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“The life that 1s here proposed to depict was a life singularly

devoid of incident. It was the career of a lonely, secluded,
fastidious, and affectionate man; it was a life not rich in results, not
fruitful in example. It is the history of a few great friendships,
much quiet benevolence, tender loyalty, wistful enjoyment. The
tangible results are a single small volume of imperishable quality,
some accomplished translations of not great literary importance, a
little piece of delicate prose-writing, and many beautiful letters.”

Benson, Edward Fitzgerald Danielle S. Bassett






I. Knowledge 1s a network

From Henri Poincare’s 1905 Science and Hypothesus:

“The aim of science 1s not things themselves, as the dogmatists in their simplicity
imagine, but the relations among things; outside these relations there is no reality
knowable.”

From Dewey’s 1916 Democracy and Education (NY: Simon & Brown, 2011):

”...[K]nowledge is a perception of those connections of an object which determine its
applicability in a given situation. [...] Thus, we get at a new event indirectly instead of
immediately - by invention, ingenuity, resourcefulness. An ideally perfect knowledge
would represent such a network of interconnections that any past experience would
offer a point of advantage from which to get at the problem presented in a new
experience" (185).

Danielle S. Bassett



II. Knowledge 1s a network learned by example

Suppose I must translate 15 1deas to a class.

Those 15 1deas are related to one another 1n
a heterogeneous manner, making a network.

I must translate that information linearly;
time 1s one-dimensional and uni-directional.

How should I create this information time

series 1n a way that maximizes learning?

Danielle S. Bassett




A “good walk” minimizes reconstruction error

and maximizes perception of the network’s topology

Bramn of the speaker Brain of the listener or
or writer reader
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String of concepts traversed n
time

One word after another ....
One line after another ...

Karuza et al. 2017 Scr Rep; Kahn et al. 2018 Nature Human Behavior Danielle S. Bassett



The problem of inferring the patterns of
pairwise dependencies from imcoming
streams of data allows us to:

Learn language

Segment visual events
Parse tonal groupings
Parse spatial scenes

Infer social networks
Perceive distinct concepts

Mind/Brain of the

Perceiver

Danielle S. Bassett



Can we measure perception of network topology

N a continuous stream of stimuli?

Let each edge in the graph
indicate an allowable transition
between nodes.

Let each specific simuli (word,
1mage, or movement) be a node

In a graph.

Construct a sequence of sttmuli by a random walk on the graph.
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- time

At each stimuli, require the participant to perform a task, so that their time-to-react can be used as a
measure of how well that edge 1n the graph was learned.

Karuza et al. 2016 7rends in Cognitive Science Danielle S. Bassett




Fxample expernmmental setup

1. Motor: Kahn et al. 2018 Nature Human Behavior
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Stream of Sttimuli Transition graph Hand Placement
2. Visual: Karuza et al. 2017 Scientific Reports

3. Social: Tompson et al. 2018 Journal of Experimental Psychology; Learning
Memory & Cognition

Karuza et al. 2016 7rends in Cognitive Science Danielle S. Bassett



What do we know about this problem?
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Human reactions depend on entropy
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Entropy = log ki (bits)

In this experiment, humans appear to process 1 bit of information 1 32 ms.

Lynn et al. In Preparation Danielle S. Bassett




Human reactions depend on MORLE THAN entropy

Measure Reaction Time (RT)
Per Transition

In a k-4 regular graph,
traversed by a random
walk, the entropy of all
transitions 1s the same.

Striking slowing at cluster boundaries
indicating graph learning

Kahn et al. 2018 Nature Human Behavior Danielle S. Bassett




In fact, human reaction times are sensitive to hierarchy ...

A modular network, which by symmetry, only contains three types of transitions;
each type produces reaction times that are distinct from the other two.
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Transitions between or at the boundaries of modules generate more surprise
than transitions deep within a module.

Lynn et al. In Preparation Danielle S. Bassett



. And to network topology.

Compared to lattice and random graphs with equal entropy, reactions in the modular
graph are significantly faster overall, indicating a decreased in perceived information.

Modular-lattice effect

0 ART = 31 ms Random k=4 networks

raxed

0=Cc®=0
B Modular graph ' Lattice graph

Together, these results reveal that humans process information beyond entropy n a
manner that depends systematically on network topology.

