
Compressed Sensing
Greedy Algorithms

Greedy Algorithms in Compressed Sensing

Jeff Blanchard

Minitutorial: Compressed Sensing/Dimension Reduction
SIAM Annual Meeting 2017, Pittsburgh, July 14, 2017

Jeff Blanchard Greedy Algorithms



Compressed Sensing
Greedy Algorithms

The Problem
Recovery Algorithms

Compressed Sensing

Measure and recover a s-sparse vector with an m× n matrix:

The problem is characterized by three parameters: s < m < n

n, the signal length;
m, number of (inner product) measurements;
s, the sparsity of the signal.

The sampling/sensing matrix A is of size m× n.

The signal f ∈ Rn is s-sparse in some sense, f = Dx with
‖x‖0 = s.

We’ll simplify a few things by assuming D = I so that f = x.
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Compressed Sensing

Measure and recover a s-sparse vector with an m× n matrix:

The problem is characterized by three parameters: s < m < n

n, the signal length;
m, number of (inner product) measurements;
s, the sparsity of the signal.

The sampling/sensing matrix A is of size m× n.

The signal x ∈ Rn is s-sparse, ‖x‖0 = s.

The samples/measurements y ∈ Rm where y = Ax.

y A= A
x
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Recovery Algorithms

Convex Relaxations

Replace the combinatorial optimization problem with its convex envelop.

Compressed Sensing: `1-minimization

min
z∈Rn

‖z‖1 subject to Ax = y = Az

Matrix Completion: nuclear norm minimization

min
Z∈Rm×n

‖Z‖∗ subject to A(X) = y = A(Z)

(where ‖ · ‖∗ is the `1 norm of the singular values)

Many algorithms to solve these optimization problems.
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Greedy Algorithms

Directly solve the combinatorial optimization problem by iteratively
searching for the correct low dimensional model.

Basic: OMP, Hard Thresholding

Iterative Hard Thresholding: IHT, NIHT (Blumensath & Davies),
CGIHT (B., Tanner, Wei)

Two Stage Pursuits:

CoSaMP: Compressive Sampling Matching Pursuit (Needell &
Tropp)
SP: Subspace Pursuit (Dai & Milenkovic)
HTP: Hard Thresholding Pursuit (Foucart, Maleki, Blumensath)

These all have sufficient conditions for guaranteed uniform recovery.

These all have variants for row-sparse approximation.

These all have variants for matrix completion.

Jeff Blanchard Greedy Algorithms



Compressed Sensing
Greedy Algorithms

The Problem
Recovery Algorithms

Greedy Algorithms

Directly solve the combinatorial optimization problem by iteratively
searching for the correct low dimensional model.

Basic: OMP, Hard Thresholding

Iterative Hard Thresholding: IHT, NIHT (Blumensath & Davies),
CGIHT (B., Tanner, Wei)

Two Stage Pursuits:

CoSaMP: Compressive Sampling Matching Pursuit (Needell &
Tropp)
SP: Subspace Pursuit (Dai & Milenkovic)
HTP: Hard Thresholding Pursuit (Foucart, Maleki, Blumensath)

These all have sufficient conditions for guaranteed uniform recovery.

These all have variants for row-sparse approximation.

These all have variants for matrix completion.

Jeff Blanchard Greedy Algorithms



Compressed Sensing
Greedy Algorithms

The Problem
Recovery Algorithms

Greedy Algorithms

Directly solve the combinatorial optimization problem by iteratively
searching for the correct low dimensional model.

Basic: OMP, Hard Thresholding

Iterative Hard Thresholding: IHT, NIHT (Blumensath & Davies),
CGIHT (B., Tanner, Wei)

Two Stage Pursuits:

CoSaMP: Compressive Sampling Matching Pursuit (Needell &
Tropp)
SP: Subspace Pursuit (Dai & Milenkovic)
HTP: Hard Thresholding Pursuit (Foucart, Maleki, Blumensath)

These all have sufficient conditions for guaranteed uniform recovery.

These all have variants for row-sparse approximation.

These all have variants for matrix completion.

Jeff Blanchard Greedy Algorithms



Compressed Sensing
Greedy Algorithms

The Problem
Recovery Algorithms

Greedy Algorithms

Directly solve the combinatorial optimization problem by iteratively
searching for the correct low dimensional model.

Basic: OMP, Hard Thresholding

Iterative Hard Thresholding: IHT, NIHT (Blumensath & Davies),
CGIHT (B., Tanner, Wei)

Two Stage Pursuits:

CoSaMP: Compressive Sampling Matching Pursuit (Needell &
Tropp)
SP: Subspace Pursuit (Dai & Milenkovic)
HTP: Hard Thresholding Pursuit (Foucart, Maleki, Blumensath)

These all have sufficient conditions for guaranteed uniform recovery.

