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The FitzHugh-Nagumo (FHN) Reaction-Diffusion (RD)
system

{
εut = f (u)− v + duxx , (x , t) ∈ Ω× [0,+∞[
vt = u − c(x)

(1)

whith f (u) = −u3 + 3u, ε small, and Neumann Boundary
conditions (NBC). In the Neuroscience context, u represents a
potential, v a recovery variable and Ω is a bounded domain in R2

or R.
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Hodgkin and Huxley
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Hodgkin and Huxley
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Hodgkin-Huxley Reaction-Diffusion system



C
dV

dt
= Vxx + I − gNam3h(V − ENa)− gKn4(V − EK ),

−gL(V − EL)

dn

dt
= αn(V )(1− n)− βn(V )n

dm

dt
= αm(V )(1−m)− βm(V )m

dh

dt
= αh(V )(1− h)− βh(V )h
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NOBEL PRIZE 1963

“ For their discoveries concerning the ionic mechanisms involved in
excitation and inhibition in the peripheral and central portions of

the nerve cell membrane.” See www.nobelprize.org.

”To this day their work stands as one of the best examples of how
scientists can use mathematics to provide insights into complicated

biological systems.” Nature Education-2010
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The Bonhoeffer-Van der Pol model (FitzHugh-Nagumo
equations)

{
xt = c(y + x − x3

3 + z)
yt = −(x − a + by)/c

(2)

with 1− 2b/3 < a, 0 < b < 1, b < c2; z stimulus intensity, an
arbitrary function of t which can be a Dirac
(Original FitzHugh paper, p 447)
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FitzHugh (1961)

“The one to be described in the present paper considers the
HH as one member of a large class of non-linear systems
showing excitable and oscillatory behavior.”
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Van der Pol (1926)

(After Liénard’s Transformation){
xt = c(y + x − x3

3 + z)
yt = −x/c

(3)
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Bonhoeffer (1948)
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FitzHugh-Nagumo equations

In 1962, Nagumo et al. provided the analog equivalent circuit.

See:
Nagumo J., Arimoto S., and Yoshizawa S. (1962) An active pulse
transmission line simulating nerve axon. Proc. IRE. 50:2061–2070.
Now, the BVP model is called the FHN system.
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The FHN ODE system

{
εut = f (u)− v
vt = u − c

(4)

whith f (u) = −u3 + 3u, ε small.
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The FHN ODE system : excitable and oscillatory behavior

Figure: Solutions of system (4), for typical values of c .
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The FHN ODE system

Theorem 1

There exists a unique stationary point. If |c | ≥ 1 the stationary
point is globally asymptotically stable, whereas if |c | < 1, it is
unstable and there exists a unique limit-cycle which attracts all the
non constant trajectories. Furthermore, at |c | = 1, there is a
supercritical Hopf bifurcation.
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c=0;IC:Uniform law on [0,1]

Asymptotic homogeneous
space behavior for (1) (
u(x1, x2, 0)). Initial
conditions: uniform law on
[0, 1].

Asymptotic evolution of a
solution of (1) at some space

points. Red line: u(x1, x2, t)
for (x1, x2) = (50, 50, t), for

time t ∈ [180, 200]. Red line:
(x1, x2) = (50, 100, t). Blue

line:
∫

Ω u(x , t)dx .
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General case

Is there other solutions?
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c=0; IC:Specific

Asymptotic non-homogeneous
space behavior of spiral type
for (1) ( u(x1, x2, 190)).
Initial conditions:
(u0(x), v0(x) = (1, 0) on Left
Top (LT) square, (0, 1) on
RT, (0,−1) on LB , (−1, 0)
on RB.

Asymptotic evolution of a
solution of (1) at some space
points. Red line: u(x1, x2, t)
for (x1, x2) = (50, 50, t), for
time t ∈ [180, 200]. Green
line: (x1, x2) = (50, 100, t).

Blue line:
∫

Ω u(x , t)dx .
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Numerical simulations

Asymptotic non-homogeneous
space behavior of four spiral
type for (1) ( u(x1, x2, 190)).
Initial conditions: we
reproduce four times the
previous one with symmetry.