Kahn et al. 2018 Nature Human Behavior Danielle S. Bassett



Perturbation expermment: effects of network violations

Topological distance:
O 0 (current node) @ 2 (short violation)
@ 1 (no violation) @ 3,4 (long violation)

. N=99
* Empirical results:

* Significant
effect

Humans are more surprised by

stimuli from farther away on the

ring than closer, indicating their
mmplicit perception of the

network topology. short vs. no long vs. no long vs. short

violations violations violations

Lynn et al. 2018, arXiv:1805.12491 Danielle S. Bassett




What are people thinking?



Creating expectations of transittions

We build
expectations about a
node X1 X2 Xt Xts1 network structul.“e with
. -0 5 ¢ ¢ ¢ b m—— 2 CcOUNts Matrix 72;
time 1 2 t t+1

Free energy principle: brain minimizes errors & computational complexaity.

Probability of recalling Xt-At rather than Xt is Q(At).

Lynn et al. 2018, arXiv:1805.12491 Danielle S. Bassett




Creating expectations of transittions

We build
expectations about a
node X1 Xo Xt Xts1 network structul.“e with
. —t— 5 ¢ ¢ ¢ b m———— 2 cOUNts Matrix 72;
time 1 2 t t+1

Free energy principle: brain minimizes errors & computational complexaity.
Probability of recalling Xt-At rather than Xt is Q(At?).
The error of a candidate probability distribution is E(Q) = Y, Q(AL)At

Complexity of the error distribution is the entropy —S (Q) — E At Q (At) log Q(At)
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Creating expectations of transittions

We build
expectations about a
node X1 Xo Xt Xts1 network structul.“e with
. —t— 5 ¢ ¢ ¢ b m———— 2 cOUNts Matrix 72;
time 1 2 t t+1

Free energy principle: brain minimizes errors & computational complexity.
Probability of recalling Xt-At rather than Xt is Q(At?).

The error of a candidate probability distribution is E(Q) = Y, Q(AL)At

Complexity of the error distribution is the entropy —S(Q) = Y A, @(At) log Q(At)
Total cost of the distribution is its free energy: F(Q) = BE(Q) — S(Q)

Distribution that minimizes the free energy 1s the Boltzmann distribution P(At) = —_e—AAt

Lynn et al. 2018, arXiv:1805.12491 Danielle S. Bassett




From a poor memory arises biases n learning

No memory;
Minimizes mental resources

P(At)4
B —0
current
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Lynn et al. 2018, arXiv:1805.12491 Danielle S. Bassett




From a poor memory arises biases n learning

No memory;

o Perfect memory;
Minimizes mental resources

Maximizes mental resources

P(At)A P(At)A

current current

X

Lynn et al. 2018, arXiv:1805.12491



From a poor memory arises biases n learning

No memorys;

o Poor memory Perfect memory;
Minimizes mental resources

Maximizes mental resources

P(At)A P(At)4 P(At)A

current current current

Lynn et al. 2018, arXiv:1805.12491



Measurmg mnverse temperature from RT data
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Lynn et al. 2018, arXiv:1805.12491 Danielle S. Bassett




Measurmg mnverse temperature from RT data
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Measuring the memory distribution m humans

In the field of psychology, the accuracy of a person’s memory 1s often
tested using what 1s called an “n-back task”.

A 2-back task
memory target current Goal 1s to determine
stimulus: (A C C {Bi C [A; whether the current
« ' ' ' ' > |etter is the same as the
At letter two before.

You are currently at A, and you must answer the question: “Did you see A 2x ago?”
You say “ves”, but you are mcorrect; “B” 1s 2x ago.
You say “yes” because you confuse 2x ago with what 5x ago.
5x minus 2x 1s your At.

Lynn et al. 2018, arXiv:1805.12491 Danielle S. Bassett



Measuring the memory distribution m humans

Estimating 3 from the 2-back task Estimating 3 from graph learning task
10°F  1-back - 2-back 3-back g 04
g) 0.3
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0 5 10 O 5 10 O 5 10 © o
At At At a

10°f Combined memory distribution

|--,3=0.32j:0.01‘

The memory distribution we posit 1s
the theory 1s consistent with the
memory distribution we observe in
experiment.

