
Part	II:	Game	theory	for	crime	preven4on	



If	we	want	to	actually	use	crime	predic4ons,	
there	is	a	chicken	and	egg	type	problem…	

A@ackers	presumably	
like	these	loca4ons.	

But	if	we	send	
patrols	there…	

criminals	may	
just	go	somewhere	
else.	

In	other	words,	the	ac4ons	of	the	criminals	affect	the	
behavior	of	the	police,	which	in	turn	affects	the	
ac4ons	of	the	criminals.		This	suggests	we	should	turn	
to	Game	Theory	for	answers!	



There	is	a	well-studied	framework	for	such	
scenarios:	Security	Games	(SG)	

Suppose	there	is	a	set	of	N	loca4ons	(perhaps	nodes	on	a	
graph)	that	an	a@acker	might	like	to	a@ack	(burgle,	steal	
cars,	set	off	a	bomb,	etc).	



There	is	a	well-studied	framework	for	such	
scenarios:	Security	Games	(SG)	

But,	even	if	success	were	guaranteed,	the	loca4ons	are	
not	all	of	equal	value	 𝑉↓𝑖 ≥0	to	the	a@acker	(more	nice	
houses	to	burgle,	higher	value	targets).	
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There	is	a	well-studied	framework	for	such	
scenarios:	Security	Games	(SG)	

Now	suppose	a	defender	is	trying	to	defend	the	targets.		
In	defender	presence,	the	a@acker	is	foiled,	and	in	
defender	absence	the	a@acker	is	successful.		Defender	
has	u4li4es	 𝑈↓𝑖 ≤0	for	successful	a@acks.	
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There	is	a	well-studied	framework	for	such	
scenarios:	Security	Games	(SG)	

So,	the	defender	must	choose	a	defense	strategy	in	the	
form	of	a	schedule	of	resources,	yielding	a	coverage	
vector	𝑐 .	The	component	𝑐↓𝑖 	is	the	probability	loca4on	𝑖	
will	be	defended	in	any	given	“play”	of	the	game.	
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There	is	a	well-studied	framework	for	such	
scenarios:	Security	Games	(SG)	

Key	Point:	It	is	assumed	that	a@ackers	always	do	worse	
at	a	loca4on	if	a	defender	is	present,	while	defenders	
always	do	be@er.		
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Take	a	simple	scenario:	a	single	defender	and	
two	loca4ons,	simultaneous	play	
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A@ack	1	 A@ack	2	

(U=0,	V=0)	

(U=0,	V=0)	

(U= 𝑈↓2 ,	V= 𝑉↓2 )	

(U= 𝑈↓1 ,	V= 𝑉↓1 )	

Here,	we	can	simply	
construct	the	payoff	
bimatrix	for	the	game.		
We	can	then	look	for	Nash	
Equilibria	(NE).	These	are	
pairs	of	strategies	( 𝑐 , 𝑎 )	
with	expected	payoffs	( 𝑈 , 
𝑉 )	such	that	neither	
player	can	increase	payoff	
by	unilaterally	choosing	a	
different	strategy;	there	is	
no	 𝑐 ′	that,	when	paired	
with	 𝑎 ,	yields	a	 𝑈 ↑′ > 𝑈 .	


𝑎↓
1 	


𝑎↓
2 	



Take	a	simple	scenario:	a	single	defender	and	
two	loca4ons,	simultaneous	play	

We	can	find	a	NE	by	looking	for	an	equalizing	strategy	
	
Example	–	select	a	𝑐 	such	that	𝑉 	is	independent	of	𝑎 :	
	
A@ack	1	gives	𝑉 ↓1 = 𝑐↓1 ∙0+(1− 𝑐↓1 )∙ 𝑉↓1 	
A@ack	2	gives 𝑉 ↓2  = 𝑐↓1 ∙ 𝑉↓2 +(1− 𝑐↓1 )∙0	
	
SeZng	𝑉 ↓1 = 𝑉 ↓2 	gives	 𝑐↓1 = 𝑉↓1 /𝑉↓1 + 𝑉↓2  , 𝑐↓2 = 𝑉↓2 /𝑉↓1 + 𝑉↓2  	
	
Similarly,	 𝑎↓1 = 𝑈↓2 /𝑈↓1 + 𝑈↓2  , 𝑎↓2 = 𝑈↓1 /𝑈↓1 + 𝑈↓2  	
	
Hence,	this	par4cular	( 𝑐 , 𝑎 )	is	a	NE,	as	neither	player	can	get	
a	higher	payoff	by	switching	to	something	else	unilaterally!	



