
Minimizers of the Landau-de Gennes energy around a
spherical colloid particle

Lia Bronsard

McMaster University

Lia Bronsard (McMaster) Spherical Colloid SIAM Boston 2016 1 / 19



Nematic Liquid Crystals

Fluid of rod-like particles, partially ordered:
translation but rotational symmetry is
broken.

Nematic phase: νηµα, thread: particles
prefer to order parallel to their neighbors

Director n(x), |n(x)| = 1 indicates local
axis of preference: gives on average the
direction of alignment.
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Oseen–Frank energy

A variational model for equilibrium configurations of liquid crystals.

Equilibria n : Ω ⊂ R3 → S2 minimize elastic energy,

E (n) =

∫

Ω
e(n,∇n) dx

e(n,∇n) = K1(∇ · n)2 + K2[n · (∇× n)]2 + K3[n × (∇× n)]2

Simple case: one-constant approximation K1 = K2 = K3 = 1,

E (n) =
1

2

∫

Ω
|∇n|2 dx , the S2 harmonic map energy.

n is not oriented, −n ∼ n gives same physical state.

=⇒ n : Ω→ RP2.
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Harmonic Maps to S2 (or RP2)
Real-valued minimizers f : Ω→ R of the Dirichlet energy
E (f ) = 1

2

∫
Ω |∇f |2 dx are harmonic functions, ∆f = 0.

I Linear elliptic PDE; solutions are smooth, bounded singularities
removable.

When u : Ω→ M, M a smooth manifold, minimizers solve a
nonlinear elliptic system of PDE.
For M = Sk or RPk , −∆n = |∇n|2n
Regularity theory for S2 or RP2-valued harmonic maps:

I Schoen-Uhlenbeck (1982): S2-valued minimizers are Hölder continuous
except for a discrete set of points.

I Brezis-Coron-Lieb (1986): singularities have degree ±1, n ' Rx
|x| , R

orthogonal. (“hedgehog”, “antihedgehog”)

I Hardt-Kinderlehrer-Lin (1986): for Oseen-Frank, min are real analytic
except for a closed set Z , H1(Z ) = 0.
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except for a discrete set of points.

I Brezis-Coron-Lieb (1986): singularities have degree ±1, n ' Rx
|x| , R

orthogonal. (“hedgehog”, “antihedgehog”)

I Hardt-Kinderlehrer-Lin (1986): for Oseen-Frank, min are real analytic
except for a closed set Z , H1(Z ) = 0.

Lia Bronsard (McMaster) Spherical Colloid SIAM Boston 2016 4 / 19



Applications of colloidal suspensions in nematic liquid crystals: photonics, biomedical sensors, ...

I. Musevic, M. Skarabot and M. Ravnik, Phil Trans Roy Soc A, 2013
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The spherical colloid
Consider a nematic in R3 surrounding a spherical particle Br0(0).

n(x) ' x

|x|
x 2 @Br0

n(x) ' ez,

|x| ! 1

@⌦ = @Br0

Ω = R3 \ Br0(0), exterior domain.

As |x | → ∞, tend to vertical
director, n(x)→ ±ez
On ∂Br0 , homeotropic (normal)
anchoring:

I Strong (Dirichlet) with
n = er = x

|x| ,

I Weak anchoring, via surface
energy, W

2

∫
∂Br0
|n − er |2 dS
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Size matters
Physicists observe that the character of the minimizers should depend on
particle radius r0 and anchoring strength W.

an equatorial disclination loop embracing the droplet, which is known as the
Saturn-ring configuration, first envisioned theoretically by Kuksenok et al. [105, 106]
on the basis of Frank–Oseen theory; and then observed experimentally in
thermotropic [107, 108] as well as lyotropic nematics [109] (figure 7). Computer
simulations also suggest that the hyperbolic hedgehog can transform into the Saturn
ring when the size of the spherical particle decreases [110, 111]. The interparticle
interactions acquire quadrupole symmetry when the dipole hedgehog configuration
changes to that of the Saturn ring symmetry in the external electric field,
as demonstrated by Loudet and Poulin [104].

The interparticle interactions become much weaker, F / 1=d 6, when the normal
boundary conditions are changed to the tangential ones [112, 113]. The director field
acquires two defects, boojums at the poles of the particle, and the symmetry of
a quadrupole. As established experimentally with the help of optical tweezers [114],
the interaction might be of repulsive or attractive nature, depending on the mutual
position of the two droplets, but it deviates from the quadrupolar model when the
distances between the particles become comparable to a few D’s.

