A Hybrid LSMR Algorithm for Large-Scale Tikhonov Regularization

Julianne Chung* Katrina Palmer†

*Department of Mathematics, Virginia Tech

[†]Department of Mathematical Sciences, Appalachian State University

SIAM Applied Linear Algebra Conference October 29, 2015

Mathematical Problem

$$\mathbf{b} = \mathbf{A}\mathbf{x}_{\text{true}} + \varepsilon$$

where

 $\mathbf{b} \in \mathbb{R}^n$ - observed data

 $\mathbf{x}_{\mathrm{true}} \in \mathbb{R}^n$ - desired solution

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ - models the forward processes

 $arepsilon \in \mathbb{R}^n$ - noise, statistical properties may be known

Goal: Given b and A, compute approximation of x_{true}

Application: Image Deblurring

- Given: Blurred image, b, and some information about the blurring, A
- Goal: Compute approximation of true image, x_{true}

An III-Posed Inverse Problem

Choosing Regularization Parameter λ

- Discrepancy principle: $||(\mathbf{I} \mathbf{A} \mathbf{A}_{\lambda}^{\dagger}) \mathbf{b}||_2 < \delta$
- Generalized cross validation Golub, Heath and Wahba (1979)

$$G_{\mathbf{A},\mathbf{b}}(\lambda) = \frac{n\|(\mathbf{I} - \mathbf{A}\mathbf{A}_{\lambda}^{\dagger})\mathbf{b}\|_{2}^{2}}{\left[\operatorname{trace}(\mathbf{I} - \mathbf{A}\mathbf{A}_{\lambda}^{\dagger})\right]^{2}}$$

Unbiased predictive risk estimator (UPRE) - Mallow (1973), Giryes, Elad,
Eldar (2011)

$$U_{\mathbf{A},\mathbf{b}}(\lambda) = \frac{1}{n} \|\mathbf{b} - \mathbf{A}\mathbf{x}_{\lambda}\|_{2}^{2} + \frac{2\sigma^{2}}{n} \operatorname{trace}(\mathbf{A}\mathbf{A}_{\lambda}^{\dagger}) - \sigma^{2}.$$

Iterative Regularization

Apply standard iterative method to least squares problem, $\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2$, and terminate early

Iteration 6

Iteration 28

Iteration 44

Previous Work on Hybrid Methods

Regularization embedded in iterative method:

- O'Leary and Simmons, SISSC, 1981.
- Björck, BIT 1988.
- Björck, Grimme, and Van Dooren, BIT, 1994.
- Larsen, PhD Thesis, 1998.
- Hanke, BIT 2001.
- Kilmer and O'Leary, SIMAX, 2001.
- Kilmer, Hansen, Espanol, 2006.
- Bazan, Borges, 2010.
- Renaut, Hnětynková, Mead, 2010.

Use iterative method to solve regularized problem:

- Golub, Von Matt, Numer. Math., 1991.
- Calvetti, Golub, Reichel, BIT, 1999.
- Frommer, Maass SISC, 1999.

Iterative Regularization

Apply standard iterative method to least squares problem, $\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2$, and terminate early

Iteration 6

Iteration 28

Iteration 44

LSQR Projected Problem

After k steps of GK bidiagonalization, LSQR projected problem:

$$\min_{\mathbf{x} \in R(\mathbf{V}_k)} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2 = \min_{\mathbf{y}} ||\mathbf{B}_k \mathbf{y} - \mathbf{U}_{k+1}^{\top} \mathbf{b}||_2$$
$$= \min_{\mathbf{y}} ||\mathbf{B}_k \mathbf{y} - \beta \mathbf{e}_1||_2$$

where $\mathbf{x}_k = \mathbf{V}_k \mathbf{y}$

Remarks:

- Ill-posed problem ⇒ B_k may be very ill-conditioned.
- B_k is much smaller than A
- Standard techniques (e.g. GCV) to find λ and stopping point

LSQR vs LSMR for III-posed Problems

Remarks:

- LSQR and LSMR converge to the same solution
- LSMR exhibits delayed semiconvergence

Interlacing Property

- Let $\mathbf{B} = \mathbf{P} \begin{pmatrix} \mathbf{S} \\ \mathbf{0} \end{pmatrix} \mathbf{Q}^{\top}$ be SVD, with sing. vals. $s_1 \geq \ldots \geq s_k > 0$
- Eigenvalues of $\mathbf{B}^{\top}\mathbf{B}$: s_i^2 , i = 1, ..., k
- Matrix

$$\hat{\mathbf{B}}^{\top}\hat{\mathbf{B}} = \mathbf{Q}^{\top}(\mathbf{S}^{2}\mathbf{S}^{2} + \bar{\beta}_{k+1}^{2}\mathbf{q}_{k}\mathbf{q}_{k}^{\top})\mathbf{Q}$$

where \mathbf{q}_k is the kth column of \mathbf{Q}

 Using a theorem from Bunch, Nielsen and Sorensen (1978), we get interlacing property:

$$s_k^2 \le \hat{s}_k \le \ldots \le s_2^2 \le \hat{s}_2 \le s_1^2 \le \hat{s}_1$$

where $\hat{s}_1, \dots, \hat{s}_k$ are sing. vals. of $\hat{\mathbf{B}}$

 In summary, singular values of B approximate the squares of the largest and smallest singular values of A

Hybrid LSMR

Hybrid LSMR as a Krylov subspace projection method

Theorem

Fix $\lambda \geq 0$. Let \mathbf{y}_k be the exact solution to the regularized subproblem,

$$\mathbf{y}_{k} = \underset{\mathbf{y}}{\operatorname{arg\,min}} \left\| \hat{\mathbf{B}}_{k} \mathbf{y} - \bar{\beta}_{1} \mathbf{e}_{1} \right\|_{2}^{2} + \lambda^{2} \left\| \mathbf{y} \right\|_{2}^{2},$$

where $\hat{\mathbf{B}}_k$, \mathbf{V}_k are derived from the original problem. Then the kth iterate of hybrid LSMR, $\mathbf{x}_k = \mathbf{V}_k \mathbf{y}_k$, solves the following problem

$$\min_{\mathbf{x} \in \mathcal{K}_k(\mathbf{A}^{\top}\mathbf{A}, \mathbf{A}^{\top}\mathbf{b})} \left\| \mathbf{A}^{\top}\mathbf{A}\mathbf{x} - \mathbf{A}^{\top}\mathbf{b} \right\|_2^2 + \lambda^2 \left\| \mathbf{x} \right\|_2^2.$$

LSQR vs LSMR

- LSMR exhibits delayed semiconvergence
- hybrid methods use optimal regularization parameter here
- hybrid LSMR can produce lower relative errors, especially for high noise levels

Comparison of Regularization Parameter Selection Methods

- For DP and UPRE, noise variance estimated using highest frequency of wavelet transform of b
- hybrid-LSQR using Weighted-GCV (WGCV) provided for comparison

Reconstructed Images (5% Noise)

True image

hybrid LSQR-WGCV (40)

"optimal" LSMR (31)

hybrid LSMR-GCV (37)

hybrid LSMR-UPRE (28)