Minimizers of the Landau-de Gennes energy around a spherical colloid particle

Lia Bronsard

McMaster University

Nematic Liquid Crystals

- Fluid of rod-like particles, partially ordered: translation but rotational symmetry is broken.

Nematic Liquid Crystals

- Fluid of rod-like particles, partially ordered: translation but rotational symmetry is broken.
- Nematic phase: $\nu \eta \mu \alpha$, thread: particles prefer to order parallel to their neighbors

Nematic Liquid Crystals

- Fluid of rod-like particles, partially ordered: translation but rotational symmetry is broken.
- Nematic phase: $\nu \eta \mu \alpha$, thread: particles prefer to order parallel to their neighbors
- Director $n(x),|n(x)|=1$ indicates local axis of preference: gives on average the direction of alignment.

Oseen-Frank energy

- A variational model for equilibrium configurations of liquid crystals.

Oseen-Frank energy

- A variational model for equilibrium configurations of liquid crystals.
- Equilibria $n: \Omega \subset \mathbb{R}^{3} \rightarrow \mathbb{S}^{2}$ minimize elastic energy,

$$
\begin{gathered}
E(n)=\int_{\Omega} e(n, \nabla n) d x \\
e(n, \nabla n)=K_{1}(\nabla \cdot n)^{2}+K_{2}[n \cdot(\nabla \times n)]^{2}+K_{3}[n \times(\nabla \times n)]^{2}
\end{gathered}
$$

Oseen-Frank energy

- A variational model for equilibrium configurations of liquid crystals.
- Equilibria $n: \Omega \subset \mathbb{R}^{3} \rightarrow \mathbb{S}^{2}$ minimize elastic energy,

$$
\begin{gathered}
E(n)=\int_{\Omega} e(n, \nabla n) d x \\
e(n, \nabla n)=K_{1}(\nabla \cdot n)^{2}+K_{2}[n \cdot(\nabla \times n)]^{2}+K_{3}[n \times(\nabla \times n)]^{2}
\end{gathered}
$$

- Simple case: one-constant approximation $K_{1}=K_{2}=K_{3}=1$,

$$
E(n)=\frac{1}{2} \int_{\Omega}|\nabla n|^{2} d x, \quad \text { the } \mathbb{S}^{2} \text { harmonic map energy. }
$$

Oseen-Frank energy

- A variational model for equilibrium configurations of liquid crystals.
- Equilibria $n: \Omega \subset \mathbb{R}^{3} \rightarrow \mathbb{S}^{2}$ minimize elastic energy,

$$
\begin{gathered}
E(n)=\int_{\Omega} e(n, \nabla n) d x \\
e(n, \nabla n)=K_{1}(\nabla \cdot n)^{2}+K_{2}[n \cdot(\nabla \times n)]^{2}+K_{3}[n \times(\nabla \times n)]^{2}
\end{gathered}
$$

- Simple case: one-constant approximation $K_{1}=K_{2}=K_{3}=1$,

$$
E(n)=\frac{1}{2} \int_{\Omega}|\nabla n|^{2} d x, \quad \text { the } \mathbb{S}^{2} \text { harmonic map energy. }
$$

- n is not oriented, $-n \sim n$ gives same physical state.

Oseen-Frank energy

- A variational model for equilibrium configurations of liquid crystals.
- Equilibria $n: \Omega \subset \mathbb{R}^{3} \rightarrow \mathbb{S}^{2}$ minimize elastic energy,

$$
\begin{gathered}
E(n)=\int_{\Omega} e(n, \nabla n) d x \\
e(n, \nabla n)=K_{1}(\nabla \cdot n)^{2}+K_{2}[n \cdot(\nabla \times n)]^{2}+K_{3}[n \times(\nabla \times n)]^{2}
\end{gathered}
$$

- Simple case: one-constant approximation $K_{1}=K_{2}=K_{3}=1$,

$$
E(n)=\frac{1}{2} \int_{\Omega}|\nabla n|^{2} d x, \quad \text { the } \mathbb{S}^{2} \text { harmonic map energy. }
$$

- n is not oriented, $-n \sim n$ gives same physical state.

$$
\Longrightarrow n: \Omega \rightarrow \mathbb{R} P^{2} .
$$

Harmonic Maps to $\mathbb{S}^{2}\left(\right.$ or $\left.\mathbb{R} P^{2}\right)$

- Real-valued minimizers $f: \Omega \rightarrow \mathbb{R}$ of the Dirichlet energy $E(f)=\frac{1}{2} \int_{\Omega}|\nabla f|^{2} d x$ are harmonic functions, $\Delta f=0$.

Harmonic Maps to \mathbb{S}^{2} (or $\mathbb{R} P^{2}$)

- Real-valued minimizers $f: \Omega \rightarrow \mathbb{R}$ of the Dirichlet energy $E(f)=\frac{1}{2} \int_{\Omega}|\nabla f|^{2} d x$ are harmonic functions, $\Delta f=0$.
- Linear elliptic PDE; solutions are smooth, bounded singularities removable.

Harmonic Maps to $\mathbb{S}^{2}\left(\right.$ or $\left.\mathbb{R} P^{2}\right)$

- Real-valued minimizers $f: \Omega \rightarrow \mathbb{R}$ of the Dirichlet energy $E(f)=\frac{1}{2} \int_{\Omega}|\nabla f|^{2} d x$ are harmonic functions, $\Delta f=0$.
- Linear elliptic PDE; solutions are smooth, bounded singularities removable.
- When $u: \Omega \rightarrow M, M$ a smooth manifold, minimizers solve a nonlinear elliptic system of PDE.

Harmonic Maps to $\mathbb{S}^{2}\left(\right.$ or $\left.\mathbb{R} P^{2}\right)$

- Real-valued minimizers $f: \Omega \rightarrow \mathbb{R}$ of the Dirichlet energy $E(f)=\frac{1}{2} \int_{\Omega}|\nabla f|^{2} d x$ are harmonic functions, $\Delta f=0$.
- Linear elliptic PDE; solutions are smooth, bounded singularities removable.
- When $u: \Omega \rightarrow M, M$ a smooth manifold, minimizers solve a nonlinear elliptic system of PDE.
- For $M=\mathbb{S}^{k}$ or $\mathbb{R} P^{k},-\Delta n=|\nabla n|^{2} n$

Harmonic Maps to \mathbb{S}^{2} (or $\mathbb{R} P^{2}$)

- Real-valued minimizers $f: \Omega \rightarrow \mathbb{R}$ of the Dirichlet energy $E(f)=\frac{1}{2} \int_{\Omega}|\nabla f|^{2} d x$ are harmonic functions, $\Delta f=0$.
- Linear elliptic PDE; solutions are smooth, bounded singularities removable.
- When $u: \Omega \rightarrow M, M$ a smooth manifold, minimizers solve a nonlinear elliptic system of PDE.
- For $M=\mathbb{S}^{k}$ or $\mathbb{R} P^{k},-\Delta n=|\nabla n|^{2} n$
- Regularity theory for \mathbb{S}^{2} or $\mathbb{R} P^{2}$-valued harmonic maps:
- Schoen-Uhlenbeck (1982): \mathbb{S}^{2}-valued minimizers are Hölder continuous except for a discrete set of points.