Let’s	try	this	out	for	a	3	loca4on,	1	defender	
game	

Visit	the	website	
h@ps://crimemath.shinyapps.io/nash/	



But,	o`en	in	security	games	simultaneous	play	is	
not	assumed.	
•  Instead,	the	defender	is	o`en	assumed	to	be	the	“first	

player”,	commiZng	to	a	strategy	that	is	then	known	to	
the	a@acker(s)	through	observa4on/reconnaissance	

•  This	is	known	as	a	Stackelberg	Security	Game	(SSG)	
•  This	problem	is	in	some	ways	simpler	than	Nash	

Equilibrium	–	given	𝑐 ,	 𝑎 	will	be	chosen	to	maximize	𝑉 ( 
𝑎 ;𝑐 ),	which	then	sets	𝑈 .		So,	just	maximize	𝑈 (𝑐 )	to	
find	the	Stackelberg	Equilibrium	(SE)	

•  Important:	for	some	𝑐 	(such	as	equalizing	strategies),	
there	is	no	unique	 𝑎 	that	maximizes	𝑉 ( 𝑎 ;𝑐 ).		In	such	a	
case,	it	is	assumed	that	the	a@acker	breaks	4es	op4mally	
for	the	defender.	



Take	a	simple	scenario:	a	single	defender	and	
two	loca4ons,	defender	plays	first	

We	can	find	a	SE	by	first	considering	a@acker	best	response	

𝑉 = 𝑎↓1  (𝑐↓1 ∙0+(1− 𝑐↓1 )∙ 𝑉↓1 )+ 𝑎↓2  (𝑐↓1 ∙ 𝑉↓2 +(1− 𝑐↓1 )∙0)	
	
So,	if	𝑐↓1 > 𝑉↓1 /𝑉↓1 + 𝑉↓2  	,	choose	 𝑎↓2 =1,	giving	 𝑈 = 𝑐↓1 𝑈↓2 <− 𝑉↓1 /𝑉↓1 + 
𝑉↓2  |𝑈↓2 |	
	
if	𝑐↓1 < 𝑉↓1 /𝑉↓1 + 𝑉↓2  	,	choose	 𝑎↓1 =1,	giving	 𝑈 =(1− 𝑐↓1 )𝑈↓1 <− 𝑉↓2 /𝑉↓1 + 
𝑉↓2  |𝑈↓1 |	
	
if	𝑐↓1 = 𝑉↓1 /𝑉↓1 + 𝑉↓2  	,	choose	 𝑎 	maximizing		 𝑈 =− 𝑎↓1 𝑉↓2 /𝑉↓1 + 𝑉↓2  |
𝑈↓1 |− 𝑎↓2 𝑉↓1 /𝑉↓1 + 𝑉↓2  |𝑈↓2 |	
	
Hence,	choosing	the	𝑐 	from	our	NE	gives	the	highest	𝑈 	and	is	therefore	the	
SE!	



Let’s	now	try	our	3	loca4on,	1	defender	game	as	
a	Stackelberg	game	

Visit	the	website	
h@ps://crimemath.shinyapps.io/nash/	



There	are	some	general	results	along	these	lines	
1.  Any	SE	u4lity	is	at	least	as	good	as	any	NE	u4lity	for	the	

defender.	
2.  In	security	games	(but	not	all	games!),	all	NE	are	

interchangeable.		That	is,	if	( 𝑐 , 𝑎 )	and	( 𝑐 ′, 𝑎 ′)	are	NE,	
then	so	are	( 𝑐 , 𝑎 ′)	and	( 𝑐 ′, 𝑎 ).	

3.  The	a@acker’s	𝑉 	is	the	same	for	all	(interchangeable)	NE	of	
a	security	game,	but	the	defender’s	𝑈 	is	not	necessarily.	

4.  Any	SE’s	𝑐 	is	also	a	NE’s	 𝑐 	for	that	security	game	(but	not	
necessarily	vice	versa),	under	the	assump4on	that	defenders	
can	cover	fewer	targets	than	their	resources	would	allow	if	
they	desire.	

5.  Hence,	SE	provide	very	reasonable	solu4ons	to	security	
games,	Stackelberg	or	not.	
Korzhyk,	Dmytro,	et	al.		Journal	of	Ar4ficial	Intelligence	Research	(2011).	



SSG	are	an	ac4ve	research	area:	

•  In	some	applica4ons,	merely	compu4ng	the	SE	is	
very	challenging	given	the	size	of	the	domain.	

•  What	if	you	are	facing	several	different	“types”	of	
a@ackers,	with	different	𝑉↓𝑖 ?	

•  How	do	you	actually	know	what	the	 𝑉↓𝑖 	are?		Can	
you	learn	them	by	observing	a@acker	behavior?	

•  What	if	some	of	our	assump4ons	on	the	behaviors	
and	capabili4es	of	a@ackers	are	false?	



Some	(random?)	references	on	these	topics:
		

•  Kiekintveld,	et	al.	The	10th	Interna4onal	Conference	on	
Autonomous	Agents	and	Mul4agent	Systems-Volume	3,	
2011.	

•  Conitzer	and	Sandholm.	Proceedings	of	the	7th	ACM	
conference	on	Electronic	commerce.	ACM,	2006.	

