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Traveling Waves

Traveling waves are solutions of
(Evo) ur=F(u), xe€R,t>0,u(xt)eR", (Fnonlin PDO)

of the form

(TW) u(x,t) = ve(x — pst) =:0,(&), vy : profile, u. : velocity.

Examples:
m Reaction-Diffusion equations F(u) = Auyy + g(u),
a Semilinear hyperbolic equations F(u) = Cuy + g(u),

Coupled hyperbolic-parabolic systems, including Reaction-Diffusion
equations with non-invertible A
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Traveling Wave - Boundary Value Problem AT

Karlsruhe Institute of

Typically: v, and u, unknown.
Inserting (TW) into (Evo) leads to BVP

Traveling wave equation
0= 9:('0*) + UaOsx o — A-qug + UxUsg +H(U*>“

glﬂ 04 (8) = Vst

(BVPq)
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Traveling Wave - Boundary Value Problem AT

Typically: v, and u, unknown.
Inserting (TW) into (Evo) leads to BVP

Traveling wave equation

0 =F(vx) + Malsx  » = AVsz + Huluz + g(01)"

glﬂ 04 (8) = Vst

(BVPq)

Problem: How to find a good initial guess for the BVP-solver?
Solution: Direct forward simulation by Freezing method introduced by
Beyn&Thimmler 2004 yields both:

Approximations of v, and p,.
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Freezing in a Nutshell Q(IT

(Evo) u =), xeRt>0,u(xt)eR",
Idea: Separate evolution of the profile from evolution of its position:

Freezing ansatz
u(x, t) =v(x—y(t),t) = v(C 1),
v(-,t): ,profile at time ¢
v(f): ,position at time ¢
(

Plug into (Evo): u; = F(u)
Freezing system

U = F(‘U) + Y10
(FR1)
new degree of freedom
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Freezing in a Nutshell Q(IT

(Evo) u =), xeRt>0,u(xt)eR",
Idea: Separate evolution of the profile from evolution of its position:

Freezing ansatz
u(x, t) =v(x—y(t),t) = v(C 1),
v(-,t): ,profile at time ¢
v(f): ,position at time ¢
(

Plug into (Evo): u; = F(u)
Freezing system

(= P(U) aF Hor
(FRy) =4
0= ®(v,u), phase condition.
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Plan for Today ﬂ(“.

Karlsruhe Institute of

m Extend to 2nd order equations:
(DW) Muy = Autyy + f(u, ux, 1), x€R, >0, u(x,t) € R™

Theorem on stability of traveling waves for (DW)
The freezing System
Indicate some key ideas in the proof

Not today: For generalizations to multi-d and more general relative
equilibria see Wolf-Jirgen Beyn’s talk from Tuesday
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m K.P. Hadeler 1988, relating TWs of damped wave equations to those
of parabolic equations

T. Gallay and G. Raugel 1997, stability in the scalar case
T. Gallay and R. Joly 2009, global stability in the scalar case

M. Grillakis and J. Shatah and W. Strauss, 1987/1990 orbital stability
in the undamped (Hamiltonian) case

a S. Dieckmann 2017, Freezing method in the Hamiltonian case
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Traveling Waves in 2nd Order Equations

(DW) Muy = Aty + f (1, 1y, Ug)
considered the co-moving frame

u(x,t) = v(x — put, t) = v(é,t)
becomes

(DW¢o) Moy = (A — y*zM)vgg + 2uMog; + f (0, v, v — POz ).
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Traveling Waves in 2nd Order Equations AT

(DW) Muy = Aty + f (1, 1y, Ug)
considered the co-moving frame

u(x,t) = v(x — put, t) = v(é,t)
becomes
(DW¢o) Moy = (A — ‘u*zM)ng + 21 Mog; + f (v, vg, v — pag).
A traveling wave (time-independent profile v(&, t) = v, (&)) satisfies
Traveling wave equation

0= (A — wEM)vszz + f(0n, Vug, — pa0s).-
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FitzHugh-Nagumo Wave Example | IT