Harmonic Maps to $\mathbb{S}^{2}\left(\right.$ or $\left.\mathbb{R} P^{2}\right)$

- Real-valued minimizers $f: \Omega \rightarrow \mathbb{R}$ of the Dirichlet energy $E(f)=\frac{1}{2} \int_{\Omega}|\nabla f|^{2} d x$ are harmonic functions, $\Delta f=0$.
- Linear elliptic PDE; solutions are smooth, bounded singularities removable.
- When $u: \Omega \rightarrow M, M$ a smooth manifold, minimizers solve a nonlinear elliptic system of PDE.
- For $M=\mathbb{S}^{k}$ or $\mathbb{R} P^{k},-\Delta n=|\nabla n|^{2} n$
- Regularity theory for \mathbb{S}^{2} or $\mathbb{R} P^{2}$-valued harmonic maps:
- Schoen-Uhlenbeck (1982): \mathbb{S}^{2}-valued minimizers are Hölder continuous except for a discrete set of points.
- Brezis-Coron-Lieb (1986): singularities have degree $\pm 1, n \simeq \frac{R x}{|x|}, R$ orthogonal. ("hedgehog", "antihedgehog")

Harmonic Maps to $\mathbb{S}^{2}\left(\right.$ or $\left.\mathbb{R} P^{2}\right)$

- Real-valued minimizers $f: \Omega \rightarrow \mathbb{R}$ of the Dirichlet energy $E(f)=\frac{1}{2} \int_{\Omega}|\nabla f|^{2} d x$ are harmonic functions, $\Delta f=0$.
- Linear elliptic PDE; solutions are smooth, bounded singularities removable.
- When $u: \Omega \rightarrow M, M$ a smooth manifold, minimizers solve a nonlinear elliptic system of PDE.
- For $M=\mathbb{S}^{k}$ or $\mathbb{R} P^{k},-\Delta n=|\nabla n|^{2} n$
- Regularity theory for \mathbb{S}^{2} or $\mathbb{R} P^{2}$-valued harmonic maps:
- Schoen-Uhlenbeck (1982): \mathbb{S}^{2}-valued minimizers are Hölder continuous except for a discrete set of points.
- Brezis-Coron-Lieb (1986): singularities have degree $\pm 1, n \simeq \frac{R x}{|x|}, R$ orthogonal. ("hedgehog", "antihedgehog")

- Hardt-Kinderlehrer-Lin (1986): for Oseen-Frank, min are real analytic except for a closed set $Z, \mathcal{H}^{1}(Z)=0$.

Applications of colloidal suspensions in nematic liquid crystals: photonics, biomedical sensors, ...

Applications of colloidal suspensions in nematic liquid crystals: photonics, biomedical sensors, ...

Applications of colloidal suspensions in nematic liquid crystals: photonics, biomedical sensors, ...

I. Musevic, M. Skarabot and M. Ravnik, Phil Trans Roy Soc A, 2013

The spherical colloid

Consider a nematic in \mathbb{R}^{3} surrounding a spherical particle $B_{r_{0}}(0)$.

The spherical colloid

Consider a nematic in \mathbb{R}^{3} surrounding a spherical particle $B_{r_{0}}(0)$.

- $\Omega=\mathbb{R}^{3} \backslash B_{r_{0}}(0)$, exterior domain.

The spherical colloid

Consider a nematic in \mathbb{R}^{3} surrounding a spherical particle $B_{r_{0}}(0)$.

- $\Omega=\mathbb{R}^{3} \backslash B_{r_{0}}(0)$, exterior domain.
- As $|x| \rightarrow \infty$, tend to vertical director, $n(x) \rightarrow \pm e_{z}$

The spherical colloid

Consider a nematic in \mathbb{R}^{3} surrounding a spherical particle $B_{r_{0}}(0)$.

- $\Omega=\mathbb{R}^{3} \backslash B_{r_{0}}(0)$, exterior domain.
- As $|x| \rightarrow \infty$, tend to vertical director, $n(x) \rightarrow \pm e_{z}$
- On $\partial B_{r_{0}}$, homeotropic (normal) anchoring:
- Strong (Dirichlet) with $n=e_{r}=\frac{x}{|x|}$,

The spherical colloid

Consider a nematic in \mathbb{R}^{3} surrounding a spherical particle $B_{r_{0}}(0)$.

- $\Omega=\mathbb{R}^{3} \backslash B_{r_{0}}(0)$, exterior domain.
- As $|x| \rightarrow \infty$, tend to vertical director, $n(x) \rightarrow \pm e_{z}$
- On $\partial B_{r_{0}}$, homeotropic (normal) anchoring:
- Strong (Dirichlet) with $n=e_{r}=\frac{x}{|x|}$,
- Weak anchoring, via surface energy, $\quad \frac{\mathcal{W}}{2} \int_{\partial B_{r_{0}}}\left|n-e_{r}\right|^{2} d S$

Size matters

Physicists observe that the character of the minimizers should depend on particle radius r_{0} and anchoring strength \mathcal{W}.

(a)

(b)

(c)

Kleman \& Lavrentovich, Phil. Mag. 2006.

Size matters

Physicists observe that the character of the minimizers should depend on particle radius r_{0} and anchoring strength \mathcal{W}.

(a)

(b)

(c)

Kleman \& Lavrentovich, Phil. Mag. 2006.
(a) For large r_{0}, a "dipolar" configuration, with a detached (antihedghog) defect;

Size matters

Physicists observe that the character of the minimizers should depend on particle radius r_{0} and anchoring strength \mathcal{W}.

(a)

(b)

(c)

Kleman \& Lavrentovich, Phil. Mag. 2006.
(a) For large r_{0}, a "dipolar" configuration, with a detached (antihedghog) defect;
(b) For small r_{0} with large \mathcal{W}, a "quadripolar" minimizer, with no point singularity but a "Saturn ring" disclination;

Size matters

Physicists observe that the character of the minimizers should depend on particle radius r_{0} and anchoring strength \mathcal{W}.

(a)

(b)

(c)

Kleman \& Lavrentovich, Phil. Mag. 2006.
(a) For large r_{0}, a "dipolar" configuration, with a detached (antihedghog) defect;
(b) For small r_{0} with large \mathcal{W}, a "quadripolar" minimizer, with no point singularity but a "Saturn ring" disclination;
(c) For small r_{0} and low \mathcal{W}, no singular structure at all.

Problems with Oseen-Frank

- "Saturn ring":

Problems with Oseen-Frank

- "Saturn ring":
- Solution should have a 1-D singular set.
- Harmonic map or Oseen-Frank minimizers have only isolated point defects.

