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The FitzZHugh-Nagumo (FHN) Reaction-Diffusion (RD)
system

eur = f(u)— v+ dug, (x,t) € Qx [0, +o0]
{ vi = u—c(x) (1)

whith f(u) = —u3 + 3u, € small, and Neumann Boundary
conditions (NBC). In the Neuroscience context, u represents a

potential, v a recovery variable and Q is a bounded domain in R?
or R.
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Outline

@ Background and history

© Patterns, Wave Propagations, Synchronization

© Qualitative analysis-Bifurcations
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Outline

@ Background and history
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Hodgkin and Huxley
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Hodgkin and Huxley

508 A. L. HODGKIN AND A. F. HUXLEY
From eqn. (6) this may be transformed into a form suitable for comparison
with the experimental results, i.e.

Ix={9x) —[(Ix=)t — (Ixo)*] exp (=170}, an
where gy is the value which the conductance finally attains and gy, is the
conductance at t=0. The smooth curves in Fig. 3 were caloulated from
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¥ig. 3. Riso of potasmium conductance associated with different depolarizations. The circles are

and chalinio sea water (seo Hodgkin & Huxley, 1952a). The smooth curves were drawn from
©an. (11) with gy =0-24 m.mho/om® and other parsmeters as shown in Tablo 1. The timo

applies to all records. The ordinate scale is the same in the upper ten curves (4 to J)
‘and is incroased fourfold in (K and ).
the depolarization in mV.
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Hodgkin-Huxley Reaction-Diffusion system

,

dv
dt

dn
dt

dm
dt

dh
dt

Vi + 1 — gnam3h(V — Ena) — 8xn*(V — Ek),

—8.(V — EL)

an(V)(L = 1) = Bo(V)n

am(V)(1 = m) = Bm(V)m

an(V)(1 = h) = Ba(V)h

A

2N
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o0

NOBEL PRIZE 1963

Fovo the Phgiabipion] Eabapatony, Uninersty of (oaboike
st 10 Mash 1952}

“ For their discoveries concerning the ionic mechanisms involved in
excitation and inhibition in the peripheral and central portions of
the nerve cell membrane.” See www.nobelprize.org.

"To this day their work stands as one of the best examples of how
scientists can use mathematics to provide insights into complicated
biological systems.” Nature Education-2010
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The Bonhoeffer-Van der Pol model (FitzZHugh-Nagumo
equations)

IMPULSES AND PHYSICTOGTCAT. STATES 1IN
THEGRETICATL MODELS OF NERVE MEMBRANE

TICHARD FITZIUGI
Froon she Natlonal Pesizater of Dealth, Bechesds

x = cly+x—%+72)
{yt = —(X—a+gy)/c (2)

with 1 —2b/3 < a,0 < b < 1, b < c?; z stimulus intensity, an
arbitrary function of t which can be a Dirac
(Original FitzHugh paper, p 447)
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FitzHugh (1961)

“The one to be described in the present paper considers the
HH as one member of a large class of non-linear systems

showing excitable and oscillatory behavior.”

This approach is, however, not so informative in explaining how trains of im-
pulses occur in the HH equations, where interactions between all four variables are

essential. Two other approaches to this problem, also based on pha:

are more useful. The one to be described in the present paper ¢
wadal.gg ope member of a large class of non-linear systems show

EEE and Bonhoeffer and Langhammer (1948) to cxplain the behavior of passx-

445
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Van der Pol (1926)

(After Liénard’s Transformation)

Xt = c(y—l—x—x—3—|—z)
{Yt = —x/c ’ G)
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Bonhoeffer (1948)

E
A % F B

Frc. 8. y diagtam for current densities barely above rheobase. Single activation.
Tig. 8 is obtained from Fig. 6 by raising the curves HF, and LMyFs. The notations
and the meaning of the lines are the same as in Fig. 6.