An observation of Hadeler 1988 can be used to show:

_ 1,3
ULy UL = Ulyx T U] — U] — U

(FHN-W)
€Uy + Uy = Vilp vy + 0.08(111 + 0.7 — 0.8u2)

with ¢ = 0.01 and v = 0.1056 has a traveling pulse solution, traveling with

velocity p, ~ —0.7868.
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Structural Assumptions ﬂ(“'

(DWco) MUtt = (A — y*zM)Ugé’ + ZH*MU@ +f(U, Ug, O — F*Ug)

m f € C3(R¥,R™)
m M invertible, M—1A positive diagonalizable
® (v, 4y) € € x R, TW-solution with v,z € H*(R,R™) \ {0},

(BVP,) 0= (A= M)z +f (04, 0xg, —pe0s),
0+(8) — v+, vxg(§) =0, as & — £oo, f(v,0,0) =0,

® (A —u,2M) is invertible

May 25,2017 Jens Rottmann-Matthes - Stability of Waves in Second Order Evolution Equations KIT, CRC 1173



Spectral Assumptions ﬂ(“'

(DWco) Moy = (A — y*ZM)vgg + 2uMuog + f (v, v, vF — UxVF)

linearization about steady state v,, (abbreviate f, = f(vx, Vag, —HsVsg))

(DWiin)  P(9t,9z)v = Moy — (A — p*M)vgz — 2. Mog;+
(M*D3f* - sz*)vg - D3f*7)t - le*v =0,

1 May 25,2017 Jens Rottmann-Matthes - Stability of Waves in Second Order Evolution Equations KIT, CRC 1173
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Spectral Assumptions ﬂ(“'

(DWco) Moy = (A — y*ZM)vgg + 2uMuog + f (v, v, vF — UxVF)
linearization about steady state v,, (abbreviate f, = f(vx, Vag, —HsVsg))
(DWiin)  P(9t,9z)v = Moy — (A — p*M)vgz — 2. Mog;+

(,U*D3f* - sz*)vg - D3f*vt - le*v =0,

ansatz (¢, t) = eMw(&) (Laplace transform) yields
Quadratic Eigenvalue Problem

P(A,dg)w = (A2Py + AP1(9z) + Po(9z))w =0, P(A,d) : H> — L?

Note: P(A,d¢) depends on ¢!
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Spectral Assumptions ﬂ(“'

(DWco) Moy = (A — y*ZM)vgg + 2uMuog + f (v, v, vF — UxVF)
linearization about steady state v,, (abbreviate f, = f(vx, Vag, —HsVsg))
(DWiin)  P(9t,9z)v = Moy — (A — p>M)vgz — 2. Mog;+

(‘u*Dg,f* - DQf*)‘Ug - D3f*vt - le*U == 0,

ansatz (¢, t) = eMw(&) (Laplace transform) yields
Quadratic Eigenvalue Problem

P(A,dg)w = (A*Py + AP1(9z) + Po(9z))w =0, P(A,d) : H> — L?

Note: P(A,d¢) depends on ¢!
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Spectral Assumptions ﬂ(“'

(DWco) Moy = (A — p>M)vge + 2uMog + f (v, vz, 0 — pavg)
linearization about steady state v,, (abbreviate f, = f(vx, Vag, —HsVsg))
(DWiin)  P(9t,9z)v = Moy — (A — p>M)vge — 2. Mog;+

(‘u*D3f* - DQf*)‘Ug - D3f*vt - le*U == 0,

ansatz (¢, t) = eMw(&) (Laplace transform) yields
Quadratic Eigenvalue Problem

P(A,dg)w = (A2Py + APy (9z) +Po(9z))w =0, P(A,d) : H> — L?