Asymptotic evolution of a
solution of (1) at some space
points. Green line: u(x1, x2, t)

for (x1, x2) = (50, 50, t), for
time t ∈ [180, 200]. Red line:
(x1, x2) = (50, 100, t). Blue

line:
∫

Ω u(x , t)dx .
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c=0;Invariant subspace

Theorem 2

Suppose that we can divide the domain into a partition
Ω = (∪i∈{1,...,l}Ui ) ∪ (∪i∈{1,...,l}Vi ) such that there exists a
diffeomorphism φ that maps each Ui to Vi , i ∈ {1, ..., l}, with
| det Jφ| = 1, where Jφ is the jacobian of φ and initial conditions
such that for all x ∈ ∪i∈{1,...,l}Ui and for all t ∈ R+,
(u(φ(x), t), v(φ(x), t)) = −(u(x , t), v(x , t)) then the solution of
(1) cannot evolve asymptotically around (ū, v̄).

See: B. A., M.A. Aziz-Alaoui, Basin of Attraction of Solutions with
Pattern Formation in Slow–Fast Reaction–Diffusion Systems Acta
Biotheoretica 64 (4), (2016), 311-325.
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c=0; IC:Uniform law on [-1,1]

Asymptotic non-homogeneous
space behavior of multiple
spiral type for (1) (
u(x1, x2, 0)). Initial
conditions: uniform law on
[−1, 1].

Asymptotic evolution of a
solution of (1) at some space

points. Red line: u(x1, x2, t)
for (x1, x2) = (50, 50, t), for

time t ∈ [180, 200]. Green
line: (x1, x2) = (50, 100, t).

Blue line:
∫

Ω u(x , t)dx .
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c x-dependant. Propagation of oscillatory signals

Is the system (1) able to generate oscillatory signals and to
propagate it?
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c x-dependant. Propagation of oscillatory signals

Is the system (1) able to generate oscillatory signals and to
propagate it?
Yes, the idea being:
“ Oscillatory signal initiates at some point and propagates along
excitatory tissue thanks to diffusion.”
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c x-dependant. Propagation of oscillatory signals

We will consider functions such that:

c(x) < −1 for x close to the border, (Excitatory dynamics for
the ODE system)

c(x) = 0 for x close to the center, (Oscillatory dynamics for
the ODE system)
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c x-dependant. Propagation of oscillatory signals (2D)

4870 B. Ambrosio and J.-P. Françoise
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Figure 1. Solutions for δ = 0.01, c0 = −1.3 and (a) u(x , y, 50), (b) u(50, 50, t) (solid line) and
(c) (u, v)(50, 50, t) (solid line). (a) Evolution to stationary solution for c0 = −1.3 and t = 50; (b)
evolution of the variable u for a central cell and c0 = −1.3; and (c) evolution of (u, v) for a central
cell and c0 = −1.3.
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Figure 2. Solutions for δ = 0.01, c0 = −1.195. (a) u(x , y, 50), (b) u(50, 50, t) (solid line) and
(c) (u, v)(50, 50, t) (solid line). (a) Evolution to stationary solution for c0 = −1.195 and t = 50;
(b) evolution of the variable u for a central cell and c0 = −1.195; and (c) evolution of (u, v) for a
central cell and c0 = −1.195.
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c x-dependant. Propagation of oscillatory signals (2D)

Propagation of bursting oscillations 4871
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Figure 3. Solutions for δ = 0.01, c0 = −1.19302 (T = 200). (a) u(x , y, 50), (b) u(50, 50, t) (solid line)
and (c) (u, v)(50, 50, t) (solid line). (a) Solution for c0 = −1.19302 and t = 50; (b) evolution of the
variable u for a central cell and c0 = −1.19302; and (c) evolution of (u, v) for a central cell and
c0 = −1.19302.
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Figure 4. Solutions for δ = 0.01, c0 = −1.19302 (T = 2000). (a) u(x , y, 1950), (b) u(50, 50, t)
(solid line) and (c) (u, v)(50, 50, t) (solid line). (a) Solution for c0 = −1.19302 and t = 50;
(b) evolution of the variable u for a central cell and c0 = −1.19302; and (c) evolution of
(u, v) for a central cell and c0 = −1.19302.
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c x-dependant. Propagation of oscillatory signals (2D)