Problems with Oseen-Frank

- "Saturn ring":
- Solution should have a 1-D singular set.
- Harmonic map or Oseen-Frank minimizers have only isolated point defects.
- Dipolar, with detached point defect:
- This may be observed in a harmonic map model.

Problems with Oseen-Frank

- "Saturn ring":
- Solution should have a 1-D singular set.
- Harmonic map or Oseen-Frank minimizers have only isolated point defects.
- Dipolar, with detached point defect:
- This may be observed in a harmonic map model.
- But harmonic map/Oseen-Frank has no fixed length scale; cannot distinguish different radii.

Problems with Oseen-Frank

- "Saturn ring":
- Solution should have a 1-D singular set.
- Harmonic map or Oseen-Frank minimizers have only isolated point defects.
- Dipolar, with detached point defect:
- This may be observed in a harmonic map model.
- But harmonic map/Oseen-Frank has no fixed length scale; cannot distinguish different radii.
- New approach: embed the harmonic map problem in a larger family of variational problems with a natural length scale. The harmonic maps may be recovered in an appropriate limit.

Landau-de Gennes Model

A relaxation of the harmonic map energy.

Landau-de Gennes Model

A relaxation of the harmonic map energy.

- Introduce space of Q-tensors: $Q(x) \in \mathcal{Q}_{3}$, symmetric, traceless 3×3 matrix-valued maps. $Q(x)$ models second moment of the orientational distribution of the rod-like molecules near x.

Landau-de Gennes Model

A relaxation of the harmonic map energy.

- Introduce space of Q-tensors: $Q(x) \in \mathcal{Q}_{3}$, symmetric, traceless 3×3 matrix-valued maps. $Q(x)$ models second moment of the orientational distribution of the rod-like molecules near x.
- Eigenvectors of $Q(x)=$ principal axes of the nematic alignment.

Landau-de Gennes Model

A relaxation of the harmonic map energy.

- Introduce space of Q-tensors: $Q(x) \in \mathcal{Q}_{3}$, symmetric, traceless 3×3 matrix-valued maps. $\mathrm{Q}(\mathrm{x})$ models second moment of the orientational distribution of the rod-like molecules near x.
- Eigenvectors of $Q(x)=$ principal axes of the nematic alignment.
- Uniaxial Q-tensor: two equal eigenvalues; principal eigenvector defines a director $n \in \mathbb{S}^{2}$,

$$
Q_{n}=s\left(n \otimes n-\frac{1}{3} \mathrm{Id}\right)
$$

Landau-de Gennes Model

A relaxation of the harmonic map energy.

- Introduce space of Q -tensors: $Q(x) \in \mathcal{Q}_{3}$, symmetric, traceless 3×3 matrix-valued maps. $Q(x)$ models second moment of the orientational distribution of the rod-like molecules near x.
- Eigenvectors of $Q(x)=$ principal axes of the nematic alignment.
- Uniaxial Q-tensor: two equal eigenvalues; principal eigenvector defines a director $n \in \mathbb{S}^{2}$,

$$
Q_{n}=s\left(n \otimes n-\frac{1}{3} \operatorname{Id}\right)
$$

- $Q_{n}=Q_{-n}$; these represent $\mathbb{R} P^{2}$-valued maps.

Landau-de Gennes Model

A relaxation of the harmonic map energy.

- Introduce space of Q-tensors: $Q(x) \in \mathcal{Q}_{3}$, symmetric, traceless 3×3 matrix-valued maps. $Q(x)$ models second moment of the orientational distribution of the rod-like molecules near x.
- Eigenvectors of $Q(x)=$ principal axes of the nematic alignment.
- Uniaxial Q-tensor: two equal eigenvalues; principal eigenvector defines a director $n \in \mathbb{S}^{2}$,

$$
Q_{n}=s\left(n \otimes n-\frac{1}{3} \operatorname{Id}\right)
$$

- $Q_{n}=Q_{-n}$; these represent $\mathbb{R} P^{2}$-valued maps.
- Biaxial Q-tensor: all eigenvalues are distinct. Strictly speaking, no director; but the principal eigenvector is an approximate director.

Landau-de Gennes Model

A relaxation of the harmonic map energy.

- Introduce space of Q-tensors: $Q(x) \in \mathcal{Q}_{3}$, symmetric, traceless 3×3 matrix-valued maps. $Q(x)$ models second moment of the orientational distribution of the rod-like molecules near x.
- Eigenvectors of $Q(x)=$ principal axes of the nematic alignment.
- Uniaxial Q-tensor: two equal eigenvalues; principal eigenvector defines a director $n \in \mathbb{S}^{2}$,

$$
Q_{n}=s\left(n \otimes n-\frac{1}{3} \operatorname{Id}\right)
$$

- $Q_{n}=Q_{-n}$; these represent $\mathbb{R} P^{2}$-valued maps.
- Biaxial Q-tensor: all eigenvalues are distinct. Strictly speaking, no director; but the principal eigenvector is an approximate director.
- Isotropic Q-tensor: all eigenvalues are equal, so $Q=0$. No preferred direction, the liquid crystal has no alignment or ordering.

The LdG Energy

$$
\mathcal{F}_{\hat{L}}(Q)=\int_{\Omega}\left[\frac{\hat{L}}{2}|\nabla Q|^{2}+f(Q)\right] d x,
$$

The LdG Energy

$$
\mathcal{F}_{\hat{L}}(Q)=\int_{\Omega}\left[\frac{\hat{L}}{2}|\nabla Q|^{2}+f(Q)\right] d x,
$$

- Potential $f(Q)=-\frac{a}{2} \operatorname{tr}\left(Q^{2}\right)+\frac{b}{3} \operatorname{tr}\left(Q^{3}\right)+\frac{c}{4}\left(\operatorname{tr}\left(Q^{2}\right)\right)^{2}-d$,
- $a=a\left(T_{N 1}-T\right), b, c>0$ constant, d chosen so $\min _{Q} f(Q)=0$.

The LdG Energy

$$
\mathcal{F}_{\hat{L}}(Q)=\int_{\Omega}\left[\frac{\hat{L}}{2}|\nabla Q|^{2}+f(Q)\right] d x,
$$

- Potential $f(Q)=-\frac{a}{2} \operatorname{tr}\left(Q^{2}\right)+\frac{b}{3} \operatorname{tr}\left(Q^{3}\right)+\frac{c}{4}\left(\operatorname{tr}\left(Q^{2}\right)\right)^{2}-d$,
- $a=a\left(T_{N I}-T\right), b, c>0$ constant, d chosen so $\min _{Q} f(Q)=0$.
- $f(Q)$ depends only on the eigenvalues of Q.