Note: P(A,d¢) depends on ¢!
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Spectral Assumptions ﬂ(“'

(DWco) Moy = (A — y*ZM)vgg + 2uMuog + f (v, v, vF — UxVF)
linearization about steady state v,, (abbreviate f, = f(vx, Vag, —HsVsg))
(DWiin)  P(9t,9z)v = Moy — (A — 1> M)vge — 2, Mog;+

(]/{*Daf* - sz*)”()(;r - D3f*vt - D]f*i) == 0,

ansatz (¢, t) = eMw(&) (Laplace transform) yields
Quadratic Eigenvalue Problem

P(A,dg)w = (A2Py + AP1(9z) + Po(9z))w =0, P(A,d¢) : H> — L?

Note: P(A,d¢) depends on ¢!
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Spectral Assumptions ﬂ(“'

Quadratic Eigenvalue Problem

P(A,dg)w = (A2Py + AP1(9z) +Po(9g))w =0, P(A,d) : H> — L?
Thereis é > 0, s.t.
® opt(P(+,97)) N{Re A > —4} = {0} and 0 is simple eigenvalue

N(P(0,0¢)) = span {v,s} and P1ov,s & R(P(0,0¢)), furthermore
N(P(A,0¢)) # {0}, ReA > —4 implies A = 0
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Spectral Assumptions ﬂ(“'

Quadratic Eigenvalue Problem

P(A,dg)w = (A2Py + AP1(9z) +Po(9g))w =0, P(A,d) : H> — L?
Thereis é > 0, s.t.
® opt(P(+,97)) N{Re A > —4} = {0} and 0 is simple eigenvalue

N(P(0,0¢)) = span {v,s} and P1ov,s & R(P(0,0¢)), furthermore

N(P(A,0¢)) # {0}, ReA > —4 implies A = 0
m Dispersion set of P to the left of —¢

Re 0gisp(P) = Re {A € C : detP=(),iw) =0, w € R} =
Re {A € C: det(\2M + APf (iw) + P§ (i) = 0,w € R} < —6

12 May 25,2017 Jens Rottmann-Matthes - Stability of Waves in Second Order Evolution Equations KIT, CRC 1173



FitzZHugh-Nagumo Wave Example Il AT

Spectral set ogisp (Prrn):
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Stability with Asymptotic Phase AT

Theorem (Beyn, Otten, RM 17)

Structural + Spectral Assumptions.
Then: Y0 < <4 Jp > 0, s.t. the Cauchy problem

Muy = Autgy + f (U, tix, ug),  u(-,0) =ug, u(-,0) =10y
with data uy € v, + H3, vy € H?, satisfying
[0 — Vsl + oo + Hxvselle < p,
has a unique global solution u € v, + ﬂjz:O €27/ ([0, 00); H) =: vx + CH?2.
Moreover, there are ¢ = ¢oo (g, v9) and C = C(n,p), S.t.
|Peo| < C(lluo — vl + oo + pavsz i),

(- £) = 0 (- = it = @oo) |2 + [ (/1) + pavsg (- — put — Poo) ||
= C(”uO - Z)*||H3 + HUO + ,”*U*,;‘HHZ)E_W, YVt > 0.
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Freezing Method for 2nd Order Equations

E:E;)Vr:glder Muy = Aty + f (1, 1y, )

Ansatz as before: u(x, t) = v(x — y(t),t) =: v(¢, 1)
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Freezing Method for 2nd Order Equations AT

EJDoVr:glder Muy = Aty + f (1, 1y, 1y

Ansatz as before: u(x, t) = v(x — y(t),t) =: v(¢, 1)

Freezing system for 2nd order evolution equations
Moy = (A— 1*M)vgz + 27t Mog; + yuMo + f (0, vg, 0t — 110z)

(FR2)
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Freezing Method for 2nd Order Equations AT

EJDoVr:glder Muy = Aty + f (1, 1y, 1y

Ansatz as before: u(x, t) = v(x — y(t),t) =: v(¢, 1)
Freezing system for 2nd order evolution equations

Moy = (A—p1> M) vgz + 21 Mog; + po Mo + f (v, vz, v —p10z)
(FRy) ¢ 117 H

Hit = M2
0 = (v —7,7¢) phase condition, 7 template
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Freezing Method for 2nd Order Equations

?Svrxider Muy = Aty + f (11, 10, uz)
u(x,0) = ug(x), u(x,0)=1vg(x).