The studies of dynamics of defect formations in colloidal systems are at the stage
of infancy [115, 116]. For example, Stark and Ventzki [115] calculated the Stokes
drag of spherical particles moving in a nematic host for three different configurations
shown in figure 7. The hedgehog configuration is very different from the other
two because of its dipolar symmetry.

4. Conclusion

The large birefringence of liquid crystals allow easy optical microscopy observations
of defects, whose number is scarce in the field of view, due to the viscous relaxation

(a) (b) (c)

Figure 7. A spherical inclusion in a uniformly aligned nematic matrix with homeotropic
boundary conditions (a) resembles a radial hedgehog and produces a hyperbolic satellite when
its size is much larger than the anchoring extrapolation length K/W; (b) causes a Saturn ring
configuration when the two are comparable; and (c) is ineffective to distort the director when
much smaller than K/W.

Topological point defects in nematic liquid crystals 4133

Kleman & Lavrentovich, Phil. Mag. 2006.

(a) For large r0, a “dipolar” configuration, with a detached (antihedghog)
defect;

(b) For small r0 with large W, a “quadripolar” minimizer, with no point
singularity but a “Saturn ring” disclination;

(c) For small r0 and low W, no singular structure at all.
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Problems with Oseen-Frank

“Saturn ring”:

I Solution should have a 1-D singular set.
I Harmonic map or Oseen-Frank minimizers have only isolated point

defects.

Dipolar, with detached point defect:

I This may be observed in a harmonic map model.
I But harmonic map/Oseen-Frank has no fixed length scale; cannot

distinguish different radii.

New approach: embed the harmonic map problem in a larger family
of variational problems with a natural length scale. The harmonic
maps may be recovered in an appropriate limit.
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of variational problems with a natural length scale. The harmonic
maps may be recovered in an appropriate limit.
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Landau–de Gennes Model

A relaxation of the harmonic map energy.

Introduce space of Q-tensors: Q(x) ∈ Q3, symmetric, traceless 3× 3
matrix-valued maps. Q(x) models second moment of the orientational distribution

of the rod-like molecules near x.

Eigenvectors of Q(x) = principal axes of the nematic alignment.

Uniaxial Q-tensor: two equal eigenvalues; principal eigenvector defines
a director n ∈ S2,

Qn = s(n ⊗ n − 1
3 Id).

Qn = Q−n; these represent RP2-valued maps.

Biaxial Q-tensor: all eigenvalues are distinct. Strictly speaking, no
director; but the principal eigenvector is an approximate director.

Isotropic Q-tensor: all eigenvalues are equal, so Q = 0. No preferred
direction, the liquid crystal has no alignment or ordering.
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The LdG Energy

FL̂(Q) =

∫

Ω

[
L̂

2
|∇Q|2 + f (Q)

]
dx ,

,

Potential f (Q) = −a

2
tr (Q2) +

b

3
tr (Q3) +

c

4
(tr (Q2))2 − d ,

a = a(TNI−T ), b, c > 0 constant, d chosen so minQ f (Q) = 0.

f (Q) depends only on the eigenvalues of Q.

f (Q) = 0 ⇐⇒ Q = s∗(n ⊗ n − 1
3 Id) with n ∈ S2 (uniaxial) and

s∗ := (b +
√
b2 + 24ac)/4c > 0

Euler–Lagrange equations are semilinear,
L̂∆Q = ∇f (Q) = −aQ − b

(
Q2 − 1

3 |Q|2I
)

+ c |Q|2Q
Uniaxial solutions are the exception; in most geometries expect
biaxiality rules [Lamy, Contreras–Lamy]

Analogy: Ginzburg–Landau model, a relaxation of the S1-harmonic
map problem:∫

Ω[ ε
2

2 |∇u|2 + (|u|2 − 1)2], u : Ω→ C
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The spherical colloid, joint work with S. Alama and X. Lamy.

Consider a nematic in R3 surrounding a spherical particle Br0(0).

n(x) ' x

|x|
x 2 @Br0

n(x) ' ez,

|x| ! 1

@⌦ = @Br0

Ω = R3 \ Br0(0), exterior domain.

Minimize LdG over Q(x) ∈ H1(Ω;Q3).