A F
Fi6. 9. #y diagram for higher current densities. Rhythmic activation. The
notation and the meaning of the lines are the same as in Fig. 6,
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FitzHugh-Nagumo equations
In 1962, Nagumo et al. provided the analog equivalent circuit.

o

I¢ F 9

H
C
W
—_— v ‘l’ W
tunnel L
diode
E

e

s

See:

Nagumo J., Arimoto S., and Yoshizawa S. (1962) An active pulse
transmission line simulating nerve axon. Proc. IRE. 50:2061-2070.
Now, the BVP model is called the FHN system,
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The FHN ODE system
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whith f(u) = —u® + 3u, € small.
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The FHN ODE system : excitable and oscillatory behavior

=

Figure: Solutions of system (4), for typical values of c.
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The FHN ODE system

Theorem 1

There exists a unique stationary point. If |c| > 1 the stationary
point is globally asymptotically stable, whereas if |c| <1, it is
unstable and there exists a unique limit-cycle which attracts all the
non constant trajectories. Furthermore, at |c| =1, there is a
supercritical Hopf bifurcation.

16/60



Outline

© Patterns, Wave Propagations, Synchronization

17/60



c=0;IC:Uniform law on [0,1]

Asymptotic homogeneous
space behavior for (1) (
u(x1,x2,0)). Initial
conditions: uniform law on
[0,1].

Asymptotic evolution of a
solution of (1) at some space
points. Red line: u(xi,xo, t)
for (x1,x2) = (50,50, t), for
time t € [180,200]. Red line:
(Xl,Xg) = (50, 100, t). Blue
line: [q u(x, t)dx.
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General case

Is there other solutions?
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c=0; IC:Specific
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Asymptotic non-homogeneous
space behavior of spiral type
for (1) ( u(x1, x2,190)).
Initial conditions:

(uo(x), vo(x) = (1,0) on Left
Top (LT) square, (0,1) on
RT, (0,—-1) on LB, (—1,0)
on RB.

Asymptotic evolution of a
solution of (1) at some space
points. Red line: u(x, xo, t)
for (x1,x2) = (50,50, t), for

time t € [180,200]. Green

line: (x1,x2) = (50 100, t).

Blue line: [, u(x, t)dx.
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Numerical simulations

-2
1 205

Asymptotic evolution of a
solution of (1) at some space
points. Green line: u(xy, x2, t)

for (x1,x2) = (50,50, t), for
time t € [180,200]. Red line:

(x1,x2) = (50,100, t). Blue

line: [q u(x, t)dx.

Asymptotic non-homogeneous
space behavior of four spiral
type for (1) ( u(x1, x2,190)).
Initial conditions: we
reproduce four times the
previous one with symmetry.

21/60



c=0;Invariant subspace

Theorem 2

Suppose that we can divide the domain into a partition

Q = (Uieqa,...n Ui) U (Uieqa,...;y Vi) such that there exists a
diffeomorphism ¢ that maps each U; to V;, i € {1,...,1}, with
|det Jy| =1, where Jy is the jacobian of ¢ and initial conditions
such that for all x € Ujeqy,. n Ui and for all t € RT,

(u(o(x), t), v(p(x),t)) = —(u(x,t), v(x,t)) then the solution of
(1) cannot evolve asymptotically around (i, v).

v

See: B. A., M.A. Aziz-Alaoui, Basin of Attraction of Solutions with
Pattern Formation in Slow—Fast Reaction—Diffusion Systems Acta
Biotheoretica 64 (4), (2016), 311-325.
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c=0; IC:Uniform law on [-1,1]
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Asymptotic evolution of a
solution of (1) at some space
points. Red line: u(xy, x2, t)
for (x1,x2) = (50,50, t), for
time t € [180,200]. Green
line: (x1,x2) = (50,100, t).
Blue line: [, u(x, t)dx.

Asymptotic non-homogeneous
space behavior of multiple
spiral type for (1) (
u(x1,x2,0)). Initial
conditions: uniform law on
[—1,1].

23/60



c x-dependant. Propagation of oscillatory signals

Is the system (1) able to generate oscillatory signals and to
propagate it?
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c x-dependant. Propagation of oscillatory signals

Is the system (1) able to generate oscillatory signals and to
propagate it?