Ansatz as before: u(x, t) = v(x — y(t),t) =: v(¢, 1)

Freezing system for 2nd order evolution equations

Moy = (A—yle) vz + 2u1Mog + po Mo + f (v, vg, v — p10¢)

(FRy) ¢ 117 H
M1t = K2
0 = (v —7,7¢) phase condition, 7 template
Consistent initial data:
I)’(O) =0, 7](', O) = Uy, Ut('ro) =179+ "1 (O)M()’x,

n1(0) = m 1(0) = ...

(Init)

May 25,2017 Jens Rottmann-Matthes - Stability of Waves in Second Order Evolution Equations

KIT, CRC 1173
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FitzZHugh-Nagumo Wave Example Il

Result of the freezing method, applied to the FHN-Wave system
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FitzHugh-Nagumo Wave Example Il

Karlsruhe Institute of Technology

Result of the freezing method, applied to the FHN-Wave system
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Lyapunov Stability for Freezing Method AT

Theorem (Beyn, Otten, RM 17)

Structural + Spectral Assumptions + the template v € v, + H'
satisfies, (vx. —0,0g) = 0, (vsg,0g) # 0.
Then: Y0 < n < & 3p > 0, s.t. for all ug € v, + H>, vy € H? with

[0 = vullps + lloo + pavsellz <
and consistent p1(0), u2(0), s.t. (ug — ,0z) = 0 holds:
The freezing system (FRy) has a unique global solution (v, 1, 2, 7v),

U E v+ CH?, uyp € CL pup €€,y € C2.
Moreover, 3C = C(p, 1) > 0, s.t.

[0/ 8) = vallgz + ot ()l + [ (8) = pis]
< C(lluo — vullys + oo + pevscll)e™, vt > 0.

17 May 25,2017 Jens Rottmann-Matthes - Stability of Waves in Second Order Evolution Equations KIT, CRC 1173



Outline
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Transforming 2nd Order Systems to 1st Order Systems
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Result for First Order Hyperbolic Balance Laws [T

Theorem (RM 12)
If the first order Cauchy problem

U; = EU, +F(U), x€R,t>0, Uxt) € R,
u(-,0) = U

satisfies the structural and spectral Assumptions.
Then: Y0 < n < 6 3pp > 0, s.t. (HYP) has for all Uy € V, + H? with

(HYP)

Uo = Vil < po

a unique global solution U € V., + N}_o € ([0,c0); H/) =: V, + CH'.
Moreover, there are ¢ = ¢o(Uy) and C = C(1,p0), S-t.

|@eo| < Cl[Up — V|2
[U(-, t) = V(- — it — @) ||lgp < C||Up — Vii||p2e™ ", Wt > 0.

May 25,2017 Jens Rottmann-Matthes - Stability of Waves in Second Order Evolution Equations KIT, CRC 1173



The Assumptions ﬂ(“'
(HYP) Uy = EU,y + F(U), x€R,t>0, Uxt) R

Structural assumptions
@ E is real diagonalizable

Spectral assumptions: There is § > 0 s.t.

20 May 25,2017 Jens Rottmann-Matthes - Stability of Waves in Second Order Evolution Equations KIT, CRC 1173



The Assumptions ﬂ(“'
(HYP) Uy = EU,y + F(U), x€R,t>0, Uxt) R

Structural assumptions
@ E is real diagonalizable

Q Fec (R,R)

Spectral assumptions: There is 6 > 0 s.t.
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The Assumptions ﬂ(".

Karlsruhe Institute of

(HYP) Uy = EU,y + F(U), x€R,t>0, Uxt) R

Structural assumptions
@ E is real diagonalizable

Q Fec (R,R)
Q exists (V. ) TW solution U(x, t) = Vi (x — put), Vi € €}, Ve € H?

Spectral assumptions: There is § > 0 s.t.

May 25,2017 Jens Rottmann-Matthes - Stability of Waves in Second Order Evolution Equations KIT, CRC 1173



The Assumptions ﬂ(".

