
NETWORK ARCHITECTURES SUPPORTING LEARNABILITY

SIAM -DS
MAY 23, 2019

Danielle S. Bassett

University of Pennsylvania
Department of Bioengineering
Department of Physics & Astronomy
Department of Neurology
Department of Psychiatry
Department of Electrical & Systems Engineering



“The life that is here proposed to depict was a life singularly 
devoid of  incident. It was the career of  a lonely, secluded, 

fastidious, and affectionate man; it was a life not rich in results, not 
fruitful in example. It is the history of  a few great friendships, 

much quiet benevolence, tender loyalty, wistful enjoyment. The 
tangible results are a single small volume of  imperishable quality, 

some accomplished translations of  not great literary importance, a 
little piece of  delicate prose-writing, and many beautiful letters.”  

Danielle S. BassettBenson, Edward Fitzgerald





From Henri Poincare’s 1905 Science and Hypothesis:

“The aim of  science is not things themselves, as the dogmatists in their simplicity 
imagine, but the relations among things; outside these relations there is no reality 
knowable.”

From Dewey’s 1916 Democracy and Education (NY: Simon & Brown, 2011): 

”…[K]nowledge is a perception of  those connections of  an object which determine its 
applicability in a given situation. [...] Thus, we get at a new event indirectly instead of  
immediately - by invention, ingenuity, resourcefulness. An ideally perfect knowledge 
would represent such a network of  interconnections that any past experience would 
offer a point of  advantage from which to get at the problem presented in a new 
experience" (185).

Danielle S. Bassett

I. Knowledge is a network



II. Knowledge is a network learned by example

Danielle S. Bassett
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2-5-4-3-5-3-1-3-2-5- 
6-8-9-10- 
11-13-11- 

10-9-7-8-10- 
11-12-15-13-14-15-14-11-13 

Eulerian path  

12-14-13-11- 
10-9-8-6-9-7-8-10-7-6- 
5-4-3-2-5-3-1-2-4-1- 
15-13-12-15-14-11-12  

Hamiltonian path 

1-2-3-4-5- 
6-8-7-9-10- 

11-14-12-13-15 

Suppose I must translate 15 ideas to a class.

Those 15 ideas are related to one another in 
a heterogeneous manner, making a network.

I must translate that information linearly; 
time is one-dimensional and uni-directional.

How should I create this information time 
series in a way that maximizes learning?



A “good walk” minimizes reconstruction error
and maximizes perception of the network’s topology

Danielle S. Bassett
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String of concepts traversed in 
time

Brain of the speaker 
or writer 

Brain of the listener or 
reader

m
ap

re
co

ns
tru

ct
One word after another ….
One line after another …

Karuza et al. 2017 Sci Rep; Kahn et al. 2018 Nature Human Behavior
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Mind/Brain of the 
speaker or writer 

Mind/Brain of the 
PerceiverThe problem of inferring the patterns of 

pairwise dependencies from incoming 
streams of data allows us to:

Learn language
Segment visual events 
Parse tonal groupings
Parse spatial scenes
Infer social networks
Perceive distinct concepts



Can we measure perception of network topology
in a continuous stream of stimuli?
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Danielle S. Bassett

Let each specific stimuli (word, 
image, or movement) be a node 

in a graph.

Let each edge in the graph
indicate an allowable transition 

between nodes.

Construct a sequence of stimuli by a random walk on the graph. 

Karuza et al. 2016 Trends in Cognitive Science

time

…

At each stimuli, require the participant to perform a task, so that their time-to-react can be used as a 
measure of how well that edge in the graph was learned.

node 
edge



Example experimental setup

Danielle S. Bassett

Stream of Stimuli Hand PlacementTransition graph

1. Motor: Kahn et al. 2018 Nature Human Behavior

2. Visual: Karuza et al. 2017 Scientific Reports 
3. Social: Tompson et al. 2018 Journal of Experimental Psychology; Learning 
Memory & Cognition

Karuza et al. 2016 Trends in Cognitive Science



What do we know about this problem?

Danielle S. Bassett

From work in the field of statistical learning and the study of artificial grammars, we know 
that humans are sensitive to transition probabilities. 

