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The Plan

• Sonia Kovalevsky

• The problem: perturbations in quantum computing

• Four slides on quantum computing

• The adiabatic theorem and variants

• Applications

• Conclusions
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Sonia Kovalevsky (1850-1891)

• 19th century Russian mathematician.

• First woman in Europe to earn a doc-
torate in mathematics (1874, University
of Göttengen, under direction of Weier-
strass).

• “S. Kovalevsky” awarded the Prix Bor-
din of the French Academy of Sciences in
1888 “On the Problem of the Rotation of
a Solid Body about a Fixed Point.”

“... in this work not only the power of an expansive and profound mind,
but also a great spirit of invention.”
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• Summa cum laude dissertation in three parts:

– “Towards a Theory of Partial Differential Equations”.
Cauchy-Kovalevsky Theorem is at the foundation
of most graduate courses in partial differential
equations. First existence theorem for second order linear
PDE’s in one-dependent and n independent variables.

– “Supplements and Remarks to Laplace’s Investigation of the Form of
Saturn’s Rings”.

– “On the Reduction of a Class of Abelian Integrals of the Third Rank
to Elliptic Integrals”.

• Before doctorate: largely self-taught or tutored, since she was excluded
from most (all-male) classes. Needed a “marriage of convenience” in
order to travel.

• After doctorate: could not find employment in mathematics, so she
turned to writing.
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• Doctorate: 1874

• During periods of mathematical unemployment, wrote
newspaper articles, poetry, criticisms, and a novel,
mostly centered on the theme of women’s rights.

• Finally received an academic position at Stockholm
in 1883, lecturing on differential equations.

• Prix Bordin of the French Academy of Sciences: 1888

• First woman Corresponding Member of the Russian Academy of
Sciences (1889), but still could not get a job in Russia.

• Died of flu/pneumonia in Sweden in 1891 at age 41.

• The Kovalevsakya crater on the Moon is named in her honour.

• Various confusing spellings of her name.

“Sofia Kovalevskaya,” Wikipedia
“Sonya Kovalevsky,” http://scidiv.bcc.ctc.edu/Math/Kovalevsky.html
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Perturbation analysis of adiabatic quantum computing
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Wilkinson and Schrödinger’s cat

• Jim Wilkinson made fundamental contributions to understanding the
effects of perturbations on floating-point computation.

• Erwin Schrödinger laid the foundations for understanding quantum
phenomena, and I use his (imaginary) cat to symbolize that work.

So what is the effect of perturbations on quantum computing?
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Four slides on quantum computing
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The main idea

Suppose we want to perform a computation that has 2p possible answers.

Example: For a (scrambled) list of the numbers 0 to 2p − 1, find the index
of the item whose value is a given number.

Two models have been proposed for computing using quantum systems:

• Gated systems,

• Adiabatic systems.

The key: In both models, we need only p quantum entities (ions, photons,
etc.), not the 2p entities needed for an exhaustive search in conventional
computing.

We only consider adiabatic quantum computing in this talk.
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Adiabatic systems:

The idea resembles that behind continuation (homotopy) methods.

• Start with an “easy” Hermitian operator H(0) with a known smallest
eigenvalue and corresponding ground-state eigenvector.

• “Evolve” the system very slowly to end with the “desired” operator
H(1), with ground-state eigenvector ψ(1), so that the absolute values
of the components of ψ(1) are large if the index corresponds to a
correct answer and small otherwise.

• Sample the indices, with these probabilities, to determine the correct
answer.

• Key: Until sampling, the system can be regarded as being in a
superposition containing all 2p possible outcomes, with the assigned
probabilities.
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Schrödinger’s thought experiment

http://universe-review.ca
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Schrödinger’s thought experiment

What happens if the atom is in a superposition of states?

http://universe-review.ca

13



Wilkinson-style perturbation results
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Wilkinson-style perturbation results for quantum computing?

???
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Even if you don’t “believe” in quantum computing ...

.. the Adiabatic Theorem also gives insight into the behavior of quantum
mechanical systems such as

• superconductors,

• superfluids,

• radiation of black bodies,

• electron orbits.

So the Adiabatic Theorem is at least as important today as it was when
first formulated by Born and Fock (1928).
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The adiabatic theorem and variants
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The setup

• Schrödinger’s equation: U(s) is a 2p × 2p unitary operator satisfying

U̇(s) = −iτH(s)U(s) .

• A twice-continuously differentiable Hamiltonian evolution H(s)
parameterized by s ∈ [0, 1].

• An evolution time τ , so that the Hamiltonian at time t is H(t/τ ).