Yes, the idea being:

“ Oscillatory signal initiates at some point and propagates along
excitatory tissue thanks to diffusion.”
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c x-dependant. Propagation of oscillatory signals

We will consider functions such that:

@ c¢(x) < —1 for x close to the border, (Excitatory dynamics for
the ODE system)

@ c¢(x) =0 for x close to the center, (Oscillatory dynamics for
the ODE system)
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¢ x-dependant. Propag

ation of oscillatory signals (2D)
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1870 B. Ambrosio and J.
(@ 00 090
w0 "0
® o
0 120
i 30
©
Figure 1. Solutions for $=0 ~13 and (a)

o
(o o 330,508 uict ). () Evolution o stnt
evolution of the variable u for a central cell and
cell and =13

@

1o -i

©

Figure 2. Solutions for 3=001, o=

15,
(€) (,0)(50,50, ) (solid line). (a) Evolution o stat
(b) evolution of the variable u for a central cell and «
central cell and oy = —1.195,

Phit. Trans. R. Soc. A (2000)

(@) ute,y,50),

-P. Frangoise

® 9

P
(

150 (B) 460,50, eolid line) and
fonary solution for &= —1.3 and ¢ =50;
3

e (e evetation of (o, 0 for » entond

;S0 Wo 10 w0 o

(B) 030,50, (solid line) and
fonary solution for ¢ 195 and ¢=50;
1195; and (c) evolution of (u, v) for &

26/60



¢ x-dependant. Propagation of oscillatory signals

(2D)

Downloaded from hitp:/rsta.royalsocietypublishing.org/ on July 2, 2015

Propagation of bursting oscillations
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¢ x-dependant. Propagation of oscillatory signals (2D)

Downloaded from hitp:/rsta.royalsocietypublishing.org/ on July 2, 2015
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Figure 5. Solutions for L19. (a) (e, p,50), (B) u(r,y,62), () u(50,50,1)
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(b) Numerical simulations of system (4.1) and propagation of the
bursting oscillations

'l'ln» ame result is observed numerically: there is a threshold such that, if the

ty cq is below the threshold, the solution evolves to a stationary solution.

IFit 15 above, there s a propagation of the bursting oscillations. The number of

Phit. Trans. R. Soc. A (2000)
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¢ x-dependant. Propagation of oscillatory signals (2D)

Downloaded from hitp:/rsta.royalsocietypublishing.org/ on July 2, 2015

Propagation of bursting oscillations

@

1873

D
» ©
20 0 ] 20
15 I
I 0
o o
0s “ o5
10 10
15 15
a0 [HTEEEERTVTEE VY 20
o s w1 a0 20 b w15 20 250
@ ©
28 30
is \ 20
10 \ 15 \
s I \
voo \ v o \
03 \ 05
10 \
1o
15 15 )
2 1 o | 2 o | 2
Figure 6. Solutions for §=001, o= (a) . y,55). (50,50,0) (solid line), (c)

u(51,50,0) (solid line)

(d) (1,0)(30,50, ) (solicd line) and (¢) (u,v)(51,50,1) (solid line). (a)

Solution for e = —1.15 and £=55; (b) evolution of the variable  for 4 contral coll and c
115 (¢) evolution of the variable u for a non-central cell and o =—1.15; (d) evolution
(u,0) for a central cell and =115 and (¢) evolution of (u,v) for a contral cell
and @ = ~1.15

spikes increases as y — 0 and/or as ¢ — —1
0.

values u(0,
seen in figure 7.
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¢ x and t-dependant. Propagation of bursting signals (2D)

Downloaded from hitp:firsta royalsocletypublishing.org! on July 2, 2015
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Figure 7. Solutions of the system (1.1), for p =0.05 and e= —1,05. () iz, v 25, (b) w50,50, 1)
(red line), wiG1.50, ) (green line) and w(99,50, ) (blue line) and (c) u(r.19,1) (red line)
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¢ x-dependant. Propagation of oscillatory signals (1D)

(a) Solution stationnaire (b) Bifurcation (C) Propagation d'ondes

Figure: Bifurcation from stationnary solution to wave propagation.
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¢ x-dependant. Propagation of oscillatory signals (1D)

(a) Solution stationnaire (b) Bifurcation (C) Propagation d'ondes

Figure: Bifurcation from stationnary solution to wave propagation.
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Networks: Synchronization of Patterns

—

Y
B =
b

Figure: Fully connected network. Case c(x) = 0.