0.75
A

A

B

0.25
C A A

Faster

Faster



Human reactions depend on entropy

Danielle S. BassettLynn et al. In Preparation

Human reactions should vary with 
the entropy of a transition from one 

stimulus i to another stimulus j.

For random walks on a simple 
undirected network, the entropy of 
the (i èj)  transition equals log ki, 
where ki is the degree of node i.

In this experiment, humans appear to process 1 bit of information in 32 ms.

Faster



Human reactions depend on MORE THAN entropy

Danielle S. Bassett

Measure Reaction Time (RT) 
Per Transition

Striking slowing at cluster boundaries 
indicating graph learning

Kahn et al. 2018 Nature Human Behavior 

In a k-4 regular graph, 
traversed by a random 
walk, the entropy of all 
transitions is the same. 



In fact, human reaction times are sensitive to hierarchy …

Danielle S. BassettLynn et al. In Preparation

A modular network, which by symmetry, only contains three types of transitions; 
each type produces reaction times that are distinct from the other two.

Transitions between or at the boundaries of modules generate more surprise 
than transitions deep within a module.



… And to network topology.

Danielle S. BassettKahn et al. 2018 Nature Human Behavior 

Compared to lattice and random graphs with equal entropy, reactions in the modular 
graph are significantly faster overall, indicating a decreased in perceived information.

Together, these results reveal that humans process information beyond entropy in a 
manner that depends systematically on network topology.



Perturbation experiment: effects of network violations

Danielle S. BassettLynn et al. 2018, arXiv:1805.12491

Humans are more surprised by 
stimuli from farther away on the 
ring than closer, indicating their 

implicit perception of the 
network topology. 

N= 99



What are people thinking?



Danielle S. BassettLynn et al. 2018, arXiv:1805.12491

Free energy principle: brain minimizes errors & computational complexity.  

Probability of recalling rather than        is               .

The error of a candidate probability distribution is 

Complexity of the error distribution is the entropy 

Total cost of the distribution is its free energy:  

Distribution that minimizes free energy principle is Boltzmann distribution

Creating expectations of transitions
We build 

expectations about a 
network structure with 

a counts matrix nij
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From a poor memory arises biases in learning

Danielle S. BassettLynn et al. 2018, arXiv:1805.12491

current

No memory;
Minimizes mental resources 

Perfect memory;
Maximizes mental resources 

Poor memory



From a poor memory arises biases in learning

Danielle S. BassettLynn et al. 2018, arXiv:1805.12491

current

No memory;
Minimizes mental resources 

Perfect memory;
Maximizes mental resources 

Poor memory



From a poor memory arises biases in learning

Danielle S. BassettLynn et al. 2018, arXiv:1805.12491

current

No memory;
Minimizes mental resources 

Perfect memory;
Maximizes mental resources 

Poor memory



Measuring inverse temperature from RT data

Danielle S. BassettLynn et al. 2018, arXiv:1805.12491

N= 71; 243; 44

Fitting the model to the graph 
learning data from 358 

participants.



Measuring inverse temperature from RT data

Danielle S. BassettLynn et al. 2018, arXiv:1805.12491

N= 71; 243; 44



Measuring the memory distribution in humans

Danielle S. BassettLynn et al. 2018, arXiv:1805.12491

In the field of psychology, the accuracy of a person’s memory is often 
tested using what is called an “n-back task”.

A 2-back task

Goal is to determine 
whether the current 

letter is the same as the 
letter two before.

You are currently at A, and you must answer the question: “Did you see A 2x ago?”
You say “yes”, but you are incorrect; “B” is 2x ago. 

You say “yes” because you confuse 2x ago with what 5x ago.
5x minus 2x is your Δt.



Danielle S. BassettLynn et al. 2018, arXiv:1805.12491

Measuring the memory distribution in humans
Estimating b from the 2-back task Estimating b from graph learning task

The memory distribution we posit is 
the theory is consistent with the 

memory distribution we observe in 
experiment.



Information Processing in Real Networks



Perceived information

Danielle S. BassettLynn et al. In Preparation

Cross entropy
(perceived information)

Entropy rate
(rate of information 

production)

KL Divergence
(inefficiency of 

observer’s 
representation)

For intuition’s sake, let’s redefine the transition probability matrix as P, and 
state the perceived information as:



Perceived information depends on topology

Danielle S. BassettLynn et al. In Preparation

where

whereand

Networks with identical entropy differ in cross entropy; modular having markedly low cross 
entropy, predicting the observed quickening of subjects’ reactions.  