The LdG Energy

$$
\mathcal{F}_{\hat{L}}(Q)=\int_{\Omega}\left[\frac{\hat{L}}{2}|\nabla Q|^{2}+f(Q)\right] d x,
$$

- Potential $f(Q)=-\frac{a}{2} \operatorname{tr}\left(Q^{2}\right)+\frac{b}{3} \operatorname{tr}\left(Q^{3}\right)+\frac{c}{4}\left(\operatorname{tr}\left(Q^{2}\right)\right)^{2}-d$,
- $a=a\left(T_{N I}-T\right), b, c>0$ constant, d chosen so $\min _{Q} f(Q)=0$.
- $f(Q)$ depends only on the eigenvalues of Q.
- $f(Q)=0 \Longleftrightarrow Q=s_{*}\left(n \otimes n-\frac{1}{3} l d\right)$ with $n \in \mathbb{S}^{2}$ (uniaxial) and $s_{*}:=\left(b+\sqrt{b^{2}+24 a c}\right) / 4 c>0$

The LdG Energy

$$
\mathcal{F}_{\hat{L}}(Q)=\int_{\Omega}\left[\frac{\hat{L}}{2}|\nabla Q|^{2}+f(Q)\right] d x,
$$

- Potential $f(Q)=-\frac{a}{2} \operatorname{tr}\left(Q^{2}\right)+\frac{b}{3} \operatorname{tr}\left(Q^{3}\right)+\frac{c}{4}\left(\operatorname{tr}\left(Q^{2}\right)\right)^{2}-d$,
- $a=a\left(T_{N 1}-T\right), b, c>0$ constant, d chosen so $\min _{Q} f(Q)=0$.
- $f(Q)$ depends only on the eigenvalues of Q.
- $f(Q)=0 \Longleftrightarrow Q=s_{*}\left(n \otimes n-\frac{1}{3} l d\right)$ with $n \in \mathbb{S}^{2}$ (uniaxial) and $s_{*}:=\left(b+\sqrt{b^{2}+24 a c}\right) / 4 c>0$
- Euler-Lagrange equations are semilinear,

$$
\hat{L} \Delta Q=\nabla f(Q)=-a Q-b\left(Q^{2}-\frac{1}{3}|Q|^{2} I\right)+c|Q|^{2} Q
$$

- Uniaxial solutions are the exception; in most geometries expect biaxiality rules [Lamy, Contreras-Lamy]

The LdG Energy

$$
\mathcal{F}_{\hat{L}}(Q)=\int_{\Omega}\left[\frac{\hat{L}}{2}|\nabla Q|^{2}+f(Q)\right] d x,
$$

- Potential $f(Q)=-\frac{a}{2} \operatorname{tr}\left(Q^{2}\right)+\frac{b}{3} \operatorname{tr}\left(Q^{3}\right)+\frac{c}{4}\left(\operatorname{tr}\left(Q^{2}\right)\right)^{2}-d$,
- $a=a\left(T_{N 1}-T\right), b, c>0$ constant, d chosen so $\min _{Q} f(Q)=0$.
- $f(Q)$ depends only on the eigenvalues of Q.
- $f(Q)=0 \Longleftrightarrow Q=s_{*}\left(n \otimes n-\frac{1}{3} l d\right)$ with $n \in \mathbb{S}^{2}$ (uniaxial) and $s_{*}:=\left(b+\sqrt{b^{2}+24 a c}\right) / 4 c>0$
- Euler-Lagrange equations are semilinear,

$$
\hat{L} \Delta Q=\nabla f(Q)=-a Q-b\left(Q^{2}-\frac{1}{3}|Q|^{2} I\right)+c|Q|^{2} Q
$$

- Uniaxial solutions are the exception; in most geometries expect biaxiality rules [Lamy, Contreras-Lamy]
- Analogy: Ginzburg-Landau model, a relaxation of the \mathcal{S}^{1}-harmonic map problem:

$$
\int_{\Omega}\left[\frac{\varepsilon^{2}}{2}|\nabla u|^{2}+\left(|u|^{2}-1\right)^{2}\right], u: \Omega \rightarrow \mathbb{C}
$$

The spherical colloid, joint work with S. Alama and X. Lamy. Consider a nematic in \mathbb{R}^{3} surrounding a spherical particle $B_{r_{0}}(0)$.

The spherical colloid, joint work with S. Alama and X. Lamy. Consider a nematic in \mathbb{R}^{3} surrounding a spherical particle $B_{r_{0}}(0)$.

- $\Omega=\mathbb{R}^{3} \backslash B_{r_{0}}(0)$, exterior domain.
- Minimize LdG over $Q(x) \in H^{1}\left(\Omega ; \mathcal{Q}_{3}\right)$.

The spherical colloid, joint work with S. Alama and X. Lamy.
Consider a nematic in \mathbb{R}^{3} surrounding a spherical particle $B_{r_{0}}(0)$.

- $\Omega=\mathbb{R}^{3} \backslash B_{r_{0}}(0)$, exterior domain.
- Minimize LdG over $Q(x) \in H^{1}\left(\Omega ; \mathcal{Q}_{3}\right)$.
- As $|x| \rightarrow \infty, Q$ is uniaxial, with vertical director, $\quad Q(x) \rightarrow s_{*}\left(e_{z} \otimes e_{z}-\frac{1}{3} I\right)$.

The spherical colloid, joint work with S. Alama and X. Lamy.
Consider a nematic in \mathbb{R}^{3} surrounding a spherical particle $B_{r_{0}}(0)$.

- $\Omega=\mathbb{R}^{3} \backslash B_{r_{0}}(0)$, exterior domain.
- Minimize LdG over $Q(x) \in H^{1}\left(\Omega ; \mathcal{Q}_{3}\right)$.
- As $|x| \rightarrow \infty, Q$ is uniaxial, with vertical director, $\quad Q(x) \rightarrow s_{*}\left(e_{z} \otimes e_{z}-\frac{1}{3} I\right)$.
- On $\partial B_{r_{0}}$, homeotropic (normal) anchoring:
- Strong (Dirichlet) with $n=e_{r}=\frac{x}{|x|}$,

$$
\left.Q(x)\right|_{\partial B_{r_{0}}}=Q_{s}:=s_{*}\left(e_{r} \otimes e_{r}-\frac{1}{3} I\right)
$$

The spherical colloid, joint work with S. Alama and X. Lamy.
Consider a nematic in \mathbb{R}^{3} surrounding a spherical particle $B_{r_{0}}(0)$.

- $\Omega=\mathbb{R}^{3} \backslash B_{r_{0}}(0)$, exterior domain.
- Minimize LdG over $Q(x) \in H^{1}\left(\Omega ; \mathcal{Q}_{3}\right)$.
- As $|x| \rightarrow \infty, Q$ is uniaxial, with vertical director, $\quad Q(x) \rightarrow s_{*}\left(e_{z} \otimes e_{z}-\frac{1}{3} I\right)$.
- On $\partial B_{r_{0}}$, homeotropic (normal) anchoring:
- Strong (Dirichlet) with $n=e_{r}=\frac{x}{|x|}$,

$$
\left.Q(x)\right|_{\partial B_{r_{0}}}=Q_{s}:=s_{*}\left(e_{r} \otimes e_{r}-\frac{1}{3} I\right) .
$$

- Weak anchoring, via surface energy,

$$
\frac{\hat{W}}{2} \int_{\partial B_{r_{0}}}\left|Q(x)-Q_{s}\right|^{2} d S
$$

The spherical colloid, joint work with S. Alama and X. Lamy.
Consider a nematic in \mathbb{R}^{3} surrounding a spherical particle $B_{r_{0}}(0)$.