Lynn et al. 2018, arXiv:1805.12491 Danielle S. Bassett




Information Processing in Real Networks



Perceived information

For mmtuition’s sake, let’s redefine the transitton probability matrix as P, and
state the perceived information as:

. P,
<—long-j>p — <—logHj>P + <—logﬁ>P‘
—_— — hv;,\/

S(P, P) S(P) Dxo(P||P)

KL Divergence

Cross entropy Entropy rate (inefficiency of
(perceived imformation) (rate of information observer’s

production) representation)

Lynn et al. In Preparation Danielle S. Bassett



Perceived mlormation depends on topology

Networks with 1dentical entropy differ in cross entropy; modular having markedly low cross
entropy, predicting the observed quickening of subjects’ reactions.
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P = CZ;ZO g(t)PHl where g(t) >0
and g(t) - 77t where 1] € (07 1)

Lynn et al. In Preparation Danielle S. Bassett



Type / Name N E
Language (word transitions)

Shakespeare 11,234 97,892
Homer 3,556 23,608
Plato 2,271 9,796
Jane Austen 1,994 12,120
William Blake 370 781
Miguel de Cervantes 6,090 43,682
Walt Whitman 4,791 16,526
Semantic relationships

Bible 1,707 9,059
Les Miserables 77 254
Edinburgh Thesaurus 7,754 226,518
Roget Thesaurus 904 3,447
Glossary terms 60 114
FOLDOC 13,274 90,736
ODLIS 1,802 12,378
World Wide Web

Google internal 12,354 142,296
Education 2,622 6,065
EPA 2,232 6,876
Indochina 9,638 45,886
2004 Election blogs 793 13,484
Political blogs 643 2,280
Spam 3,796 36,404
Webbase 6,843 16,374

Information processing in

real networks
Citations
arXiv Hep-Ph 12,711 139,500
arXiv Hep-Th 7,464 115,932
Cora 3,991 16,621
DBLP 240 858
Social relationships
Facebook 13,130 75,562
arXiv Astr-Ph 17,903 196,972
Adolescent health 2,155 8,970
Highschool 67 267
Jazz 198 2,742
Karate club 34 78
Music (note transitions)
Thriller — Michael Jackson 67 446
Hard Day’s Night — Beatles 41 212
Bohemian Rhapsody — Queen 71 961
Africa — Toto 39 163
Sonata No 11 — Mozart 55 354
Sonata No 23 — Beethoven 69 900
Nocturne Op 9-2 — Chopin 59 303
Clavier Fugue 13 — Bach 40 143
Ballade No 1 — Brahms 69 670

Lynn et al. In Preparation

Danielle S. Bassett




Real networks display high entropy and low KL divergence

Since the networks chosen have evolved or were designed to communicate with humans,
one might expect them to produce large amounts of information (high entropy) without
mducing additional processing costs (low KL divergence).
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Classes of real networks differ in percerved mformation

Different network types exhibit these
properties to varying degrees.

Lilis,
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KL divergence 1s lower than i degree-preserving null models

Compared to entropy-preserving null models, real world networks are closer to human
expectations, revealing that the KL divergence 1s driven by the networks’ higher-order topology.
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What structural features give nise to these properties?

( Scale-free network

log P(k)

Adjacency

~

L log k

-~

Block network \

Adjacency

_J

Lynn et al. In Preparation

Danielle S. Bassett




Tuning entropy by broadening the degree distribution

( Scale-free network

log P(k) Adjacency

\

k log k

Entropy (bits)
N w ~ a CD \l

—

Even after controlling for the density of a
network, the entropy 1s larger for networks
with more drastic vartation 1 node degree.
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Lynn et al. In Preparation
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Tuning KL. divergence by mcreasing modularity

After fixing the density of a network and the

f accuracy of an observer’s representation, modular
Block network \ organization can help to decrease the amount of
p
mformation that a human 1s required to process.
7 -
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Accurate expectations 77 Inaccurate expectations

Lynn et al. In Preparation Danielle S. Bassett
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A

reasonable solution to the
problem ol maximizing entropy
and mmmizing KL divergence

K Hierarchically modular networh

log P(Kk) Adjacency

k log k

Fraction f
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Lynn et al. In Preparation
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Summary

 Humans can learn the architecture of networks underlying a continuous
stream of mformation.

Danielle S. Bassett
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 Humans can learn the architecture of networks underlying a continuous
stream of mformation.

e Humans display expectations that diverge from the true network, indicating
that they are not performing simple maximum likelihood computations.
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Summary

Humans can learn the architecture of networks underlying a continuous
stream of mformation.

