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What Could We Do with Layered Structures with
Just the Right Layers?

— Richard Feynman, 1959, “There’s Plenty of Room at the Bottom”

Stacking different functional layers Different growth and
assembly methods

Superconductors gty
Magnetic Mat.
Ferroelectrics
Insulators
Semiconductors

Conductors



Atomically Thin Semiconductors: TMD

MoS, bilayer MoS, monolayer
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Quasiparticles in TMDC
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« Reduced dielectric screening leads to large binding energy of excitons (X), trions (T), and biexcitons
(XX)

 Binding energy is 10-100 X larger than GaAs-based compound semiconductors
» Relevant to room-temperature optoelectronic device operation

« Large dipoles: Ultrafast dynamics and CQED



« Background:
—moiré potential
—different types of excitons and selection rules

* Excitons tunable by twist angles
— Resonance
— Lifetimes
— Diffusion

 Separating the generation of moiré potential from the functional layer

« Ultrafast spectroscopy and its application in compound semiconductor metrology
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__Rotationally Aligned MoS,/WSe, bilayers

Simulation

CVD grown MoS,/WSe,
Science Advances 3, 1601459 (2017)



2D electronic superlattices
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Interlayer excitons confined in a Moiré potential
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Ground State and Excited Excitons in a Moiré potential -
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’ Ground State and Excited Excitons in a Moiré potential -
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Ground State and Excited Excitons in a Moiré potential -
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Angle Dependent Interlayer Exciton Lifetimes
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CVD vs. stacked samples
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CVD vs. 1 degree samples
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Exciton diffusion depends on twist angle, excitation density....

Other experiments: Kis, Xiaoyang Zhu, Libai Huang, Chernikov...
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Take home message

 Different types of excitons and selection rules in moiré
superlattice

« Excitons tunable by twist angles
— Resonance
— Lifetimes
— Diffusion



A recent development in moiré engineering
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Twisted hBN imposes a universal potential
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Controlling exciton diffusion

pump probe
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Spectroscopy for semiconductor metrology
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Nonlinear optical microscope — wafer-size compound semiconductor

* Transition absorption imaging
* Coherent Raman spectroscopy imaging
* Multi-dimensional four-wave-mixing imaging

(b)

https://monstrsense.com

Figure 1: (a) Pump-probe image of a 6" SiC wafer (b) Surface triangle defect (c) Carrot defect (d) Doping
variations and crystallographic defects (e) Microclusters of localized defects.

2-inch GaAs multiple
guantum well imaging



Calculated lattice reconstruction PFM image of a MoS2 bilayer
0° : 108°

local strain Iocl stacking

C-)-"v"‘ relaxed
:

Nature 590, 405-409 (2021);
twisted graphene bilayers
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