(HYP) Uy = EU,y + F(U), x€R,t>0, Uxt) R
(HYPjin) P(01,05)V =V — (E4+ uI)Ve = Z(5)V =0

Structural assumptions
@ E is real diagonalizable

Q Fec (R,R)
Q exists (V,, i) TW solution U(x, t) = Vi(x — put), Vi € €}, Viz € H?
Q Z(&) := DF(Vi(§)) = Z+, Z/(&) — 0,88 & — %o

Spectral assumptions: There is § > 0 s.t.

20 May 25,2017 Jens Rottmann-Matthes - Stability of Waves in Second Order Evolution Equations KIT, CRC 1173



The Assumptions ﬂ(".

(HYP) Uy = EU,y + F(U), x€R,t>0, Uxt) R

(HYPjin) Pi(0, ag)V =Vi— (E+ y*I)Vg —Z(EV=0
Structural assumptions

@ E is real diagonalizable

Q Fec (R,R)

Q exists (V,, i) TW solution U(x, t) = Vi(x — put), Vi € €}, Viz € H?
Q Z(¢) := DF(V*(C)) —Z7Z4,7'(&) —0,as § — oo

@ the matrix (E + p.I) is invertible

Spectral assumptions: There is § > 0 s.t.

20 May 25,2017 Jens Rottmann-Matthes - Stability of Waves in Second Order Evolution Equations KIT, CRC 1173



The Assumptions ﬂ(".

(HYP) Uy = EU,y + F(U), x€R,t>0, Uxt) R

(HYPjin) P(01,06)V =V — (E+ ul)Ve = Z(G)V =0
Structural assumptions

@ E is real diagonalizable

Q Fec (R,R)

Q exists (V,, i) TW solution U(x, t) = Vi(x — put), Vi € €}, Viz € H?
Q Z(¢) :==DF(V.(¢)) = Z+, Z'({) = 0,as { — oo

@ the matrix (E + p.I) is invertible

Spectral assumptions: There is § > 0 s.t.

Q detPE(A,iw) = det(Al — iw(E + p,I) — Z1) = 0 for some w € R

st

= ReA < —-6<0

20 May 25,2017 Jens Rottmann-Matthes - Stability of Waves in Second Order Evolution Equations KIT, CRC 1173



The Assumptions ﬂ(".

(HYP) Uy = EU,y + F(U), x€R,t>0, Uxt) R

(HYPjin) Pi(0, ag)V =Vi— (E+ V*I)Vg —Z(EV=0
Structural assumptions
@ E is real diagonalizable
Q Fec (R,R)
Q exists (V,, i) TW solution U(x, t) = Vi(x — put), Vi € €}, Viz € H?
Q Z(¢) := DF(VW(&)) — Z+, Z/(E) — 0,88 & — Foo
@ the matrix (E + p.I) is invertible
Spectral assumptions: There is § > 0 s.t.
Q detPE(A,iw) = det(Al — iw(E + p,I) — Z1) = 0 for some w € R
= ReA < —-6<0
@ P.(N,0:) = Al — (E+ )0z — Z(¢) : H(R,C') — L?(R,C') satisfies
N(Pw(A,0¢)) # {0} = A =00r ReA < -5 and 0 is alg. simple

20 May 25,2017 Jens Rottmann-Matthes - Stability of Waves in Second Order Evolution Equations KIT, CRC 1173



Transformation to 1st Order ﬂ(“'

(DW) Uy = Nzuxx + M_lf(ur Uy, ut)

where N2 = M~ 1A, N is positive square root.
How to transform?

® Need a semilinear first order system
a Nonlinearity f depends on u, u, and u;
= Need a 3m-dimensional system!