These all have variants for row-sparse approximation.

These all have variants for matrix completion.

Jeff Blanchard Greedy Algorithms



Compressed Sensing
Greedy Algorithms

The Problem
Recovery Algorithms

Greedy Algorithms

Directly solve the combinatorial optimization problem by iteratively
searching for the correct low dimensional model.

Basic: OMP, Hard Thresholding

Iterative Hard Thresholding: IHT, NIHT (Blumensath & Davies),
CGIHT (B., Tanner, Wei)

Two Stage Pursuits:

CoSaMP: Compressive Sampling Matching Pursuit (Needell &
Tropp)
SP: Subspace Pursuit (Dai & Milenkovic)
HTP: Hard Thresholding Pursuit (Foucart, Maleki, Blumensath)

These all have sufficient conditions for guaranteed uniform recovery.

These all have variants for row-sparse approximation.

These all have variants for matrix completion.

Jeff Blanchard Greedy Algorithms



Compressed Sensing
Greedy Algorithms

Basic Algorithms
Iterative Hard Thresholding
CGIHT
Empirical Results

OMP

Greedy Algorithm to iteratively build the support set one index at a time.

Previous Iteration

xj−1 a s-sparse approximation

Tj−1 the support of xj−1

Current Iteration

rj = A∗(y −Axj−1) the residual

ij = arg max (|rj |) column index with greatest correlation to the
residual

Tj = Tj−1 ∪ {ij} updated approximate support set

xj = arg min
supp(z)⊂Tj

‖y −Az‖2 optimal approximation supported on Tj
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Hard Thresholding: As an algorithm

Select the approximation support all at once and project.

T = PrincipalSupports(A∗y) the support set of the s largest
magnitude entries in A∗y
x = arg min

supp(z)⊂T
‖y −Az‖2 optimal approximation supported on T and

zeros all other entries.
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Hard Thresholding: As an initialization

The remaining algorithms all initialize with a hard threshold.

T = PrincipalSupports(A∗y) the support set of the s largest
magnitude entries in A∗y
x = Threshold(A∗y, T ) optimal approximation supported on T and
zeros all other entries.
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IHT

A gradient descent with evolving support.

Previous Iteration

xj−1 a s-sparse approximation

Current Iteration

rj = A∗(y −Axj−1) the steepest descent direction

wj = xj−1 + rj an updated approximation (not sparse)

Tj = PrincipalSupports(wj) the support set of the s largest
magnitude entries in wj

xj = Threshold(wj , Tj) retains the values on Tj and zeros all other
entries (hard thresholding)
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NIHT

A subspace restricted steepest descent with evolving support.

Previous Iteration

xj−1 a s-sparse approximation

Current Iteration

rj = A∗(y −Axj−1) the steepest descent direction

αj a near optimal step size

wj = xj−1 + αjrj an updated approximation (not sparse)

Tj = PrincipalSupports(wj) the support set of the s largest
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HTP

A variant replacing thresholding with an optimal approximation.

Previous Iteration

xj−1 a s-sparse approximation

Current Iteration

rj = A∗(y −Axj−1) the steepest descent direction

αj a near optimal step size

wj = xj−1 + αjrj an updated approximation (not sparse)

Tj = PrincipalSupports(wj)the support set of the s largest
magnitude entries in wj

xj = arg min
supp(z)⊂Tj

‖y −Az‖2 optimal approximation supported on Tj
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CoSaMP

A different, two-stage approach.

Previous Iteration

xj−1 a s-sparse approximation

Tj−1 the support set of xj−1

Current Iteration

rj = A∗(y −Axj−1) the steepest descent direction

Ωj = PrincipalSupports(rj) ∪ Tj−1 intermediate expanded
subspace

wj = arg min
supp(z)⊂Ωj

‖y −Az‖2 optimal approximation supported on Ωj

Tj = PrincipalSupports(wj) the support set of the s largest
magnitude entries in wj

xj = Threshold(wj , Tj) retains the values on Tj and zeros all other
entries (hard thresholding)

Jeff Blanchard Greedy Algorithms



Compressed Sensing
Greedy Algorithms

Basic Algorithms
Iterative Hard Thresholding
CGIHT
Empirical Results

CoSaMP

A different, two-stage approach.

Previous Iteration

xj−1 a s-sparse approximation

Tj−1 the support set of xj−1

Current Iteration

rj = A∗(y −Axj−1) the steepest descent direction

Ωj = PrincipalSupports(rj) ∪ Tj−1 intermediate expanded
subspace

wj = arg min
supp(z)⊂Ωj

‖y −Az‖2 optimal approximation supported on Ωj

Tj = PrincipalSupports(wj) the support set of the s largest
magnitude entries in wj

xj = Threshold(wj , Tj) retains the values on Tj and zeros all other
entries (hard thresholding)

Jeff Blanchard Greedy Algorithms



Compressed Sensing
Greedy Algorithms

Basic Algorithms
Iterative Hard Thresholding
CGIHT
Empirical Results

CoSaMP

A different, two-stage approach.