As |x | → ∞, Q is uniaxial, with vertical
director, Q(x)→ s∗

(
ez ⊗ ez − 1

3 I
)
.

On ∂Br0 , homeotropic (normal) anchoring:

I Strong (Dirichlet) with n = er = x
|x| ,

Q(x)|∂Br0
= Qs := s∗

(
er ⊗ er − 1

3 I
)
.

I Weak anchoring, via surface energy,
Ŵ
2

∫
∂Br0
|Q(x)− Qs |2 dS

I =⇒ L̂
Ŵ
∂Q
∂ν = Qs − Q on ∂Br0 .
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Two scaling limits
First rescale by the particle radius r0; Ω = R3 \ B1(0),

F(Q)=
∫

Ω

[
L̂

2r2
0
|∇Q|2+f (Q)

]
dx+ Ŵ

2r0

∫
∂B1
|Qs−Q|2dA.

and non-dimensionalize by dividing by the reference energy a(TNI ):

F̃(Q) =
∫

Ω

[
L
2 |∇Q|2 + f (Q)

]
dx + W

2

∫
∂B1
|Qs − Q|2dA.

with L = L̂
r2

0 a(TNI )
,W =

Ŵ r2
0 a(TNI )

L̂
.

Set Q∞ = s∗(ez ⊗ ez − 1
3 I ), and H∞ = Q∞ +H, with

H = {Q ∈ H1
loc :

∫
Ω

[
|∇Q|2 + |x |−2|Q|2

]
dx <∞}.

For fixed parameters L,W , there exists a minimizer in H∞,
Q(x)→ Q∞ uniformly as |x | → ∞.

Open question: at what rate?

We consider two limits:

I Small particle limit. L→∞, with W → w ∈ (0,∞].

I Large particle limit. L→ 0, with Strong (Dirichlet) anchoring.
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F̃(Q) =
∫

Ω

[
L
2 |∇Q|2 + f (Q)

]
dx + W

2

∫
∂B1
|Qs − Q|2dA.

with L = L̂
r2

0 a(TNI )
,W =

Ŵ r2
0 a(TNI )

L̂
.

Set Q∞ = s∗(ez ⊗ ez − 1
3 I ), and H∞ = Q∞ +H, with

H = {Q ∈ H1
loc :

∫
Ω

[
|∇Q|2 + |x |−2|Q|2

]
dx <∞}.

For fixed parameters L,W , there exists a minimizer in H∞,
Q(x)→ Q∞ uniformly as |x | → ∞.

Open question: at what rate?

We consider two limits:
I Small particle limit. L→∞, with W → w ∈ (0,∞].

I Large particle limit. L→ 0, with Strong (Dirichlet) anchoring.
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Small particle limit

F̃(Q)=
∫

Ω[ L2 |∇Q|
2+f (Q)]dx+W

2

∫
∂B1
|Qs−Q|2dA.

When L→∞, W → w ∈ (0,∞]:

converge to a harmonic (linear) function, ∆Qw = 0 in
Ω = R3 \ B1(0).

Explicit solution, Qw (x) !! In spherical coordinates (r , θ, ϕ),
Qw = α(r)(er ⊗ er − I/3) + β(r)(ez ⊗ ez − I/3), (r > 1),

with α(r) = s∗
w

3+w
1
r3 , β(r) = s∗(1− w

1+w
1
r ).

The eigenvalues of Qw may also be calculated explicitly,

λ1,2(x) = [α+β]
6 ±

√
[α+β]2

4 − αβ sin2 ϕ, λ3(x) = −α+β
3 < 0.

At eigenvalue crossing λ1 = λ2, eigenvectors exchange =⇒
discontinuous director!

This occurs along a circle, (rw , θ, 0), with rw root of:

r3 − w
1+w r2 − w

3+w = 0.
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The Saturn Ring

w =∞

w = 3.

w = 1.732 ≈
√
3.

w = 1.
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p = 2 p = 10

a/b = 1

Colloidal cuboids (homeotropic)

“Superellipsoid”

⇣x

b

⌘2p

+
⇣y

b

⌘2p

+
⇣z

a

⌘2p

= 1

Aspect ratio: a/b.
“Sharpness”: p.

p = 1

p = 1 1.5 2 2.5 3 10

Beller, Gharbi & Liu, Soft Matter, 2015, 11, 1078
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Large particle limit

Now we consider L→ 0, with Dirichlet Q|∂B1 = s∗(er ⊗ er − 1
3 I ).

Coincides with singular limit as elastic constant L→ 0.
(Majumdar-Zarnescu; Nguyen-Zarnescu)

Minimizer converges to uniaxial Q-tensor, Q∗ = s∗(n ⊗ n − 1
3 I ),

locally uniformly, away from a discrete set of singularities.

Director n(x) ∈ S2 is a minimizing harmonic map.