Humans display expectations that diverge from the true network, indicating
that they are not performing simple maximum likelihood computations.

Free energy principle that the brain minimizes errors & computational
complexity produces a memory distribution (Boltzmann) that 1s consistent
with empirical measurements from traditional psychology tests.
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Summary

 Humans can learn the architecture of networks underlying a continuous
stream of mformation.

e Humans display expectations that diverge from the true network, indicating
that they are not performing simple maximum likelihood computations.

* Free energy principle that the brain minimizes errors & computational
complexity produces a memory distribution (Boltzmann) that 1s consistent
with empirical measurements from traditional psychology tests.

e Real networks are organized to communicate large amounts of information
(high entropy), and to do so ethciently (low KL divergence from human

expectations).
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Summary

 Humans can learn the architecture of networks underlying a continuous
stream of mformation.

e Humans display expectations that diverge from the true network, indicating
that they are not performing simple maximum likelihood computations.

* Free energy principle that the brain minimizes errors & computational
complexity produces a memory distribution (Boltzmann) that 1s consistent
with empirical measurements from traditional psychology tests.

e Real networks are organized to communicate large amounts of information
(high entropy), and to do so ethciently (low KL divergence from human

expectations).

e Efficient communication 1s supported by heterogeneous and modular
structure, hinting at a general explanation for the hierarchical organization
observed 1 many communication systems.

Danielle S. Bassett



Open Questions

* Does the optimally learnable graph have a topology that 1s common 1n well-written
papers? (Chai et al. 2019 JCN) Or in well-written textbooks? (Christianson et al. In Prep)
e (Can we move beyond random walks to mncorporate non-Markovian dynamics?
e (Can humans learn more than graphs behind a time series? Can we learn chaotic attractors
from time series and how? (Lu arXiv:1807.05214)
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Dynamical systems framework for imphcit rule learning

Goals: Acknowledge complex dynamics of real simuli; couple with neural mechanisms

Input and output signals

NMAMAVMNMANMAMANM

Tlm‘e (s)

Lorenz attractor

ZT; (t)

Neural activity

Tim‘e (s)

PCA visulation of
neural activity

Lu & Bassett arXiv:1807.05214

Danielle S. Bassett




Implicit rule learming of chaotic attractors

Our approach allows us to demonstrate and
theoretically explain the emergence of five -

Limit Cycle

‘ - 3
' y
~ -

distinct phenomena reminiscent of functions
observed 1 natural neural systems: -

>
(1) learming the dynamical rule underlying a = Lorenz Attractor
chaotic attractor purely from time series, ‘g
(1) generating new streams of stumuli from a £7
chaotic attractor, ©
(1) switching stream generation among multiple -
learned chaotic attractors, either spontaneously
or 1n response to external perturbations, - ‘
(iv) inferring missing data from sparse observations —

of the chaotic attractor, and >

Torus Attractor

(v)  deciphering superimposed mput from different
chaotic attractors.

arXiv:1807.05214
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Brain network processes supporting learning

“Mind thinks 1tself because 1t shares the nature of the object of thought; for it becomes an
object of thought in coming into contact with and thinking its objects, so that mind and object
of thought are the same.” Aristotle, Metaphysics, Book XII, 7, 1072 b 20
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Does modularity in the brain might support the learning of graphs?
Might differences in modularity explain differences in the ability to learn?

Zurn & Bassett (2018) Pers Neurosci Danielle S. Bassett




Theoretical & Computational Challenges

Challenge: Parsimoniously representing and
describing complex connectivity patterns.

» Network models
» Bassett, Zurn, Gold (2018) Nat Rev Neuro

Challenge: Detecting modular structure i network
models of brain connectivity.

» Modularity maximization (NP Hard)
» Meunier et al. (2009) Neurolmage

Q= Z[Aij — P;jlé(0ioj)

Challenge: Detecting evolving modules.

» Multlayer modularity maximization
» Mucha et al. (2010) Science

1
Qmulti = % Z[(-Aijl — YPij1)0tm + Witm9i;10(cit, Cjm)

1jls

Bassett et al. (2013) Chaos Danielle S. Bassett




Module Autonomy 1in Sequence Learning
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General relevance of modularity for learning

Hypothesis: Networks that can flexibly adapt are those with greater modularity.