Information processing in 
real networks

Danielle S. BassettLynn et al. In Preparation



Real networks display high entropy and low KL divergence

Danielle S. BassettLynn et al. In Preparation

Since the networks chosen have evolved or were designed to communicate with humans, 
one might expect them to produce large amounts of information (high entropy) without 

inducing additional processing costs (low KL divergence).



Classes of real networks differ in perceived information

Danielle S. BassettLynn et al. In Preparation

Different network types exhibit these 
properties to varying degrees.



KL divergence is lower than in degree-preserving null models

Danielle S. BassettLynn et al. In Preparation

Compared to entropy-preserving null models, real world networks are closer to human 
expectations, revealing that the KL divergence is driven by the networks’ higher-order topology.



What structural features give rise to these properties?

Danielle S. BassettLynn et al. In Preparation



Tuning entropy by broadening the degree distribution

Danielle S. BassettLynn et al. In Preparation

Even after controlling for the density of a 
network, the entropy is larger for networks 
with more drastic variation in node degree.



Tuning KL divergence by increasing modularity

Danielle S. BassettLynn et al. In Preparation

Accurate expectations Inaccurate expectations

After fixing the density of a network and the 
accuracy of an observer’s representation, modular 
organization can help to decrease the amount of 
information that a human is required to process.



Danielle S. BassettLynn et al. In Preparation

A reasonable solution to the 
problem of maximizing entropy 
and minimizing KL divergence
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Summary

Danielle S. Bassett

• Humans can learn the architecture of networks underlying a continuous 
stream of information.

• Humans display expectations that diverge from the true network, indicating 
that they are not performing simple maximum likelihood computations.

• Free energy principle that the brain minimizes errors & computational 
complexity produces a memory distribution (Boltzmann) that is consistent 
with empirical measurements from traditional psychology tests.

• Real networks are organized to communicate large amounts of information 
(high entropy), and to do so efficiently (low KL divergence from human 
expectations).

• Efficient communication is supported by heterogeneous and modular 
structure, hinting at a general explanation for the hierarchical organization 
observed in many communication systems.



Open Questions

Danielle S. Bassett

• Does the optimally learnable graph have a topology that is common in well-written 
papers? (Chai et al. 2019 JCN) Or in well-written textbooks? (Christianson et al. In Prep)
• Can we move beyond random walks to incorporate non-Markovian dynamics?

• Can humans learn more than graphs behind a time series? Can we learn chaotic attractors 
from time series and how? (Lu arXiv:1807.05214)
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Dynamical systems framework for implicit rule learning

Danielle S. Bassett

Goals: Acknowledge complex dynamics of real stimuli; couple with neural mechanisms

Lu & Bassett arXiv:1807.05214



Implicit rule learning of chaotic attractors

Danielle S. Bassett

Our approach allows us to demonstrate and 
theoretically explain the emergence of five 
distinct phenomena reminiscent of functions 
observed in natural neural systems: 

(i) learning the dynamical rule underlying a 
chaotic attractor purely from time series, 

(ii) generating new streams of stimuli from a 
chaotic attractor, 

(iii) switching stream generation among multiple 
learned chaotic attractors, either spontaneously 
or in response to external perturbations, 

(iv) inferring missing data from sparse observations 
of the chaotic attractor, and 

(v) deciphering superimposed input from different 
chaotic attractors. 

arXiv:1807.05214



Danielle S. BassettLynn et al. In Preparation



Zurn & Bassett (2018) Pers Neurosci

Brain network processes supporting learning

Danielle S. Bassett

Does modularity in the brain might support the learning of graphs?
Might differences in modularity explain differences in the ability to learn?

“Mind thinks itself because it shares the nature of the object of thought; for it becomes an 
object of thought in coming into contact with and thinking its objects, so that mind and object 

of thought are the same.” Aristotle, Metaphysics, Book XII, 7, 1072 b 20



Theoretical & Computational Challenges

Bassett et al. (2013) Chaos Danielle S. Bassett

Challenge: Parsimoniously representing and 
describing complex connectivity patterns.