21 May 25,2017 Jens Rottmann-Matthes - Stability of Waves in Second Order Evolution Equations KIT, CRC 1173



Transformation to 1st Order ﬂ(“'

(DW) U = Nzuxx + M_lf(u/ Uy, ut)

where N2 = M~ 1A, N is a positive square root.
(:> (at + Nax)(at — Nax) =0y — Nzaxx)

U1 u
U= (U, | = | usr+ Nuy |, so that
U; u; — Nuy

NUjy Us N
Uy = (NUZX)+ f(U)) = ( N )UX+F(U),
—NUs, f(u -N

f(U) = M7 (U, NN (U — U), 3 (Un + Us))

22 May 25,2017 Jens Rottmann-Matthes - Stability of Waves in Second Order Evolution Equations KIT, CRC 1173



Transformation to 1st Order — Structural AT

TW solution u(x, t) = v, (x — pet) of usr = N2utyy + M7 (u, 11, 1)

Ox
leads to TW solution (Vi pix), Ve = | (N — pul)vsg |, of
— (N+ ]J*I)U*g
N Us
-N (u)

2nd order Structural assumptions = 1st order Structural assumptions:
@ E is real diagonalizable (since N> = M~'A pos. diagonalizable)

Q F € C3(R3,R3") (since f € €3)

Q exists (V. ,) TW solution V, € €}, V,z € H?, more precisely:
V(&) = (v+,0,0)" as & — Foo (since v, € CF, v,z € H°)

Q Z(¢) :=DF(V.(¢)) = Z+, Z'(&) — 0,as § — *oo

@ (E + ) is invertible (since A — 11,>M = M(N — i, D) (N + u,I) is)

23 May 25,2017 Jens Rottmann-Matthes - Stability of Waves in Second Order Evolution Equations KIT, CRC 1173



Transformation to 1st Order — Spectral AT

V3
Linearize V; = (E + p.l) Vg + Q(V)) about V,:

(V)
Vi = (E+ jD)Vg + DE(V,)V = (E + pd)Vz + Z(E)V
N+, 0 0 I
P.a(0,05)V=V; — N+ pil Ve—|{¢1 ¢2 ¢3|V=0
=N+ pl ¢ P2 P3

Spectral assumptions: There is § > 0 s.t.
Q det(Al — iw(E+ pul) — Z+) = 0 for some w € R implies
ReA < —-6<0
@ P.(A,9) : HY(R,C3™) — L2(R, C3™) satisfies
N(P(A,0¢)) # {0} = A =00r ReA < —é and 0 is alg. simple
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Transformation to 1st Order — Spectral AT

V3
Linearize V; = (E + p.l) Vg + Q(V)) about V,:

(V)
Vi = (E + y*I)V(-; + DF(V*)V = (E + ]/l*I)Vér + Z(@’)V
N+ u,d 0 0 I
fPm(at/ af;)VZVt - N+ ul V(: —¢1 P P3| V=0
=N+ sl o1 P2 ¢3

Spectral assumptions: There is § > 0 s.t.
Q det(Al — iw(E+ pul) — Z+) = 0 for some w € R implies
ReA < —6 < 0 But impossible: w =0 = det(—Z+) =0
@ P.(A,9) : HY(R,C3™) — L2(R, C3™) satisfies
N(P(A,0¢)) # {0} = A =00r ReA < —é and 0 is alg. simple
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Transformation to 1st Order ﬂ(“'

(DW) U = Nzuxx + M_lf(u/ Uy, ut)

where N2 = M~ 1A, N is a positive square root.
(:> (at + Nax)(at — Nax) =0y — Nzaxx)

U1 u
U= (U, | = | usr+ Nuy |, so that
U; u; — Nuy

NUjy Us N
Uy = (NUZX)+ f(U)) = ( N )UX+F(U),
—NUs, f(u -N

f(U) = M7 (U, NN (U — U), 3 (Un + Us))
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Transformation to 1st Order ﬂ(“'

(DW) U = Nzuxx + M_lf(u/ Uy, ut)

where N2 = M~ 1A, N is a positive square root.
(:> (at + Nax)(at — Nax) =0y — Nzaxx)

U1 u
U=\U | = uy + Nuy , ¢ € R, so that
U; uy — Nuy + cu

NUjy Us N
Uy = (NUZX)+ f(U)) = ( N )UX+F(U),
—NUs, f(u -N

f(U) = M7 (U, NN (U — U), 3 (Un + Us))
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Transformation to 1st Order ﬂ(“'

