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Mathematical Problem

b — Axtme + g

where
b € R" - observed data
X:ue € R - desired solution
A = R™" - models the forward processes
e € R" - noise, statistical properties may be known

Goal: Given b and A, compute approximation of X,
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Application: Image Deblurring

@ Given: Blurred image, b, and
some information about the
blurring, A

@ Goal: Compute approximation of
true image, Xue
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An llI-Posed Inverse Problem

True image: x Blurred & noisy image: b

Forward Problem ;

:
//

Qerse Problem
|

Hybrid LSMR Chung and Palmer



g |
Choosing Regularization Parameter A

@ Discrepancy principle:  ||(I — AA])b||2 < §
@ Generalized cross validation - Golub, Heath and Wahba (1979)

nl|(1— AA])b|3
2
[trace(l — AA:‘\)]

Gap(A) =

@ Unbiased predictive risk estimator (UPRE) - mallow (1973), Giryes, Elad,
Eldar (2011)

1 2 20'2 t 2
Uap(A) = - |b — AX, |5 + Ttrace(AAA) —o°.
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lterative Regularization

1

—LSQR
0.9
Apply standard iterative : 08
method to least squares g”
problem, miny ||AX — b||2, and o
terminate early 05
04
0-30 20 20 60 30 e

lteration 6 lteration 28 lteration 44

Hybrid LSMR Chung and Palmer



e N BN .. o2l
Previous Work on Hybrid Methods

Regularization embedded in iterative method:

O’Leary and Simmons, SISSC, 1981.
Bjorck, BIT 1988.

Bjorck, Grimme, and Van Dooren, BIT, 1994.
Larsen, PhD Thesis, 1998.

Hanke, BIT 2001.

Kilmer and O’Leary, SIMAX, 2001.

Kilmer, Hansen, Espanol, 2006.

Bazan, Borges, 2010.

Renaut, Hnétynkova, Mead, 2010.

Use iterative method to solve regularized problem:
@ Golub, Von Matt, Numer. Math.,1991.
@ Calvetti, Golub, Reichel, BIT, 1999.
@ Frommer, Maass SISC, 1999.
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lterative Regularization
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LSQR Projected Problem

After k steps of GK bidiagonalization, LSQR projected problem:
in ||AX —b||2 = min||Bxy — U..,b
L8 | |2 min |[Bxy — U4 |P:

= N ||Byy — f84]lo

where X, = V,y

Remarks:

@ lll-posed problem = B, may be very ill-conditioned.
@ B, is much smaller than A
@ Standard techniques (e.g. GCV) to find A and stopping point
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LSQR vs LSMR for lll-posed Problems
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Remarks:

@ LSQR and LSMR converge to the same solution
@ LSMR exhibits delayed semiconvergence
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Interlacing Property

@ letB=P (ﬁ) Q' be SVD, with sing. vals. sy > ... > s, > 0
@ Eigenvaluesof B'B: s?, i =1,.. ., k

@ Matrix o
B'B=Q'(5°S*+ 3,1qkqx )Q

where qy is the kth column of Q

@ Using a theorem from Bunch, Nielsen and Sorensen (1978), we
get interlacing property:

k<8 <...<s5< % <5<

where 54, .. .. Sk are sing. vals. of B

@ In summary, singular values of B approximate the squares of the
largest and smallest singular values of A
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Hybrid LSMR as a Krylov subspace projection
method

Theorem

Fix A\ > 0. Letyy be the exact solution to the regularized subproblem,

: N e
IBkY—,51e1H2+f\ IYllz

Yk = argmin
y

where By, Vy are derived from the original problem. Then the kth
iterate of hybrid LSMR, Xx = VkYk, solves the following problem

2
min HATAx - ATbH + 2|2 .
xcKx(ATAATD) 2
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o R e LSMR exhibits delayed
. semiconvergence
::Lsg'zLSOR—om .
L @ hybrid methods use
o _ optimal regularization
Lz
T B s : parameter here
i @ hybrid LSMR can
i produce lower relative
e errors, especially for
o.st —— hybnd LSMR_opt]] ‘ i
T high noise levels
o\ ‘! 0.4
b =o.35}

Hybrid LSMR Chung and Palmer




10%

5%

1%

mlalveernr

045 = R AL )
0.4 - - - v
= 20 40 a0 a0 100
ftemthons

——— L SMA

— by brid LSMR-opt

va hybrid LESMR-DP

- == hybrid LSMR-_GCV

vmme hybrid LSMR-UPRE
hybrid LSOR-WGCV]]

SO TS S T —
L A —c -

—— S —— - —
- -
— -

—— L S
— by brid LSMB-opt
v hybrid LSMR-DP
= m=hybrnd LESMR-GCV |
tmme hybrid LSMRB-UPRE

hybrid LSQR-WGCV ||

T i ey

...........

tomnons
—LSMR
0.7 —hybrid LSMR—opt
wint hybrid LSMR-DP
= = mhybrid LSMR-GCV
0.5 e m hybrid LSMB-UPRE ||
= hybrid LSQR-WGCV
® oSt
-
=
® 0a
03

Hybrid LSMR

Comparison of
Regularization Parameter
Selection Methods

@ For DP and UPRE,
noise variance
estimated using
highest frequency of
wavelet transform of b

e hybrid-LSQR using
Weighted-GCV

(WGCV) provided for
comparison
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Reconstructed Images (5% Noise)

True image hybrid LSQR-WGCYV (40)

“optimal” LSMR (31) hybrid LSMR-GCV (37) hybrid LSMR-UPRE (28)
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