Constrained modules; Flexible modules;

slow learner Fast learner

Flexible modules support swifter
learning over 3 days; Bassett et

al. 2011 PNAS

Swift learning 1s associated with
flexible segregation of modules

over 6 weeks; Bassett et al. 2015
Nature Neuroscience

Segregation of modules at rest
predicts learning 6 weeks mn the

tuture; Mattar et al. 2018
Neurolmage

Bassett & Mattar 2017 7rends in Cognitive Science

Danielle S. Bassett



Experimental

Module strengthemng with dual n-back training

Large-scale collections of
brain regions (modules)
change 1 their coherent
activity with training,
providing coarse-grained
markers of function.

(=)
=N
n

== Control

== Experimental

DMN recoruitmemt
w
©

o
[
o

Naive Early Middle Late

0.4757

FPN recruitmnent

Finc et al. (2019) In Preparation

Naive Early Middle Late
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Flexible modularity supports learnig (& executive function)

time

Flexibility in network modules 1s predicts individual differences mn:

Visuo-motor learning (Bassett et al. 2011 PNA.LS) Medication (Braun et al. 2016, PNA.S)
Cognitive flexibility (Braun et al. 2015 PNA.S) Positive mood (Betzel et al. 2017 Scr Rep)
Working memory (Braun et al. 2015 PNAS) Amount of sleep (Pedersen et al. 2018 PNAS)

(Shine et al. 2016 Neuron)
Learning rate (Gerraty et al., 2018, J Neurosci)
Future learning (Mattar et al. 2018 Neurolmage)
Planning & reasoning (Pedersen et al. 2018 PNAS)

Bassett & Mattar, 7rends in Cognitive Science, 2017 Danielle S. Bassett




Searching for design rules

Why do some types of learning induce changes i system strength
and others induce changes 1n inter-system connectivity? Could we
create a parameterization of task famihes that would allow us to
manipulate these two phenotypes smoothly and continuously?

What induces network reconfiguration? Who 1s able to respond to
training with greater network reconfiguration and why? What
constraints determine what sorts of reconfiguration are easier or
harder than others? How much energy does it take to induce a
network reconfiguration?

Urs Braun Mason Porter

Marcelo Mattar Peter Mucha

Scott Grafton

Raphael Gerraty =~ Daphna Shohamy

Karuza et al. 2016 7rends in Cognitive Science

Danielle S. Bassett




“Now 1f there was a becoming of every changeable thing, it follows
that before the motion 1 question another change must have taken

place m which that which 1s capable of being changed or of causing
change had 1ts becoming.”

Anistotle, Physics VIILI, 251a9

Danielle S. Bassett



Constraming Nature of Network Architecture

Can build a theoretical model from data that predicts the changing, the becoming, and the
causing of change? Or ... how the brain’s activity can be altered by a perturbative signal?

Amplitude

time

What we have: A network of What we seek: A theory for how a
structural inks empirically change 1 activity in one region affects
measured by neurommaging. activity in other regions.

Kim et al. (2018) Nature Physics; Tang et al. (2018) Reviews of Modern Physics Danielle S. Bassett @



Formalizing the Problem of Network Control

* Neural processes can be approximated by linearized generalizations of nonlinear
models of cortical circuit activity (Galan 2008; Honey et al. 2009).
*  We consider a noise-free linear discrete-time and time-invariant network model:

CE(t — 1) — A:E(t) — Bzcu;c(t)
7 ! !

State of brain Weighted adjacency Control energy
regions over time matrix

Gu et al. (2015) Nature Communications, Tang et al. (2017) Nature Communications Danielle S. Bassett




Is the brain theoretically controllable?

How controllable the network 1s can be estimated using the smallest eigenvalues
of the T-steps controllability Gramian:

T—1
Wi = Z ATBKBITC(AT)T
7=0

For brain networks, this value was small: 2.5 x 10/(-23)
e Practically extremely hard to control

L=,

Gu et al. (2015) Nature Communications, Menara et al. (2017) IEEE TAC Danielle S. Bassett »(




Types of drniver nodes

» Which regions of the brain are most efficient or most difficult to control?