4872 B. Ambrosio and J.-P. Françoise

0.5

1.0

1.5

2.0

0

–0.5

–1.0

–1.5

–2.0

–2.5
0 50 100 150 200 250

0

20

40

60

80

100
(a)

(c)

10 20 30 40 50

x

t

y

u

0.5

1.0

1.5

2.0

0

–0.5

–1.0

–1.5

–2.0

–2.5
0 50 100 150 200 250

(d )

t

u

(e) ( f )

60 70 80 90 100

–1.2

–1.1

–1.0

–0.9

–0.8

–0.7

0

20

40

60

80

100
(b)

10 20 30 40 50

x

y

60 70 80 90 100

2.0
1.5
1.0
0.5
0
–0.5
–1.0
–1.5
–2.0

3

2

1

0

–1

–2
–2 –1 0 1 2

u

v

2

1

0

–2

–1

–2 –1 0 1 2
u

v

Figure 5. Solutions for δ = 0.01, c0 = −1.19. (a) u(x , y, 50), (b) u(x , y, 62), (c) u(50, 50, t)
(solid line), (d) u(51, 50, t) (solid line), (e) (u, v)(50, 50, t) (solid line) and (f ) (u, v)(51, 50, t)
(solid line). (a) Solution for c0 = −1.19 and t = 50; (b) solution for c0 = −1.19 and t = 62; (c)
evolution of the variable u for a central cell and c0 = −1.19; (d) evolution of the variable u for a
non-central cell and c0 = −1.19; (e) evolution of (u, v) for a central cell and c0 = −1.19; and (f )
evolution of (u, v) for a non-central cell and c0 = −1.19.

(b) Numerical simulations of system (4.1) and propagation of the
bursting oscillations

The same result is observed numerically: there is a threshold such that, if the
excitability c0 is below the threshold, the solution evolves to a stationary solution.
If it is above, there is a propagation of the bursting oscillations. The number of

Phil. Trans. R. Soc. A (2009)
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c x-dependant. Propagation of oscillatory signals (2D)

Propagation of bursting oscillations 4873
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Figure 6. Solutions for δ = 0.01, c0 = −1.15. (a) u(x , y, 55), (b) u(50, 50, t) (solid line), (c)
u(51, 50, t) (solid line), (d) (u, v)(50, 50, t) (solid line) and (e) (u, v)(51, 50, t) (solid line). (a)
Solution for c0 = −1.15 and t = 55; (b) evolution of the variable u for a central cell and c0 =
−1.15; (c) evolution of the variable u for a non-central cell and c0 = −1.15; (d) evolution
of (u, v) for a central cell and c0 = −1.15; and (e) evolution of (u, v) for a central cell
and c0 = −1.15.

spikes increases as γ → 0 and/or as c0→ −1. Initial conditions are around the
values u(0, x) = −1, v(0, x) = 0.1, δ = 0.01; propagation of bursting oscillations is
seen in figure 7.
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c x and t-dependant. Propagation of bursting signals (2D)
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c x-dependant. Propagation of oscillatory signals (1D)

(a) Solution stationnaire (b) Bifurcation (c) Propagation d’ondes

Figure: Bifurcation from stationnary solution to wave propagation.
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c x-dependant. Propagation of oscillatory signals (1D)

(a) Solution stationnaire (b) Bifurcation (c) Propagation d’ondes

Figure: Bifurcation from stationnary solution to wave propagation.
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Networks: Synchronization of Patterns

Figure: Fully connected network. Case c(x) = 0.