Previous Iteration

xj−1 a s-sparse approximation

Tj−1 the support set of xj−1

Current Iteration

rj = A∗(y −Axj−1) the steepest descent direction

Ωj = PrincipalSupports(rj) ∪ Tj−1 intermediate expanded
subspace

wj = arg min
supp(z)⊂Ωj

‖y −Az‖2 optimal approximation supported on Ωj

Tj = PrincipalSupports(wj) the support set of the s largest
magnitude entries in wj

xj = Threshold(wj , Tj) retains the values on Tj and zeros all other
entries (hard thresholding)

Jeff Blanchard Greedy Algorithms



Compressed Sensing
Greedy Algorithms

Basic Algorithms
Iterative Hard Thresholding
CGIHT
Empirical Results

CoSaMP

A different, two-stage approach.

Previous Iteration

xj−1 a s-sparse approximation

Tj−1 the support set of xj−1

Current Iteration

rj = A∗(y −Axj−1) the steepest descent direction

Ωj = PrincipalSupports(rj) ∪ Tj−1 intermediate expanded
subspace

wj = arg min
supp(z)⊂Ωj

‖y −Az‖2 optimal approximation supported on Ωj

Tj = PrincipalSupports(wj) the support set of the s largest
magnitude entries in wj

xj = Threshold(wj , Tj) retains the values on Tj and zeros all other
entries (hard thresholding)

Jeff Blanchard Greedy Algorithms



Compressed Sensing
Greedy Algorithms

Basic Algorithms
Iterative Hard Thresholding
CGIHT
Empirical Results

Performance Comparisons: recovery phase transitions
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Performance Comparisons: algorithm selection maps
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Algorithm selection map for (N,B) with n = 214
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What did we learn?

Why is NIHT ever faster than HTP or CSMPSP?

NIHT finds the correct support with less computational expenditure.
When the support is correct, HTP and CSMPSP have highly
advantageous convergence rates.
When the support is incorrect, the CG projection incorporates
unnecessary computation.

Can we combine the advantages of all the algorithms into one
algorithm?
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NIHT

A subspace restricted steepest descent with evolving support.

Previous Iteration

xj−1 a k-sparse approximation

Current Iteration

rj = A∗(y −Axj−1) the steepest descent direction

αj a near optimal step size

wj = xj−1 + αjrj an updated approximation (not sparse)

Tj = PrincipalSupports(wj) the support set of the k largest
magnitude entries in wj

xj = Threshold(wj , Tj) retains the values on Tj and zeros all other
entries (hard thresholding)
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CGIHT

A subspace restricted conjugate gradient search with evolving support.

Previous Iteration

xj−1 a k-sparse approximation

pj−1 the previous search direction

Current Iteration

rj = A∗(y −Axj−1) the steepest descent direction

βj a conjugate orthogonalization weight

pj = rj + βjpj−1 a conjugate search direction

αj a near optimal step size

wj = xj−1 + αjpj an updated approximation (not sparse)

Tj = PrincipalSupports(wj) the support set of the k largest
magnitude entries in wj

xj = Threshold(wj , Tj) retains the values on Tj and zeros all other
entries (hard thresholding)
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Performance Comparisons: recovery phase transitions

Compressed Sensing
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Left: y = Ax. Right: y = Ax+ e with ‖e‖2 = ε‖y‖2.
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Performance Comparisons: recovery phase transitions
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Performance Comparisons: recovery phase transitions

Row Sparse Approximation
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Left: Y = AX. Right: Y = AX + E with ‖E‖F = ε‖Y ‖F .
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Performance Comparisons: algorithm selection maps
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Algorithm selection map for (N,B), n = 210, r = 10
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Performance Comparisons: matrix completion

Matrix Completion
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Recovery phase transition for (E,N)
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y = A(X) with A entry sensing. Left: recovery phase transitions. Right: average

recovery time.
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GAGA

GAGA: GPU Accelerated Greedy Algorithms
for Compressed Sensing

with Jared Tanner (Oxford)
www.gaga4cs.org

Fast GPU implementations of greedy algorithms executed from
Matlab.
DCT, Sparse, Dense sensing matrices.
Several random vector ensembles.
NIHT, HTP, CSMPSP, CGIHT, . . .
Solve problems up to 220 in fractions of a second.
(40×−60× acceleration)
Robust testing suite.
Freely available for research.
Extension to matrix completion in progress.
Requires CUDA capable NVIDIA GPU.
Does NOT require parallel processing toolbox.
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