See B. A., M A Aziz-Alaoui. V L E Phan, "Large time behaviour and synchronization of complex networks of
reaction—diffusion systems of FitzHugh—Nagumo type” IMA JAM,84(2), (2019), 416-443
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Outline

© Qualitative analysis-Bifurcations
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Notations

We set
H = [%(0,1) x L%(0,1)

V = H(0,1)x H'(0,1) where H(0,1) is the classical Sobolev space.

|| - || will denote the norm on H.
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A toy model

We consider
u = au-—u3

Ve = U

— V4 Uy

on the domain (0,1) with Neumann Boundary conditions.
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Linearization around (0, 0)

Note first that (0,0) is a constant solution of (5). The linearized
system around this point is given by:

{ut = QU —V 4+ Ux (6)

Ve = u

on the domain (0, 1) with Neumann Boundary conditions.
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Linearization around (0, 0)

Using the spectral decomposition, we can give a detailed and
comprehensive analysis of the qualitative behavior of (6).
Classically, we set:

wo(x) =1, and Yk € N* g, (x) = V2 cos(kmx).

We recall that the familly (ox)xen is an othornormal basis of 12,
and that the funcions ¢ satisfy:

_(@k)xx - AkSOk

and
(2x)x(0) = (px)x(1) = 0,
with
A\ = k72
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Linearization around (0, 0)

Looking for solutions of the form,

o0 o0

u(t) = Z uk(t)ew, v(t) = Z Vie(t) Pk

k=0 k=0

leads by projection on the eigenspace generated by (¢k, ¢k) to the
resolution of the two dimensional ODE systems indexed by k, and
denoted by Ej:

(Ek){ ue = (o — Mi)uk — vk (7)

Vkt = Uk
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Linearization around (0, 0)
The eigenvalues of matrix
o a—)\k -1
= (U3 9)
are given by
1

1
of = > <a—)\k— (0 — k)% — 4), 0% = > (a—)\k+ (v — Ne)? — 4>.
We summarize the remarkable properties of 0,1( and az in the
following proposition.
Proposition 1
When « crosses )\, from left to right, 0,1( and O'i cross the

imaginary axis from left to right. Furthermore,

lim o} = —oco and lim o7 =0".
k——+o00 k—+o00
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Linearization around (0, 0)

Theorem 3 (Linearized System)
For oo < 0, for any initial condition (u(-,0), v(-,0)) in H, we have

lim ||(u, v)(t)|| = 0.

t—+00

41/60



Linearization around (0, 0)

Theorem 4

Let k € N*. For o = A, (0,0) is a center for system Ey, a source
for E; if | < k and a sink for E; if | > k. Furthermore, if:
ui(0) = vy(0) =0 for I € {0, ..., k — 1} then

lim |[(u, v)(t) — @r(un(t), vie(1))[| = 0.

t——+o00

Otherwise,
lim ||(u, v)(t)|| = +oo.

t——+00
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Linearization around (0, 0)

Theorem 4 (part 2)

For Ak < a < Ak41, (0,0) is a source for E; si | < k and a sink for
E; if I > k. Furthermore, if u;(0) = v(0) = 0 for [ € {1, ..., k} then

lim ||(u, v)(t)|] =0.

t—+00

Otherwise
lim [|(u, v)(t)|| = +oo.

t—+400
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Toy Model

Theorem 5 (Nonlinear System)
For oo < 0, for any initial condition (u(-,0), v(-,0)) in H,

lim ||(u, v)(t)|| = 0.

t—+00
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Proof

@ Lyapunov Function

@ LaSalle’s Principle

45/60



Toy Model

Theorem 6
For0 < oo < A1, if u(x) = —u(1 — x) and v(x) = —v(1 — x) then
for all IC in H

lim {[(u, v)(2)[| = 0

t—+400
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Proof

@ Invariant Subspace
@ Lyapunov Function

@ LaSalle’s Principle
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Toy Model