(DW) U = Nzuxx + M_lf(u/ Uy, ut)

where N2 = M~ 1A, N is a positive square root.
(:> (at + Nax)(at — Nax) =0y — Nzaxx)

U1 u
U=\U | = uy + Nuy , ¢ € R, so that
U; uy — Nuy + cu

NUy, Uz —clh N
U - (Nu2x ) | Fa ) - ( N )ux+F<u>,
—NUzy (U) + cU, —-N

f(U) = M7 (U, NN (U — Us), 3 (Un + Us))
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Transformation to 1st Order ﬂ(“'

(DW) U = Nzuxx + M_lf(u/ Uy, ut)

where N2 = M~ 1A, N is a positive square root.
(:> (at + Nax)(at — Nax) =0y — Nzaxx)

U1 u
U=\U | = uy + Nuy , ¢ € R, so that
U; uy — Nuy + cu

NUy, Uz —clh N
U - (Nu2x ) | Fa ) - ( N )ux+F<u>,
—NUzy (U) + cU, —-N

f(U) = M7 (U, NN (U — Uz + clhy), 3 (U + Us — clly))
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Transformation to 1st Order — Structural AT

TW solution u(x, t) = v, (x — pet) of usr = N2utyy + M7 (u, 11, 1)
Uy
leads to TW solution (V,, u4), Vi = (N — pel)vsg , of
cv, — (N + y*l)v*g

(N ) uav_ CU1 )
~N

u) +cl,
2nd order Structural assumptions = 1st order Structural assumptions:
@ E is real diagonalizable (since N> = M~'A pos. diagonalizable)
Q F € C3(R3,R3") (since f € €3)
Q exists (V. ,) TW solution V, € €}, V,z € H?, more precisely:
V(&) = (v+,0,c04) " as & — Foo (since v, € CF, v, € H)
Q Z(¢) :=DF(V.(¢)) = Z+, Z'(&) — 0,as § — *oo
@ (E + ) is invertible (since A — 11,>M = M(N — i, D) (N + u,I) is)
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Transformation to 1st Order — Spectral AT

V3
Linearize V; = (E + p.l) Vg + Q(V)) about V,:

(V)
Vi = (E+ jD)Vg + DE(V,)V = (E + pd)Vz + Z(E)V
N+, 0 0 I
P.a(0,05)V=V; — N+ pil Ve—|{¢1 ¢2 ¢3|V=0
=N+ pl ¢ P2 P3

Spectral assumptions: There is § > 0 s.t.
Q det(Al — iw(E+ pul) — Z+) = 0 for some w € R implies
ReA < —-6<0
@ P.(A,9) : HY(R,C3™) — L2(R, C3™) satisfies
N(P(A,0¢)) # {0} = A =00r ReA < —é and 0 is alg. simple
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AT

Transformation to 1st Order — Spectral

V@v* CV]
Linearize Vi = (E+ u)Ve+ | f(V) about V,:
(V) +CV2
Vi=(E+ ‘u*I)Vg +DF(V,)V = (E+ M*I)Vg +Z(E)V
N+ u, 1 —cd 0 I
Pra(01,07)V=V} — N+ pl Ve—| 1 ¢ ¢3|V=0
=N + il P g2+l @3

Spectral assumptions: There is 6 > 0 s.t.
Q det(Al — iw(E+ pul) — Z+) = 0 for some w € R implies
ReA < —-6<0
@ P.(A,9) : HY(R,C3™) — L2(R, C3™) satisfies
N(P(A,0¢)) # {0} = A =00r ReA < —é and 0 is alg. simple

KIT, CRC 1173
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Relate 2nd and 1st Order Problems

Relate spectral properties of P(A,d;) : H> — L2,
P(A,9z) = (A2Py + APy (9g) + Po(dz))
to spectral properties of P, (A, 9¢) : (H)® — (L2)3,

P_n(A,3z) + 0 -1
T151(A/ ag) = _(Pl j)fN(A/ a@') - (PZ _4)3

—P1 —¢p —cl PN(A) — ¢

where Pin(A,0g) = AT+ (£N — p,d) 0.

