parts" definition of a
viscosity solution.

I The numerical moment is a direct realization of the vanishing moment
method for finite difference methods.

I The numerical moment acts as a penalization term when using DG methods.

For LDG methods it penalizes the difference of two gradient approximations.
For IP-DG methods it penalizes the continuity of the underlying
approximation.

I The numerical moment can be used to design solvers that are more selective
for a given discretization.

Thank You!
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GEOMETRIC INTERPRETATION OF VISCOSITY SOLUTIONS

u − ϕ local maximum at x0 u − ϕ local minimum at x0

I The concept was introduced by Crandall, Lions, and Evans in the early
1980’s.

I The concept is nonvariational. It is based on a local "differentiation by parts"
approach.

I Viscosity solutions may only be unique in a restrictive function class:
conditional uniqueness
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EXAMPLE

Test:
I Ω = (0, 1)2

I Monge-Ampère equation

I Solution u = e(x2+y2)/2 ∈ C∞(Ω)

I Standard 9-point FD scheme
I Newton based solver
I Vary the initial guess

ALL 16 Possible Solutions Computed for N = 4

For a N × N grid, there are 2(N−2)2
algebraic solutions

for the standard 9-point FD scheme.

*Test data generated by Michael Neilan.
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THE NUMERICAL MOMENT AS A STABILIZATION TERM IN FD
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