• H(s) with countable eigenstates {ψj(s)} and eigenvalues
λ0(s) ≤ λ1(s)..., and a subset of distinguished eigenstates

Ψ(s) = span {ψm(s), ...,ψn(s)} ,

• The projector P(s) onto Ψ(s)
and Q(s) = I−P(s) onto the complement of Ψ(s).
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The error in the adiabatic approximation

The adiabatic approximation says that if you start a system in its
groundstate and evolve it slowly enough, the system remains in its
groundstate. It is an informal statement of the adiabatic theorem.

We apply P(0) to obtain the component of the initial state contained in
Ψ(0), evolve it forward in time by applying U(s), and then apply
Q(s) = I−P(s) to compute the component of the state outside Ψ(s).
Therefore, the error operator is

Q(s)U(s)P(0).

Formulating the error operator allows a formal statement of the theorem.
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The Adiabatic Theorem

U̇(s) = −iτH(s)U(s),
∣

∣

∣

∣Ḣ(s)
∣

∣

∣

∣ ≤ b1(s),
∣

∣

∣

∣Ḧ(s)
∣

∣

∣

∣ ≤ b2(s),

γ(s) = min{λn+1(s) − λn(s), λm(s) − λm−1(s)} > 0,

w(s) = λn(s) − λm(s),

D(s) = 1 +
2w(s)

πγ(s)
.

Then

||Q(s)U(s)P(0)|| ≤
8D2(0)b1(0)

τγ2(0)
+

8D2(s)b1(s)

τγ2(s)

+

∫ s

r=0

8D2(r)

τγ2(r)

(

8(1 + D(r))b2
1(r)

γ(r)
+ b2(r)

)

dr .
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∣Ḣ(s)
∣

∣

∣

∣ ≤ b1(s),
∣

∣

∣
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∣Ḧ(s)
∣

∣

∣

∣ ≤ b2(s),

γ(s) = min{λn+1(s) − λn(s), λm(s) − λm−1(s)} > 0,

w(s) = λn(s) − λm(s),

D(s) = 1 +
2w(s)

πγ(s)
.

Then

||Q(s)U(s)P(0)|| ≤
8D2(0)b1(0)

τγ2(0)
+

8D2(s)b1(s)

τγ2(s)

+

∫ s

r=0

8D2(r)

τγ2(r)

(

8(1 + D(r))b2
1(r)

γ(r)
+ b2(r)

)

dr .

24



Background

Original result: Born and Fock (1928).

Our version: closely related to that of Reichardt (2004),
which is based on that by Avron, Seiler, and Yaffe (1987).

Our contribution:

• Explicit definitions of constants, so it can make quantitative predictions
for specific physical systems.

• An integral formulation, for tighter bounds when the energy gap is
widely varying.

• Formulation for subspaces rather than just a nondegenerate
groundstate. (But for simplicity, the remaining slides consider a single
nondegenerate groundstate: (m = n = 0) and s = 1.)

• Four variants that give insight into various physical systems.
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Four variants of the theorem

• What happens if the initial state is perturbed from its ideal value?

ψ0(0) → φ(0) = η (ψ0(0) + δψ⊥)

• What happens if there is a perturbation to the Hamiltonian on a
different time-scale?

H(s) → Hτ(s) = H(s) + Hnoise(sτ )

• What happens if there is a smooth perturbation to the Hamiltonian?

H(s) → Hε(s)

• What happens if there is coupling between the Hamiltonian and the
external world?

H(s) → Hε(s) = H(s) ⊗ I + I⊗Henv + ε∆(s)
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Theorem: Perturbation in the initial state

Let the initial state be

φ(0) = η (ψ0(0) + δψ⊥) .

Let
∣

∣

∣

∣Ḣ(s)
∣

∣

∣

∣ ≤ b1(s) ≤ b̄1,
∣

∣

∣

∣Ḧ(s)
∣

∣

∣

∣ ≤ b2(s) ≤ b̄2

γ̄ ≤ γ(s).

Then

||Q(1)U(1)φ(0)|| ≤ |η|

(

|δ| +
8

τ γ̄2

(

2b̄1 + b̄2 +
16b̄2

1

γ̄

))

.
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Theorem: Hamiltonian evolutions on two time scales

Hτ(s) = H(s) + Hnoise(sτ )

Assume
∣

∣

∣

∣Ḣ(s)
∣

∣

∣

∣ ≤ b1

∣

∣

∣

∣Ḣnoise(t)
∣
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∣ ≤ d1
∣
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∣Ḧ(s)
∣
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∣ ≤ b2

∣
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∣Ḧnoise(t)
∣

∣

∣

∣ ≤ d2
√

1 − |〈ψ0(0),φ0(0)〉|2 = δ0

√

1 − |〈ψ0(1),φ0(1)〉|2 = δ1 ,

where φ0(s) is the ground state of Hτ(s) and ψ0(s) is the ground state of
H(s). Further assume that 0 < γ̄ ≤ γτ(s) for all s and τ .