The key is the following ,magical factorization:
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Factorization and its Consequences AT

00 I
0 I —I|PuA0) =
I 0 0

M~1P(A,9¢) —¢p —cl Pn(A, ) — ¢3
0 T,N(A,aé) +cl —fPN</\, aé)
0 0 —I

I 0 0
~Pn(A,3) 10
~P_N(AE) —cl 0 I
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Factorization and its Consequences AT

00 I
0 I —I|PE(Miw)=
I 0 0

M71PE(), iw) —¢y — I Pn(A,iw) — 5
0 P N(Aiw)+el  —Py(A,iw)
0 0 —I

I 00
—Pn(A,iw) I 0
—P_N(Ajiw)—c 0 I
Proposition: Dispersionrelation

det PE(A,iw) = 0 < detPE(A,iw) =0 or

det(P_N(A, iw) +cI) = det(Al — iw (N + puI) +cI) = 0,

= ‘Tdisp(fpm) = Udisp(fP) U (—c+iR)
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Factorization and its Consequences AT

00 I
0 I —I|PuA0) =
I 0 0

M~1P(A,9¢) —¢p —cl Pn(A, ) — ¢3
0 T,N(A,aé) +cl —fPN</\, aé)
0 0 —I

I 00
—Pn(A, 9¢) I 0
—P_n(A0z) —c 0 I
Proposition: Eigenvalues

m JA, > —¢, st U'disp(fpm) N [/\*, OO) =0

® P.(A,0:): H — L? is Fredholm of index 0 for all A € p., connected
component of {Re A > —c} \ 0gisp (P1) coNtaining [A,, o)

a opt(P) Np+ = opt(Pie) N p+ and simple eigenvalues in this set coincide
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Sketches of Spectral Properties ﬂ(“'

- S”(Uf (:a:* )
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Sketches of Spectral Properties ﬂ(“'

@Jls‘\\(&' 4/) GA.‘SP( 3))

A;+: rw)( ) =0

A9
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Sketches of Spectral Properties ﬂ(“'

@Jls‘\\(&' 4/) GA.‘SP( 3))

A;+: rw)( ) =0

A9
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Sketches of Spectral Properties ﬂ(“'

B;;SP(&- 4/) GA.‘SP( 3))

3 Tul3,) 26, (9) b
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Sketch of 2nd Order Stability Proof AT

@ Initial data for 2nd order problem small perturbation of traveling wave:
luo = vsllys + 00 + pavsellp2 < o
= ||Up — V4|2 < constp (1st order initial data)

@ 1st order stability result: U € V, + 3! global solution,
U(-,t) = V(- — st — @oo) in H!
@ Remains:

m Second and third component of U satisfy
U, = ult +NU1X and U3 = ult _Nulx +CLI1

a Uy = %(UQ + Uz — Cul) € CK!
Uy = M2 (U — Uz +cly) € €3

a First component of U, Uq, really is a (the) solution to the 2nd order Cauchy
problem, in particular: Uy € v, + CH2, not just v, + CH! |

Then H'-convergence of Uy, U,, U3 implies H? convergence of U; = u
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Summary / Conclusion / Take home ﬂ(“'

Traveling waves for 2nd order semilinear wave equations
Generalization of freezing method

(]

[

m Stability results for traveling waves and freezing method

m Proof by transformation to 3m-dimensional 1st order system

m Advantage 1: Fully semilinear case possible

m Advantage 2: Solutions of 1st and 2nd order problems directly related (for
minimal dimension 2m, we needed an auxiliary equation to show this)

m Disadvantage: Introduction of additional spectrum
Key idea: Shift this additional spectrum

m Relating the spectral properties by a really beautiful factorization (personal
opinion!)

m Generalization to higher spatial dimensions in W.-J. Beyn'’s talk from
Tuesday
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Karlsruhe Institute of Technology

Thank You !
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