Theorem 7

For 0 < av < A1, there exists a sequence (k)ken such that if
(uk(0), v (0)) € B(0, ju)) C R?
then

lim [|(u(t) — wo(t), v(t) = wo(t))l] = O,

t—+400

where B(0, j1x) is the ball of center (0,0) and radius ji.
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Proof

@ Projection onto subspaces
@ Nonlinear terms bounded by:
oo 0o
C Z |ujl Z u?
i=1 i=1
@ Estimation on each subspace
@ Lyapunov function
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Asumptions on c(x)

We assume that the function c¢(x), depending on a parameter
p > 0, is regular and satisfies the following conditions:

c(x) <0 Vx € (—a, a), (8)
c(0) =0, 9)
d(x) >0 Vxe(—a,0),c(x) <0Vx e (0,a), (10)
¢(~a) = (a) = 0, (11)
Vx € (—a,a),x #0, c(x) is a decreasing function of p, (12)
Vx € (—a,a),x #0, limp_0 c(x) =0, (13)
Vx € (—a,a),x #0, limp— 400 c(x) = —00. (14)
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Typical example

-1 05 0 05 1
X

Figure: Graph of ¢(x) for p = 5.

51/60



Stationary solution

The stationary solution is given by

{

= f(0) + di
~ o(x) (15)

cl <l
|

52/60



Linearized system

The linearized system around (1, v) writes:

€Uy f(T)u — v + duxy (16)
Ve = U
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Spectral analysis

We would like to proceed to projection on appropriate subspaces as
in previous sections. To that end, we are interested in solutions of
the following equation

f'(c(x))u+ dux = Au (17)

with NBC. Note that equation (17) is a regular Sturm-Liouville
problem.
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Spectral analysis

Theorem 8

There exists an increasing sequence of real numbers (\,) and an
orthogonal basis ()nen of L2(—a, a) such that:

(dSanx+fl(u) ©n = An®n
pn(—a) = ¢p(a) = 0.

Furthermore,
lim X\, = +o0,
n—-+o00
Ao = inf d |uX|2dx—/ f'(c(x))u?dx.
“€H2(_373)7‘“|L2(,a,a):1 (—a,a) —a,a)
and
202

An = + O(n)

43 442
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Spectral analysis

The projection on the kth subspace writes

u = —AUg—V
(Ek){€kt kUk k

Vkt = Uk

while the eigenvalues are given by

of = % —)\k—\/(/\,%—éle)
of = 2% —)\k+w/)\i—4€>

(18)

(19)
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Spectral analysis

Theorem 9

For each p, the number of eigenvalues with positive real part is
finite. For p small enough, a? and 08 have a positive real part. For
p large enough, all the eigenvalues a{‘ and 05 have negative real
part. There is an Hopf Bifurcation: there exists a value pg for
which as p crosses py from right to left, a? and 08 are complex
and their real part increase from negative to positive. The other
eigenvalues remaining with negative real parts. Furthermore,

lim o} = —oco and lim o7 =0".
k—+o00 k—+00

See: B. A.,"Hopf Bifurcation in an Oscillatory-Ecxitable
Reaction-Diffusion system with spatial heterogeneity”,
International Journal of Bifurcation and Chaos, 27(5), (2017)
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Stability

Theorem 10

For p > po, there exists a sequence 1k )ken such that if
(uk(0), vi(0)) € B(0, k)
then

lim {[(u(t), v(t))I] = O,

t—+-00

where B(0, j1x) is the ball of center (0,0) and radius ji.
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Stability

Theorem 11

There exists 6 > 0 such that for pg < p < po + 0§, there exists a
sequence (fux)ken such that if

(uk(0), v(0)) € B(0, 11k)

then

lim [|(u(t) = wo(t), v(t) — vo(2))I| = O,

t—+00

where B(0, 1ux) is the ball of center (0,0) and radius ju.
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Thanks!
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