- $\Omega=\mathbb{R}^{3} \backslash B_{r_{0}}(0)$, exterior domain.
- Minimize LdG over $Q(x) \in H^{1}\left(\Omega ; \mathcal{Q}_{3}\right)$.
- As $|x| \rightarrow \infty, Q$ is uniaxial, with vertical director, $\quad Q(x) \rightarrow s_{*}\left(e_{z} \otimes e_{z}-\frac{1}{3} I\right)$.
- On $\partial B_{r_{0}}$, homeotropic (normal) anchoring:
- Strong (Dirichlet) with $n=e_{r}=\frac{x}{|x|}$,

$$
\left.Q(x)\right|_{\partial B_{r_{0}}}=Q_{s}:=s_{*}\left(e_{r} \otimes e_{r}-\frac{1}{3} I\right) .
$$

- Weak anchoring, via surface energy,

$$
\frac{\hat{W}}{2} \int_{\partial B_{r_{0}}}\left|Q(x)-Q_{s}\right|^{2} d S
$$

- $\Longrightarrow \frac{\hat{L}}{\hat{W}} \frac{\partial Q}{\partial \nu}=Q_{s}-Q$ on $\partial B_{r_{0}}$.

Two scaling limits

First rescale by the particle radius $r_{0} ; \Omega=\mathbb{R}^{3} \backslash B_{1}(0)$,

$$
\mathcal{F}(Q)=\int_{\Omega}\left[\frac{\hat{L}}{2 r_{0}}|\nabla Q|^{2}+f(Q)\right] d x+\frac{\hat{V}}{2 r_{0}} \int_{\partial B_{1}}\left|Q_{s}-Q\right|^{2} d A .
$$

and non-dimensionalize by dividing by the reference energy $a\left(T_{N I}\right)$:

$$
\tilde{\mathcal{F}}(Q)=\int_{\Omega}\left[\frac{L}{2}|\nabla Q|^{2}+f(Q)\right] d x+\frac{W}{2} \int_{\partial B_{1}}\left|Q_{s}-Q\right|^{2} d A .
$$

with $L=\frac{\hat{L}}{r_{0}^{2} a\left(T_{N I}\right)}, W=\frac{\hat{W} r_{0}^{2} a\left(T_{N I}\right)}{\hat{L}}$.

Two scaling limits

First rescale by the particle radius $r_{0} ; \Omega=\mathbb{R}^{3} \backslash B_{1}(0)$,

$$
\mathcal{F}(Q)=\int_{\Omega}\left[\frac{\hat{L}}{2 r_{0}}|\nabla Q|^{2}+f(Q)\right] d x+\frac{\hat{V}}{2 r_{0}} \int_{\partial B_{1}}\left|Q_{s}-Q\right|^{2} d A .
$$

and non-dimensionalize by dividing by the reference energy $a\left(T_{N I}\right)$:

$$
\tilde{\mathcal{F}}(Q)=\int_{\Omega}\left[\frac{L}{2}|\nabla Q|^{2}+f(Q)\right] d x+\frac{W}{2} \int_{\partial B_{1}}\left|Q_{s}-Q\right|^{2} d A .
$$

with $L=\frac{\hat{L}}{r_{0}^{2} a\left(T_{N I}\right)}, W=\frac{\hat{W} r_{0}^{2} a\left(T_{N I}\right)}{\hat{L}}$.

- Set $Q_{\infty}=s_{*}\left(e_{z} \otimes e_{z}-\frac{1}{3} I\right)$, and $\mathcal{H}_{\infty}=Q_{\infty}+\mathcal{H}$, with

$$
\mathcal{H}=\left\{Q \in H_{l o c}^{1}: \int_{\Omega}\left[|\nabla Q|^{2}+|x|^{-2}|Q|^{2}\right] d x<\infty\right\} .
$$

Two scaling limits

First rescale by the particle radius $r_{0} ; \Omega=\mathbb{R}^{3} \backslash B_{1}(0)$,

$$
\mathcal{F}(Q)=\int_{\Omega}\left[\frac{\hat{L}}{2 r_{0}}|\nabla Q|^{2}+f(Q)\right] d x+\frac{\hat{V}}{2 r_{0}} \int_{\partial B_{1}}\left|Q_{s}-Q\right|^{2} d A .
$$

and non-dimensionalize by dividing by the reference energy $a\left(T_{N I}\right)$:

$$
\tilde{\mathcal{F}}(Q)=\int_{\Omega}\left[\frac{L}{2}|\nabla Q|^{2}+f(Q)\right] d x+\frac{W}{2} \int_{\partial B_{1}}\left|Q_{s}-Q\right|^{2} d A .
$$

with $L=\frac{\hat{L}}{r_{0}^{2} a\left(T_{N I}\right)}, W=\frac{\hat{W} r_{0}^{2} a\left(T_{N I}\right)}{\hat{L}}$.

- Set $Q_{\infty}=s_{*}\left(e_{z} \otimes e_{z}-\frac{1}{3} I\right)$, and $\mathcal{H}_{\infty}=Q_{\infty}+\mathcal{H}$, with

$$
\mathcal{H}=\left\{Q \in H_{\text {loc }}^{1}: \int_{\Omega}\left[|\nabla Q|^{2}+|x|^{-2}|Q|^{2}\right] d x<\infty\right\} .
$$

- For fixed parameters L, W, there exists a minimizer in \mathcal{H}_{∞}, $Q(x) \rightarrow Q_{\infty}$ uniformly as $|x| \rightarrow \infty$.

Open question: at what rate?

Two scaling limits

First rescale by the particle radius $r_{0} ; \Omega=\mathbb{R}^{3} \backslash B_{1}(0)$,

$$
\mathcal{F}(Q)=\int_{\Omega}\left[\frac{\hat{L}}{2 r_{0}^{2}}|\nabla Q|^{2}+f(Q)\right] d x+\frac{\hat{V}}{2 r_{0}} \int_{\partial B_{1}}\left|Q_{s}-Q\right|^{2} d A .
$$

and non-dimensionalize by dividing by the reference energy $a\left(T_{N I}\right)$:

$$
\tilde{\mathcal{F}}(Q)=\int_{\Omega}\left[\frac{L}{2}|\nabla Q|^{2}+f(Q)\right] d x+\frac{W}{2} \int_{\partial B_{1}}\left|Q_{s}-Q\right|^{2} d A .
$$

with $L=\frac{\hat{L}}{r_{0}^{2} a\left(T_{N I}\right)}, W=\frac{\hat{W} r_{0}^{2} a\left(T_{N I}\right)}{\hat{L}}$.