A couple control strategies:

1. Average Controllability: Steer to

Initial Trajectory '
many easily reachable states

State 2
State 1 / Xn-1 2. Modal Controllability: Steer to
v T .
few difficult to reach states

Post-Control Trajectory

X3

Pasqualetti et al. (2014) IEEE TCNS Danielle S. Bassett




Average and modal control

x(t+1) = Az(t) + Brux(t)

T7—1
Wir =Y A BxBg(A')

7=0

Modal controllability:
Distant transitions

Average: Trace(W, ™))

Modal: Let v; be the j eigenvector of A with
eigenvalue 4. Then if v; is small, then the j*

mode is poorly controllable from node i. Define

Average cont_r_ollablllty. Energy b = E;V:l(l — A3(A))vi; asascaled
Nearby transitions measure of controllability of all N modes from
region i.)

Gu et al. (2015) Nature Communications, Betzel et al. (2016) Scientific Reports Danielle S. Bassett @




Network control as a model for cogmtive control

e Diafferent brain regions have more or less
average/modal controllability, indicating 099- N-=2879

. . . . . >
differential capacity to alter whole-brain dynamics £
(Gu et al. 2015 Nature Communications) % 098}
S
: . . . =
e The capacity of brain regions to exert control S 0.97¢
grows as children develop ‘_(;
(Tang et al. 2017 Nature Communications) '8 0.96
= 0.95
* Network controllability 1s correlated with S . - Individual Connectome 10
. o . . . . () -—Fitted parametric form
impulsivity, a measure of executive function = 094l .

(Cornblath et al. 2018 Neurolmage) 15 20 25 30 . 35
Mean average controllability

* The energy required for control decreases with

age, 1 concert with icreasing executive function
(Cru et al. 2018 In Revision)

Together, these results suggest that our theory 1s a useful marker of how the
brain enacts control to change network function.

Tang et al. (2018) Reviews of Modern Physics Danielle S. Bassett




Fxtending to exogenous control (stmulation)

Preliminary work suggests that stmulation to modal controllers pushes
the brain mnto better memory encoding states.

Modal controllability:
Distant transitions

0.02-

Change I memory
encoding state probability
' o

|

Average controllability: — ====gF ———
Nearby transitions Energy

et
o
o

l |
0.96 0.98 1.00
Modal controllability

Khambhati et al. Network Neuroscience, In Press Dantelle S. Bassett @




Precise control of specific state transitions

r
8

Vs 2
LI
’\ ff/lnmal state

X3

1

What we want
* Finite time, Finite energy,
Target state e  Mult-point control
e Initial state, Target state

/),

Uncontrolled trajectory

== Controlled trajecto :
jectory Define model of network dynamics.

@o XT ‘(?ﬂ% x(t+1) = Ax(t) + Brux(t)

Define a cost function penalizes energy
and distance of x(t) from the target state.

T
min/ (x7 — %) (xp — x) + pubux
0

u

Betzel et al. (2016) Screntific Reports, Gu et al. (2017) Neurormage Daniclle S. Basset @
Stiso et al. https://doi.org/10.1101/313304 (In Revision) AMEHE 5. DA oo



https://doi.org/10.1101/313304

Open questions

What 1s 1t about certain network topologies that makes them easier
or harder to control? (Kim et al. 2018 Nature Physics) Does the
answer to this question help us to understand time scales of
control, such as transient versus persistent control, which may be

altered 1n certain patient groups? (Tang et al. 2019, Submutted)

How does control of brain state transitions relate to network
reconfiguration exactly? How might brain states relate to neural
representations, housing information about the world or our
model of the world? What rules constrain the evolution of neural
representations during learning? (Tang et al. (2019) Nature
Neuroscience, In Press)

Jason Z. Kim

el :
Ankit Khambhati

; ';‘ /“f
\ S e
Rick F. Betzel

Eli Cornblath Jeni Stiso

Tang et al. (2018) Reviews of Modern Physics

Danielle S. Bassett @




Summary & Future Directions

/Graph Learning\/—\

heural modeling

NOI0=

controllability

{§l§l N dog geb \/ . .
written text semantic transitions StrUCturaI Underplnnlngs
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What do we know about this problem?

From work 1n the field of statistical learning and the study of artificial
grammars, we know that humans are sensitive to transition probabilities.

A e—— B A C
0.75 0.25

Then what would we predict about the graph below?

Because every edge has a
transition probability of
0.25, human expectations
should be equivalent
across all transitions, and
thus so should human
reaction times.

Danielle S. Bassett