Ø Network models
Ø Bassett, Zurn, Gold (2018) Nat Rev Neuro

Challenge: Detecting modular structure in network 
models of brain connectivity.

Ø Modularity maximization (NP Hard)
Ø Meunier et al. (2009) NeuroImage

Challenge: Detecting evolving modules.
Ø Multilayer modularity maximization
Ø Mucha et al. (2010) Science



Module Autonomy in Sequence Learning

Bassett et al. (2015) Nature Neuroscience Danielle S. Bassett

The coherence between 
motor and visual modules 
decreased markedly with 

training, suggesting a growing 
autonomy.



General relevance of modularity for learning

Danielle S. BassettBassett & Mattar 2017 Trends in Cognitive Science

Hypothesis: Networks that can flexibly adapt are those with greater modularity.

Constrained modules; 
slow learner

Flexible modules; 
Fast learner

1. Flexible modules support swifter 
learning over 3 days; Bassett et 
al. 2011 PNAS

2. Swift learning is associated with 
flexible segregation of modules 
over 6 weeks; Bassett et al. 2015 
Nature Neuroscience

3. Segregation of modules at rest 
predicts learning 6 weeks in the 
future; Mattar et al. 2018 
NeuroImage



Module strengthening with dual n-back training

Finc et al. (2019) In Preparation Danielle S. Bassett

Large-scale collections of 
brain regions (modules) 
change in their coherent 

activity with training, 
providing coarse-grained 

markers of function.



Flexible modularity supports learning (& executive function)

Danielle S. Bassett

Flexibility in network modules is predicts individual differences in:

Visuo-motor learning (Bassett et al. 2011 PNAS)
Cognitive flexibility (Braun et al. 2015 PNAS)
Working memory (Braun et al. 2015 PNAS)

(Shine et al. 2016 Neuron)

Learning rate (Gerraty et al., 2018, J Neurosci)
Future learning (Mattar et al. 2018 NeuroImage)
Planning & reasoning (Pedersen et al. 2018 PNAS)

Bassett & Mattar, Trends in Cognitive Science, 2017

Medication (Braun et al. 2016, PNAS)
Positive mood (Betzel et al. 2017 Sci Rep)
Amount of sleep (Pedersen et al. 2018 PNAS)



Searching for design rules

Danielle S. Bassett

Why do some types of learning induce changes in system strength 
and others induce changes in inter-system connectivity? Could we 
create a parameterization of task families that would allow us to 
manipulate these two phenotypes smoothly and continuously?

What induces network reconfiguration? Who is able to respond to 
training with greater network reconfiguration and why? What 
constraints determine what sorts of reconfiguration are easier or 
harder than others? How much energy does it take to induce a 
network reconfiguration?

Karuza et al. 2016 Trends in Cognitive Science

Urs Braun Mason Porter

Peter Mucha

Rick F. Betzel

Daphna Shohamy

Scott Grafton

Raphael Gerraty

Marcelo Mattar



Danielle S. Bassett

“Now if there was a becoming of every changeable thing, it follows 
that before the motion in question another change must have taken 
place in which that which is capable of being changed or of causing 

change had its becoming.” 

Aristotle, Physics VIII.I, 251a9



Constraining Nature of Network Architecture

Danielle S. BassettKim et al. (2018) Nature Physics; Tang et al. (2018) Reviews of Modern Physics

What we have: A network of 
structural links empirically 

measured by neuroimaging.

What we seek: A theory for how a 
change in activity in one region affects 

activity in other regions.

Can build a theoretical model from data that predicts the changing, the becoming, and the 
causing of change? Or … how the brain’s activity can be altered by a perturbative signal?



Formalizing the Problem of Network Control

Danielle S. Bassett

• Neural processes can be approximated by linearized generalizations of nonlinear 
models of cortical circuit activity (Galan 2008; Honey et al. 2009).

• We consider a noise-free linear discrete-time and time-invariant network model:

State of brain 
regions over time

Weighted adjacency 
matrix

Control energy

Number of regions 
being controlled

Gu et al. (2015) Nature Communications; Tang et al. (2017) Nature Communications



Is the brain theoretically controllable?