Then ||Q(1)Uτ(1)P(0)|| is bounded by

8

γ̄2

[(

d2 +
16d2

1

γ̄

)

τ + 2d1

(

1 +
16b1

γ̄

)

+

(

2b1 + b2 +
16b2

1

γ̄

)

1

τ

]

+ δ0 + δ1 + δ0δ1 .
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Some practicalities

Hτ(s) = H(s) + Hnoise(sτ ), ∆(t) = ‖Hnoise(sτ )‖.

When it is inconvenient to compute δ0 =
√

1 − |〈ψ0(0),φ0(0)〉|2, it can

be bounded using the “sin(Θ) theorem” and the Bauer-Fike theorem:

δ0 ≤
∆(0)

γ(0) − ∆(0)
,

where γ(0) is the energy gap of the unperturbed Hamiltonian H(0).

Similar results hold for δ1.
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Applications
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Spin-1/2 particle in a rotating magnetic field
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Tong, Singh, Kwek, and Oh (2005) presented an example of a Hamiltonian
evolution for which the adiabatic approximation performs poorly. The
Hamiltonian is for a spin-1/2 particle in a rotating magnetic field. Our
theorem correctly predicts and bounds this failure.
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A superconducting flux qubit
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Superconducting Flux Qubit

Error bound with noise
Error bound without noise
Simulations without noise

Simulations with noise

Orlando, Mooij, Tian, van der Wall, Levitov, Lloyd, and Mazo (1999)
proposed using flux in a superconductor for quantum computing. Our
theorem provides guidance as to how much noise can be tolerated and how
slowly the evolution can occur.
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Conclusions

• We provide rigorous bounds for the adiabatic approximation under four
sources of experimental error:

– perturbations in the initial state,

– perturbations on a different time-scale,

– smooth perturbations to the Hamiltonian,

– coupling to the external world.

• The results give a perturbation theory for quantum computing analogous
in some sense to that of Wilkinson for floating-point computing.

• We applied the results to a spin-1/2 particle in a rotating magnetic field
and the superconducting flux qubit proposed by Orlando et al.
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Michael J. O’Hara and Dianne P. O’Leary,
“The Adiabatic Theorem in the Presence
of Noise,” Physical Review A, 77 (2008)
042319, 20 pages. Chosen for Virtual Jour-

nal of Applications of Superconductivity and
Virtual Journal of Quantum Information.

We can continue to
look for opportunities for
cross-disciplinary results in
mathematics and physics.

May Sonia Kovalevsky’s
struggles inspire us to

dismantle artificial
barriers to mathematics

study and research.
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Theorem: Smooth error in the Hamiltonian

H(s) → Hε(s)

Suppose
∣

∣

∣

∣Ḣε(s)
∣

∣

∣

∣ ≤ b̄1,
∣

∣

∣

∣Ḧε(s)
∣

∣

∣

∣ ≤ b̄2,
√

1 − |〈ψ0(0),φ0(0)|〉2 = δ0,
√

1 − |〈ψ0(1),φ0(1)|〉2 = δ1 ,

where ψ0(s) is the ground state of Hε(s) and φ0(s) is the ground state of
H(s). If γ̄ε > 0, then

||Q(1)Uε(1)P(0)|| ≤
8

τ γ̄2
ε

(

2b̄1 + b̄2 +
16b̄2

1

γ̄ε

)

+ δ0 + δ1 + δ0δ1 .
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Theorem: Couplings to the environment

Hε(s) = H(s) ⊗ I + I⊗Henv + ε∆(s)

||Henv|| + 2ε ||∆(s)|| ≤ w < γ̄ ,

where γ̄ is the minimum energy gap between the ground state and first
excited state of H(s), and that the ground state of Henv has zero energy.
Let

∣

∣

∣

∣Ḣε(s)
∣

∣

∣

∣ ≤ b̄1 ,
∣

∣

∣

∣Ḧε(s)
∣

∣

∣

∣ ≤ b̄2 ,

δ0 =
ε ||∆(0)||

γ̄ − ||Henv|| − ε ||∆(0)||
, δ1 =

ε ||∆(1)||

γ̄ − ||Henv|| − ε ||∆(1)||
,

γ̄ε =

{

γ̄ − w : ε > 0
γ̄ : ε = 0

, D̄ =

{

1 + 2w
πγ̄ε

: ε > 0

1 : ε = 0
.

Then

||(Q(1) ⊗ I) Uε(1) (P(0) ⊗ I)|| ≤
8D̄2

τ γ̄2
ε

(

2b̄1 +
8(1 + D̄)b̄2

1

γ̄ε
+ b̄2

)

+ δ0 + δ1 + δ0δ1 .
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