See B. A., M A Aziz-Alaoui. V L E Phan, ”Large time behaviour and synchronization of complex networks of
reaction–diffusion systems of FitzHugh–Nagumo type” IMA JAM,84(2), (2019), 416-443
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Notations

We set
H = L2(0, 1)× L2(0, 1)

V = H1(0, 1)×H1(0, 1) where H1(0, 1) is the classical Sobolev space.

|| · || will denote the norm on H.
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A toy model

We consider {
ut = αu − u3 − v + uxx

vt = u
(5)

on the domain (0, 1) with Neumann Boundary conditions.
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Linearization around (0, 0)

Note first that (0, 0) is a constant solution of (5). The linearized
system around this point is given by:

{
ut = αu − v + uxx

vt = u
(6)

on the domain (0, 1) with Neumann Boundary conditions.
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Linearization around (0, 0)

Using the spectral decomposition, we can give a detailed and
comprehensive analysis of the qualitative behavior of (6).
Classically, we set:

ϕ0(x) = 1, and ∀k ∈ N∗ ϕk(x) =
√

2 cos(kπx).

We recall that the familly (ϕk)k∈N is an othornormal basis of L2,
and that the funcions ϕk satisfy:

−(ϕk)xx = λkϕk

and
(ϕk)x(0) = (ϕk)x(1) = 0,

with
λk = k2π2.
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Linearization around (0, 0)

Looking for solutions of the form,

u(t) =
∞∑
k=0

uk(t)ϕk , v(t) =
∞∑
k=0

vk(t)ϕk

leads by projection on the eigenspace generated by (ϕk , ϕk) to the
resolution of the two dimensional ODE systems indexed by k , and
denoted by Ek :

(Ek)

{
ukt = (αk − λk)uk − vk
vkt = uk

(7)
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Linearization around (0, 0)

The eigenvalues of matrix

Ak =

(
α− λk −1

1 0

)
are given by

σ1
k =

1

2

(
α−λk−

√
(α− λk)2 − 4

)
, σ2

k =
1

2

(
α−λk+

√
(α− λk)2 − 4

)
.

We summarize the remarkable properties of σ1
k and σ2

k in the
following proposition.

Proposition 1

When α crosses λk from left to right, σ1
k and σ2

k cross the
imaginary axis from left to right. Furthermore,

lim
k→+∞

σ1
k = −∞ and lim

k→+∞
σ2
k = 0−.
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Linearization around (0, 0)

Theorem 3 (Linearized System)

For α < 0, for any initial condition (u(·, 0), v(·, 0)) in H, we have

lim
t→+∞

||(u, v)(t)|| = 0.
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Linearization around (0, 0)

Theorem 4

Let k ∈ N∗. For α = λk , (0, 0) is a center for system Ek , a source
for El if l < k and a sink for El if l > k. Furthermore, if:
ul(0) = vl(0) = 0 for l ∈ {0, ..., k − 1} then

lim
t→+∞

||(u, v)(t)− ϕk(uk(t), vk(t))|| = 0.

Otherwise,
lim

t→+∞
||(u, v)(t)|| = +∞.
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Linearization around (0, 0)

Theorem 4 (part 2)

For λk < α < λk+1, (0, 0) is a source for El si l ≤ k and a sink for
El if l > k . Furthermore, if ul(0) = vl(0) = 0 for l ∈ {1, ..., k} then

lim
t→+∞

||(u, v)(t)|| = 0.

Otherwise
lim

t→+∞
||(u, v)(t)|| = +∞.
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Toy Model

Theorem 5 (Nonlinear System)

For α < 0, for any initial condition (u(·, 0), v(·, 0)) in H,

lim
t→+∞

||(u, v)(t)|| = 0.
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Proof

Lyapunov Function

LaSalle’s Principle
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Toy Model

Theorem 6

For 0 < α < λ1, if u(x) = −u(1− x) and v(x) = −v(1− x) then
for all IC in H

lim
t→+∞

||(u, v)(t)|| = 0
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Proof

Invariant Subspace

Lyapunov Function

LaSalle’s Principle
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Toy Model

Theorem 7

For 0 < α < λ1, there exists a sequence (µk)k∈N such that if

(uk(0), vk(0)) ∈ B(0, µk) ⊂ R2

then
lim

t→+∞
||(u(t)− u0(t), v(t)− v0(t))|| = 0,

where B(0, µk) is the ball of center (0, 0) and radius µk .
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Proof