Danielle S. BassettGu et al. (2015) Nature Communications; Menara et al. (2017) IEEE TAC

How controllable the network is can be estimated using the smallest eigenvalues 
of the T-steps controllability Gramian:

Danielle S. Bassett

For brain networks, this value was small: 2.5 x 10^(-23)
• Practically extremely hard to control



Types of driver nodes

Danielle S. Bassett

A couple control strategies:

1. Average Controllability: Steer to 
many easily reachable states

2. Modal Controllability: Steer to 
few difficult to reach states

Ø Which regions of the brain are most efficient or most difficult to control?

Pasqualetti et al. (2014) IEEE TCNS 



Average and modal control

Danielle S. BassettGu et al. (2015) Nature Communications, Betzel et al. (2016) Scientific Reports

Average: Trace(WK
-1))

Modal: Let vj be the jth eigenvector of A with 
eigenvalue lj. Then if vij is small, then the jth
mode is poorly controllable from node i. Define 

as a scaled 
measure of controllability of all N modes from 
region i.)



Network control as a model for cognitive control

Danielle S. Bassett

• Different brain regions have more or less 
average/modal controllability, indicating 
differential capacity to alter whole-brain dynamics            
(Gu et al. 2015 Nature Communications)

• The capacity of brain regions to exert control 
grows as children develop                  
(Tang et al. 2017 Nature Communications)

Tang et al. (2018) Reviews of Modern Physics

• Network controllability is correlated with 
impulsivity, a measure of executive function          
(Cornblath et al. 2018 NeuroImage)

Together, these results suggest that our theory is a useful marker of how the 
brain enacts control to change network function.

N= 872

• The energy required for control decreases with 
age, in concert with increasing executive function          
(Ciu et al. 2018 In Revision)



Extending to exogenous control (stimulation)

Khambhati et al. Network Neuroscience, In Press Danielle S. Bassett

Modal controllability

C
ha

ng
e 

in
 m

em
or

y 
en

co
di

ng
 s

ta
te

 p
ro
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bi

lit
y

Preliminary work suggests that stimulation to modal controllers pushes 
the brain into better memory encoding states.



Danielle S. Bassett
Betzel et al. (2016) Scientific Reports; Gu et al. (2017) Neuroimage

What we want
• Finite time, Finite energy, 
• Multi-point control

• Initial state, Target state

Define a cost function penalizes energy 
and distance of x(t) from the target state.

Precise control of specific state transitions

Define model of network dynamics.

Stiso et al. https://doi.org/10.1101/313304 (In Revision)

https://doi.org/10.1101/313304


Open questions

Ankit Khambhati

Eli Cornblath

Jason Z. Kim

Shi Gu

Rick F. Betzel

Jeni Stiso

Danielle S. BassettTang et al. (2018) Reviews of Modern Physics

What is it about certain network topologies that makes them easier 
or harder to control? (Kim et al. 2018 Nature Physics) Does the 
answer to this question help us to understand time scales of 
control, such as transient versus persistent control, which may be 
altered in certain patient groups? (Tang et al. 2019, Submitted)

How does control of brain state transitions relate to network 
reconfiguration exactly? How might brain states relate to neural 
representations, housing information about the world or our 
model of the world? What rules constrain the evolution of neural 
representations during learning? (Tang et al. (2019) Nature 
Neuroscience, In Press)



Summary & Future Directions
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What do we know about this problem?
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Random walk 

2-5-4-3-5-3-1-3-2-5- 
6-8-9-10- 
11-13-11- 

10-9-7-8-10- 
11-12-15-13-14-15-14-11-13 

Eulerian path  

12-14-13-11- 
10-9-8-6-9-7-8-10-7-6- 
5-4-3-2-5-3-1-2-4-1- 
15-13-12-15-14-11-12  

Hamiltonian path 

1-2-3-4-5- 
6-8-7-9-10- 

11-14-12-13-15 

From work in the field of statistical learning and the study of artificial 
grammars, we know that humans are sensitive to transition probabilities. 

Then what would we predict about the graph below? 

0.75
A AB

0.25
C

Because every edge has a 
transition probability of 

0.25, human expectations 
should be equivalent 

across all transitions, and 
thus so should human 

reaction times.