- Set $Q_{\infty}=s_{*}\left(e_{z} \otimes e_{z}-\frac{1}{3} I\right)$, and $\mathcal{H}_{\infty}=Q_{\infty}+\mathcal{H}$, with

$$
\mathcal{H}=\left\{Q \in H_{\text {loc }}^{1}: \int_{\Omega}\left[|\nabla Q|^{2}+|x|^{-2}|Q|^{2}\right] d x<\infty\right\} .
$$

- For fixed parameters L, W, there exists a minimizer in \mathcal{H}_{∞}, $Q(x) \rightarrow Q_{\infty}$ uniformly as $|x| \rightarrow \infty$.

Open question: at what rate?

- We consider two limits:
- Small particle limit. $L \rightarrow \infty$, with $W \rightarrow w \in(0, \infty]$.

Two scaling limits

First rescale by the particle radius $r_{0} ; \Omega=\mathbb{R}^{3} \backslash B_{1}(0)$,

$$
\mathcal{F}(Q)=\int_{\Omega}\left[\frac{\hat{L}}{2 r_{0}^{2}}|\nabla Q|^{2}+f(Q)\right] d x+\frac{\hat{V}}{2 r_{0}} \int_{\partial B_{1}}\left|Q_{s}-Q\right|^{2} d A .
$$

and non-dimensionalize by dividing by the reference energy $a\left(T_{N I}\right)$:

$$
\tilde{\mathcal{F}}(Q)=\int_{\Omega}\left[\frac{L}{2}|\nabla Q|^{2}+f(Q)\right] d x+\frac{W}{2} \int_{\partial B_{1}}\left|Q_{s}-Q\right|^{2} d A .
$$

with $L=\frac{\hat{L}}{r_{0}^{2} a\left(T_{N \mid}\right)}, W=\frac{\hat{W} r_{0}^{2} a\left(T_{N I}\right)}{\hat{L}}$.

- Set $Q_{\infty}=s_{*}\left(e_{z} \otimes e_{z}-\frac{1}{3} I\right)$, and $\mathcal{H}_{\infty}=Q_{\infty}+\mathcal{H}$, with

$$
\mathcal{H}=\left\{Q \in H_{l o c}^{1}: \int_{\Omega}\left[|\nabla Q|^{2}+|x|^{-2}|Q|^{2}\right] d x<\infty\right\} .
$$

- For fixed parameters L, W, there exists a minimizer in \mathcal{H}_{∞}, $Q(x) \rightarrow Q_{\infty}$ uniformly as $|x| \rightarrow \infty$.

Open question: at what rate?

- We consider two limits:
- Small particle limit. $L \rightarrow \infty$, with $W \rightarrow w \in(0, \infty]$.
- Large particle limit. $L \rightarrow 0$, with Strong (Dirichlet) anchoring.

Small particle limit

$$
\tilde{\mathcal{F}}(Q)=\int_{\Omega}\left[\frac{L}{2}|\nabla Q|^{2}+f(Q)\right] d x+\frac{W}{2} \int_{\partial B_{1}}\left|Q_{s}-Q\right|^{2} d A .
$$

When $L \rightarrow \infty, W \rightarrow w \in(0, \infty]$:

- converge to a harmonic (linear) function, $\Delta Q_{w}=0$ in $\Omega=\mathbb{R}^{3} \backslash B_{1}(0)$.

Small particle limit

$$
\tilde{\mathcal{F}}(Q)=\int_{\Omega}\left[\frac{L}{2}|\nabla Q|^{2}+f(Q)\right] d x+\frac{W}{2} \int_{\partial B_{1}}\left|Q_{s}-Q\right|^{2} d A .
$$

When $L \rightarrow \infty, W \rightarrow w \in(0, \infty]$:

- converge to a harmonic (linear) function, $\Delta Q_{w}=0$ in $\Omega=\mathbb{R}^{3} \backslash B_{1}(0)$.
- Explicit solution, $Q_{w}(x)$!! In spherical coordinates (r, θ, φ),

$$
\begin{equation*}
Q_{w}=\alpha(r)\left(e_{r} \otimes e_{r}-l / 3\right)+\beta(r)\left(e_{z} \otimes e_{z}-l / 3\right) \tag{r>1}
\end{equation*}
$$

with $\alpha(r)=s_{*} \frac{w}{3+w} \frac{1}{r^{3}}, \quad \beta(r)=s_{*}\left(1-\frac{w}{1+w} \frac{1}{r}\right)$.

Small particle limit

$$
\tilde{\mathcal{F}}(Q)=\int_{\Omega}\left[\frac{L}{2}|\nabla Q|^{2}+f(Q)\right] d x+\frac{W}{2} \int_{\partial B_{1}}\left|Q_{s}-Q\right|^{2} d A .
$$

When $L \rightarrow \infty, W \rightarrow w \in(0, \infty]$:

- converge to a harmonic (linear) function, $\Delta Q_{w}=0$ in

$$
\Omega=\mathbb{R}^{3} \backslash B_{1}(0)
$$

- Explicit solution, $Q_{w}(x)$!! In spherical coordinates (r, θ, φ),

$$
Q_{w}=\alpha(r)\left(e_{r} \otimes e_{r}-l / 3\right)+\beta(r)\left(e_{z} \otimes e_{z}-l / 3\right), \quad(r>1)
$$

with $\alpha(r)=s_{*} \frac{w}{3+w} \frac{1}{r^{3}}, \quad \beta(r)=s_{*}\left(1-\frac{w}{1+w} \frac{1}{r}\right)$.

- The eigenvalues of Q_{w} may also be calculated explicitly,

$$
\lambda_{1,2}(x)=\frac{[\alpha+\beta]}{6} \pm \sqrt{\frac{[\alpha+\beta]^{2}}{4}-\alpha \beta \sin ^{2} \varphi}, \quad \lambda_{3}(x)=-\frac{\alpha+\beta}{3}<0 .
$$

Small particle limit

$$
\tilde{\mathcal{F}}(Q)=\int_{\Omega}\left[\frac{L}{2}|\nabla Q|^{2}+f(Q)\right] d x+\frac{W}{2} \int_{\partial B_{1}}\left|Q_{s}-Q\right|^{2} d A .
$$

When $L \rightarrow \infty, W \rightarrow w \in(0, \infty]$:

- converge to a harmonic (linear) function, $\Delta Q_{w}=0$ in

$$
\Omega=\mathbb{R}^{3} \backslash B_{1}(0)
$$

- Explicit solution, $Q_{w}(x)$!! In spherical coordinates (r, θ, φ),

$$
Q_{w}=\alpha(r)\left(e_{r} \otimes e_{r}-l / 3\right)+\beta(r)\left(e_{z} \otimes e_{z}-l / 3\right), \quad(r>1)
$$

with $\alpha(r)=s_{*} \frac{w}{3+w} \frac{1}{r^{3}}, \quad \beta(r)=s_{*}\left(1-\frac{w}{1+w} \frac{1}{r}\right)$.