Projection onto subspaces

Nonlinear terms bounded by:

C
∞∑
i=1

|ui |
∞∑
i=1

u2
i

Estimation on each subspace

Lyapunov function
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Asumptions on c(x)

We assume that the function c(x), depending on a parameter
p > 0, is regular and satisfies the following conditions:

c(x) ≤ 0 ∀x ∈ (−a, a), (8)

c(0) = 0, (9)

c ′(x) > 0 ∀x ∈ (−a, 0), c ′(x) < 0 ∀x ∈ (0, a), (10)

c ′(−a) = c ′(a) = 0, (11)

∀x ∈ (−a, a), x 6= 0, c(x) is a decreasing function of p, (12)

∀x ∈ (−a, a), x 6= 0, limp→0 c(x) = 0, (13)

∀x ∈ (−a, a), x 6= 0, limp→+∞ c(x) = −∞. (14)
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Typical example

Figure: Graph of c(x) for p = 5.
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Stationary solution

The stationary solution is given by{
v̄ = f (ū) + dūxx

ū = c(x)
(15)
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Linearized system

The linearized system around (ū, v̄) writes:{
εut = f ′(ū)u − v + duxx

vt = u
(16)
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Spectral analysis

We would like to proceed to projection on appropriate subspaces as
in previous sections. To that end, we are interested in solutions of
the following equation

f ′(c(x))u + duxx = λu (17)

with NBC. Note that equation (17) is a regular Sturm-Liouville
problem.
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Spectral analysis

Theorem 8

There exists an increasing sequence of real numbers (λn) and an
orthogonal basis (ϕ)n∈N of L2(−a, a) such that:

(dϕnxx + f ′(ū)ϕn = λnϕn

ϕ′n(−a) = ϕ′n(a) = 0.

Furthermore,
lim

n→+∞
λn = +∞,

λ0 = inf
u∈H2(−a,a),|u|L2(−a,a)=1

d

∫
(−a,a)

|ux |2dx −
∫

(−a,a)
f ′(c(x))u2dx .

and

λn =
π2n2

4a2
+ O(n)
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Spectral analysis

The projection on the kth subspace writes

(Ek)

{
εukt = −λkuk − vk
vkt = uk

(18)

while the eigenvalues are given by
σk1 = 1

2ε

(
− λk −

√
(λ2

k − 4ε

)
σk2 = 1

2ε

(
− λk +

√
λ2
k − 4ε

) (19)

56/60



Spectral analysis

Theorem 9

For each p, the number of eigenvalues with positive real part is
finite. For p small enough, σ0

1 and σ0
2 have a positive real part. For

p large enough, all the eigenvalues σk1 and σk2 have negative real
part. There is an Hopf Bifurcation: there exists a value p0 for
which as p crosses p0 from right to left, σ0

1 and σ0
2 are complex

and their real part increase from negative to positive. The other
eigenvalues remaining with negative real parts. Furthermore,

lim
k→+∞

σ1
k = −∞ and lim

k→+∞
σ2
k = 0−.

See: B. A.,”Hopf Bifurcation in an Oscillatory-Ecxitable
Reaction-Diffusion system with spatial heterogeneity”,
International Journal of Bifurcation and Chaos, 27(5), (2017)
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Stability

Theorem 10

For p > p0, there exists a sequence (µk)k∈N such that if

(uk(0), vk(0)) ∈ B(0, µk)

then
lim

t→+∞
||(u(t), v(t))|| = 0,

where B(0, µk) is the ball of center (0, 0) and radius µk .
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Stability

Theorem 11

There exists δ > 0 such that for p0 < p < p0 + δ, there exists a
sequence (µk)k∈N such that if

(uk(0), vk(0)) ∈ B(0, µk)

then
lim

t→+∞
||(u(t)− u0(t), v(t)− v0(t))|| = 0,

where B(0, µk) is the ball of center (0, 0) and radius µk .
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Thanks!
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