No “Saturn ring”, or any other line defects are possible.
(Schoen-Uhlenbeck; Hardt-Kinderlehrer-Lin)

Solution must have at least one singularity; but generally, neither
boundary topology nor energy determine the number of defects.

I Hardt-Lin-Poon (1992) There exist axisymmetric harmonic maps in
Ω = B1(0), with degree-zero Dirichlet BC and arbitrarily many pairs of
degree ±1 defects on the axis.

I Hardt-Lin (1986) For any N, ∃ g : ∂B1(0)→ S2 with degree zero such
that the minimizing harmonic map has N defects in B1(0).
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Our result: large particle limit

We assume axial symmetry; this improves regularity (D. Zhang) and
constrains the possible singularities.

Axial symmetry is consistent with physical intuition and numerical
studies.

Theorem

For any sequence of axisymmetric minimizers with L→ 0, a subsequence
converges to a map Q∗(x) = s∗(n(x)⊗ n(x)− I/3), locally uniformly in
Ω \ {p0}. Here n minimizes the Dirichlet energy in Ω, among axially
symmetric S2-valued maps satisfying the boundary conditions

n = er on ∂B1, and

∫

Ω

(n1)2 + (n2)2

|x |2 dx <∞,

and n is analytic away from exactly one point defect p0, located on the
axis of symmetry.

Lia Bronsard (McMaster) Spherical Colloid SIAM Boston 2016 17 / 19



Our result: large particle limit

We assume axial symmetry; this improves regularity (D. Zhang) and
constrains the possible singularities.

Axial symmetry is consistent with physical intuition and numerical
studies.

Theorem

For any sequence of axisymmetric minimizers with L→ 0, a subsequence
converges to a map Q∗(x) = s∗(n(x)⊗ n(x)− I/3), locally uniformly in
Ω \ {p0}. Here n minimizes the Dirichlet energy in Ω, among axially
symmetric S2-valued maps satisfying the boundary conditions

n = er on ∂B1, and

∫

Ω

(n1)2 + (n2)2

|x |2 dx <∞,

and n is analytic away from exactly one point defect p0, located on the
axis of symmetry.

Lia Bronsard (McMaster) Spherical Colloid SIAM Boston 2016 17 / 19



Our result: large particle limit

We assume axial symmetry; this improves regularity (D. Zhang) and
constrains the possible singularities.

Axial symmetry is consistent with physical intuition and numerical
studies.

Theorem

For any sequence of axisymmetric minimizers with L→ 0, a subsequence
converges to a map Q∗(x) = s∗(n(x)⊗ n(x)− I/3), locally uniformly in
Ω \ {p0}. Here n minimizes the Dirichlet energy in Ω, among axially
symmetric S2-valued maps satisfying the boundary conditions

n = er on ∂B1, and

∫

Ω

(n1)2 + (n2)2

|x |2 dx <∞,

and n is analytic away from exactly one point defect p0, located on the
axis of symmetry.

Lia Bronsard (McMaster) Spherical Colloid SIAM Boston 2016 17 / 19



Why only one singularity?

Use cylindrical coords (ρ, θ, z) in Ω = R3 \ B1; by axial symmetry,
I it suffices to consider the cross-section Ωcyl with θ = 0;
I Ωcyl is simply connected, so the director n is oriented;
I n ∈ S2 is determined by the spherical angle φ = ψ(ρ, z),

n = sinψ(ρ, z) eρ + cosψ(ρ, z) ez

Harmonic map energy, integrated in a cross-section Ωcyl :

E (ψ) =
∫

Ωcyl

[
|∂ρψ|2 + |∂zψ|2 + 1

ρ2 sin2 ψ
]
ρdρdz

Single nonlinear PDE,

∂2
zψ + ∂2

ρψ + 1
ρ∂ρψ = 1

2ρ2 sin(2ψ) in Ωcyl
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Key observation: X− = {ψ(ρ, z) < π
2 } and X+ = {ψ(ρ, z) > π

2 } are both
connected.

B1

z0

z1

z2

X�

!+

!̃+

Assume several defects; each lies on the z-axis,
degree ±1, n is vertical away from zj on axis.

ψ turns between ψ = 0 and ψ = π around
defect, creates components of X± in Ωcyl

If X+ has a component ω̃+ whose boundary is
disjoint from ∂B1, replace ψ in ω̃+ by
ψ̃(ρ, z) = π − ψ(ρ, z);

The new function has the same energy as ψ, so
it also solves the PDE;

Solutions are analytic away from the z-axis
(Zhang), so this is not possible.

X± connected + topological argument =⇒
exactly one defect!
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