- The eigenvalues of Q_{w} may also be calculated explicitly,

$$
\lambda_{1,2}(x)=\frac{[\alpha+\beta]}{6} \pm \sqrt{\frac{[\alpha+\beta]^{2}}{4}-\alpha \beta \sin ^{2} \varphi}, \quad \lambda_{3}(x)=-\frac{\alpha+\beta}{3}<0 .
$$

- At eigenvalue crossing $\lambda_{1}=\lambda_{2}$, eigenvectors exchange discontinuous director!

Small particle limit

$$
\tilde{\mathcal{F}}(Q)=\int_{\Omega}\left[\frac{L}{2}|\nabla Q|^{2}+f(Q)\right] d x+\frac{W}{2} \int_{\partial B_{1}}\left|Q_{s}-Q\right|^{2} d A .
$$

When $L \rightarrow \infty, W \rightarrow w \in(0, \infty]$:

- converge to a harmonic (linear) function, $\Delta Q_{w}=0$ in $\Omega=\mathbb{R}^{3} \backslash B_{1}(0)$.
- Explicit solution, $Q_{w}(x)$!! In spherical coordinates (r, θ, φ),

$$
Q_{w}=\alpha(r)\left(e_{r} \otimes e_{r}-l / 3\right)+\beta(r)\left(e_{z} \otimes e_{z}-l / 3\right), \quad(r>1)
$$

with $\alpha(r)=s_{*} \frac{w}{3+w} \frac{1}{r^{3}}, \quad \beta(r)=s_{*}\left(1-\frac{w}{1+w} \frac{1}{r}\right)$.

- The eigenvalues of Q_{w} may also be calculated explicitly,

$$
\lambda_{1,2}(x)=\frac{[\alpha+\beta]}{6} \pm \sqrt{\frac{[\alpha+\beta]^{2}}{4}-\alpha \beta \sin ^{2} \varphi}, \quad \lambda_{3}(x)=-\frac{\alpha+\beta}{3}<0 .
$$

- At eigenvalue crossing $\lambda_{1}=\lambda_{2}$, eigenvectors exchange discontinuous director!
- This occurs along a circle, $\left(r_{w}, \theta, 0\right)$, with r_{w} root of:

$$
r^{3}-\frac{w}{1+w} r^{2}-\frac{w}{3+w}=0 .
$$

The Saturn Ring

Colloidal cuboids (homeotropic)

"Superellipsoid"

$$
\left(\frac{x}{b}\right)^{2 p}+\left(\frac{y}{b}\right)^{2 p}+\left(\frac{z}{a}\right)^{2 p}=1
$$

Aspect ratio: a / b.
"Sharpness": p.

Beller, Gharbi \& Liu, Soft Matter, 2015, 11, 1078

Large particle limit

Now we consider $L \rightarrow 0$, with Dirichlet $\left.Q\right|_{\partial B_{1}}=s_{*}\left(e_{r} \otimes e_{r}-\frac{1}{3} I\right)$.

Large particle limit

Now we consider $L \rightarrow 0$, with Dirichlet $\left.Q\right|_{\partial B_{1}}=s_{*}\left(e_{r} \otimes e_{r}-\frac{1}{3} I\right)$.

- Coincides with singular limit as elastic constant $L \rightarrow 0$. (Majumdar-Zarnescu; Nguyen-Zarnescu)

Large particle limit

Now we consider $L \rightarrow 0$, with Dirichlet $\left.Q\right|_{\partial B_{1}}=s_{*}\left(e_{r} \otimes e_{r}-\frac{1}{3} I\right)$.

- Coincides with singular limit as elastic constant $L \rightarrow 0$. (Majumdar-Zarnescu; Nguyen-Zarnescu)
- Minimizer converges to uniaxial Q-tensor, $Q_{*}=s_{*}\left(n \otimes n-\frac{1}{3} l\right)$, locally uniformly, away from a discrete set of singularities.
- Director $n(x) \in \mathbb{S}^{2}$ is a minimizing harmonic map.

Large particle limit

Now we consider $L \rightarrow 0$, with Dirichlet $\left.Q\right|_{\partial B_{1}}=s_{*}\left(e_{r} \otimes e_{r}-\frac{1}{3} I\right)$.

- Coincides with singular limit as elastic constant $L \rightarrow 0$. (Majumdar-Zarnescu; Nguyen-Zarnescu)
- Minimizer converges to uniaxial Q-tensor, $Q_{*}=s_{*}\left(n \otimes n-\frac{1}{3} l\right)$, locally uniformly, away from a discrete set of singularities.
- Director $n(x) \in \mathbb{S}^{2}$ is a minimizing harmonic map.
- No "Saturn ring", or any other line defects are possible. (Schoen-Uhlenbeck; Hardt-Kinderlehrer-Lin)

Large particle limit

Now we consider $L \rightarrow 0$, with Dirichlet $\left.Q\right|_{\partial B_{1}}=s_{*}\left(e_{r} \otimes e_{r}-\frac{1}{3} I\right)$.

- Coincides with singular limit as elastic constant $L \rightarrow 0$. (Majumdar-Zarnescu; Nguyen-Zarnescu)
- Minimizer converges to uniaxial Q-tensor, $Q_{*}=s_{*}\left(n \otimes n-\frac{1}{3} l\right)$, locally uniformly, away from a discrete set of singularities.
- Director $n(x) \in \mathbb{S}^{2}$ is a minimizing harmonic map.
- No "Saturn ring", or any other line defects are possible. (Schoen-Uhlenbeck; Hardt-Kinderlehrer-Lin)
- Solution must have at least one singularity; but generally, neither boundary topology nor energy determine the number of defects.

Large particle limit

Now we consider $L \rightarrow 0$, with Dirichlet $\left.Q\right|_{\partial B_{1}}=s_{*}\left(e_{r} \otimes e_{r}-\frac{1}{3} I\right)$.

- Coincides with singular limit as elastic constant $L \rightarrow 0$. (Majumdar-Zarnescu; Nguyen-Zarnescu)
- Minimizer converges to uniaxial Q-tensor, $Q_{*}=s_{*}\left(n \otimes n-\frac{1}{3} l\right)$, locally uniformly, away from a discrete set of singularities.
- Director $n(x) \in \mathbb{S}^{2}$ is a minimizing harmonic map.
- No "Saturn ring", or any other line defects are possible. (Schoen-Uhlenbeck; Hardt-Kinderlehrer-Lin)
- Solution must have at least one singularity; but generally, neither boundary topology nor energy determine the number of defects.
- Hardt-Lin-Poon (1992) There exist axisymmetric harmonic maps in $\Omega=B_{1}(0)$, with degree-zero Dirichlet BC and arbitrarily many pairs of degree ± 1 defects on the axis.

Large particle limit

Now we consider $L \rightarrow 0$, with Dirichlet $\left.Q\right|_{\partial B_{1}}=s_{*}\left(e_{r} \otimes e_{r}-\frac{1}{3} I\right)$.

- Coincides with singular limit as elastic constant $L \rightarrow 0$. (Majumdar-Zarnescu; Nguyen-Zarnescu)
- Minimizer converges to uniaxial Q-tensor, $Q_{*}=s_{*}\left(n \otimes n-\frac{1}{3} I\right)$, locally uniformly, away from a discrete set of singularities.
- Director $n(x) \in \mathbb{S}^{2}$ is a minimizing harmonic map.
- No "Saturn ring", or any other line defects are possible. (Schoen-Uhlenbeck; Hardt-Kinderlehrer-Lin)
- Solution must have at least one singularity; but generally, neither boundary topology nor energy determine the number of defects.
- Hardt-Lin-Poon (1992) There exist axisymmetric harmonic maps in $\Omega=B_{1}(0)$, with degree-zero Dirichlet BC and arbitrarily many pairs of degree ± 1 defects on the axis.
- Hardt-Lin (1986) For any $N, \exists g: \partial B_{1}(0) \rightarrow \mathbb{S}^{2}$ with degree zero such that the minimizing harmonic map has N defects in $B_{1}(0)$.

Our result: large particle limit

- We assume axial symmetry; this improves regularity (D. Zhang) and constrains the possible singularities.

Our result: large particle limit

- We assume axial symmetry; this improves regularity (D. Zhang) and constrains the possible singularities.
- Axial symmetry is consistent with physical intuition and numerical studies.

Our result: large particle limit

- We assume axial symmetry; this improves regularity (D. Zhang) and constrains the possible singularities.
- Axial symmetry is consistent with physical intuition and numerical studies.

Theorem

For any sequence of axisymmetric minimizers with $L \rightarrow 0$, a subsequence converges to a map $Q_{*}(x)=s_{*}(n(x) \otimes n(x)-I / 3)$, locally uniformly in $\bar{\Omega} \backslash\left\{p_{0}\right\}$. Here n minimizes the Dirichlet energy in Ω, among axially symmetric \mathbb{S}^{2}-valued maps satisfying the boundary conditions

$$
n=e_{r} \text { on } \partial B_{1}, \quad \text { and } \int_{\Omega} \frac{\left(n_{1}\right)^{2}+\left(n_{2}\right)^{2}}{|x|^{2}} d x<\infty
$$

and n is analytic away from exactly one point defect p_{0}, located on the axis of symmetry.

Why only one singularity?

- Use cylindrical coords (ρ, θ, z) in $\Omega=\mathbb{R}^{3} \backslash B_{1}$; by axial symmetry,
- it suffices to consider the cross-section $\Omega_{c y \prime}$ with $\theta=0$;
- $\Omega_{c y l}$ is simply connected, so the director n is oriented;
- $n \in \mathbb{S}^{2}$ is determined by the spherical angle $\phi=\psi(\rho, z)$,

$$
n=\sin \psi(\rho, z) e_{\rho}+\cos \psi(\rho, z) e_{z}
$$

Why only one singularity?

- Use cylindrical coords (ρ, θ, z) in $\Omega=\mathbb{R}^{3} \backslash B_{1}$; by axial symmetry,
- it suffices to consider the cross-section $\Omega_{c y \prime}$ with $\theta=0$;
- $\Omega_{c y l}$ is simply connected, so the director n is oriented;
- $n \in \mathbb{S}^{2}$ is determined by the spherical angle $\phi=\psi(\rho, z)$,

$$
n=\sin \psi(\rho, z) e_{\rho}+\cos \psi(\rho, z) e_{z}
$$

- Harmonic map energy, integrated in a cross-section $\Omega_{\text {cyl }}$:

$$
E(\psi)=\int_{\Omega_{c y l}}\left[\left|\partial_{\rho} \psi\right|^{2}+\left|\partial_{z} \psi\right|^{2}+\frac{1}{\rho^{2}} \sin ^{2} \psi\right] \rho d \rho d z
$$

- Single nonlinear PDE,

$$
\partial_{z}^{2} \psi+\partial_{\rho}^{2} \psi+\frac{1}{\rho} \partial_{\rho} \psi=\frac{1}{2 \rho^{2}} \sin (2 \psi) \quad \text { in } \Omega_{c y l}
$$

Key observation: $X_{-}=\left\{\psi(\rho, z)<\frac{\pi}{2}\right\}$ and $X_{+}=\left\{\psi(\rho, z)>\frac{\pi}{2}\right\}$ are both connected.

Key observation: $X_{-}=\left\{\psi(\rho, z)<\frac{\pi}{2}\right\}$ and $X_{+}=\left\{\psi(\rho, z)>\frac{\pi}{2}\right\}$ are both connected.

- Assume several defects; each lies on the z-axis, degree $\pm 1, n$ is vertical away from z_{j} on axis.

Key observation: $X_{-}=\left\{\psi(\rho, z)<\frac{\pi}{2}\right\}$ and $X_{+}=\left\{\psi(\rho, z)>\frac{\pi}{2}\right\}$ are both connected.

- Assume several defects; each lies on the z-axis, degree $\pm 1, n$ is vertical away from z_{j} on axis.
- ψ turns between $\psi=0$ and $\psi=\pi$ around defect, creates components of $X_{ \pm}$in $\Omega_{c y l}$

Key observation: $X_{-}=\left\{\psi(\rho, z)<\frac{\pi}{2}\right\}$ and $X_{+}=\left\{\psi(\rho, z)>\frac{\pi}{2}\right\}$ are both connected.

- Assume several defects; each lies on the z-axis, degree $\pm 1, n$ is vertical away from z_{j} on axis.
- ψ turns between $\psi=0$ and $\psi=\pi$ around defect, creates components of $X_{ \pm}$in $\Omega_{c y l}$
\uparrow - If X_{+}has a component $\tilde{\omega}_{+}$whose boundary is disjoint from ∂B_{1}, replace ψ in $\tilde{\omega}_{+}$by $\tilde{\psi}(\rho, z)=\pi-\psi(\rho, z)$;
- The new function has the same energy as ψ, so it also solves the PDE;
- Solutions are analytic away from the z-axis (Zhang), so this is not possible.

Key observation: $X_{-}=\left\{\psi(\rho, z)<\frac{\pi}{2}\right\}$ and $X_{+}=\left\{\psi(\rho, z)>\frac{\pi}{2}\right\}$ are both connected.

- Assume several defects; each lies on the z-axis, degree $\pm 1, n$ is vertical away from z_{j} on axis.
- ψ turns between $\psi=0$ and $\psi=\pi$ around defect, creates components of $X_{ \pm}$in $\Omega_{c y l}$
- If X_{+}has a component $\tilde{\omega}_{+}$whose boundary is disjoint from ∂B_{1}, replace ψ in $\tilde{\omega}_{+}$by $\tilde{\psi}(\rho, z)=\pi-\psi(\rho, z)$;
- The new function has the same energy as ψ, so it also solves the PDE;
- Solutions are analytic away from the z-axis (Zhang), so this is not possible.
- $X_{ \pm}$connected + topological argument \Longrightarrow exactly one defect!