•  Jain,	et	al.	AAAI,	2010.	
•  Blum,	et	al.	"Learning	to	Play	Stackelberg	Security	

Games.“,	2015.	
•  Balcan,	et	al.	Proceedings	of	the	Sixteenth	ACM	

Conference	on	Economics	and	Computa4on.	ACM,	2015.	



Let’s	focus	on	the	last	ques4ons,	regarding	the	
assumed	a@acker	behaviors	and	capabili4es.	

1.  Are	highly	strategic	
2.  Plan	a@acks	in	advance	
3.  Are	incapable/unwilling	

to	make	on-the-fly	
adjustments	

4.  Plan	one	“large”	a@ack	
at	a	4me	

5.  Play	each	“game”	in	a	
one-off	manner	

We	assumed	a@ackers:	



But,	common	criminals	don’t	fit	this	mold.		They:	

1.  Are	slightly	to	
moderately	strategic	

2.  Perform	a@acks	when	
opportuni4es	arise	

3.  Make	real-4me	
decisions	regarding	
a@acks	

4.  May	perform	several	
“small”	a@acks	in	
quick	succession;	
mul4-round	games	



We	have	therefore	proposed	the	Opportunis4c	
Security	Game	(OSG)	to	deal	with	them	

•  The	game	is	mul4-round	for	each	a@acker,	with	each	
round	a`er	the	first	occurring	with	probability	𝛼	

•  The	a@acker	may	be	adjus4ng	his	strategy	each	
round	in	response	to	his	observa4ons	of	the	
defender,	causing	him	to	move	loca4on	to	loca4on	

•  The	defender	should	therefore	move	around	as	well,	
so	that	her	strategy	is	now	an	ergodic	transi4on	
matrix	𝑇,	for	which	the	sta4onary	coverage	is	the	
usual	 𝑐 	

•  Defender’s	goal:	find	𝑇	that	maximizes	𝑈 	



We	propose	the	following	behavior	for	the	
a@acker,	who	is	assumed	to	know	𝑇	and	 𝑐 	
1.  A@acker	currently	at	loca4on	𝑖	makes	observa4on	𝑜	(sees	

defender	or	not)	then	constructs	an	es4mated	distribu4on	𝑐 
↓𝑒𝑠𝑡 (𝑜)	of	the	defender’s	current	loca4on	using	only	 𝑐 	

	
2.  For	any	poten4al	next	a@acker	loca4on	𝑗	at	an	integer	

temporal	distance	denoted	|𝑗−𝑖|,	the	a@acker	can	es4mate	
the	probability	the	defender	will	be	there	when	the	a@acker	
would	arrive:		 (𝑇↑|𝑗−𝑖| )↓𝑗 𝑐 ↓𝑒𝑠𝑡 (𝑜)	

3.  The	expected	value	of	𝑗	from	𝑖	given	𝑜	is	then						
																								𝑉 ↓𝑗 (𝑖,𝑜)= 𝑉↓𝑗 [1− (𝑇↑|𝑗−𝑖| )↓𝑗 𝑐 ↓𝑒𝑠𝑡 (𝑜) ]	

𝑐↓𝑒𝑠𝑡,𝑖 (1)=1,𝑐↓𝑒𝑠𝑡,𝑗 (1)=0 ∀ 𝑗≠𝑖		
𝑐↓𝑒𝑠𝑡,𝑖 (0)=0,𝑐↓𝑒𝑠𝑡,𝑗 (0)= 𝑐↓𝑗 /(1− 𝑐↓𝑖 ) ∀ 𝑗≠𝑖		



We	propose	the	following	behavior	for	the	
a@acker	

4.  Given	the	𝑉 ↓𝑗 (𝑖,𝑜),	the	a@acker	chooses	strategy		

								

5.  The	a@acker	then	chooses	a	specific	𝑗	according	to	𝑎 ,	and	
the	process	repeats	with	probability	𝛼.	

Ra4onality	parameter	
𝜆≥0	

𝑎↓𝑗 = 𝑉 ↓𝑗 (𝑖,𝑜)↑𝜆 /∑𝑘↑▒𝑉 ↓𝑘 (𝑖,𝑜)↑𝜆   	

This	is	an	example	of	bounded	ra4onality,	a	sort	of	fudge	
factor	to	account	for	the	fact	that	a@ackers	may	not	
always	be	able	to	make	the	best	decision.		For	𝜆=0	choices	
are	random,	and	as	𝜆→∞	we	get	closer	to	the	op4mal	
choice.	
	



We	express	the	final	(Markov	process)	problem	
thusly:	

•  Let	state	space	be	the	set	of	all	pairs	of	loca4ons	𝑠=( 
𝑙↓𝑑 , 𝑙↓𝑎 ),	where	 𝑙↓𝑑 	is	the	defender’s	loca4on	and	
𝑙↓𝑎 	is	a@acker’s	loca4on.	𝑠	determines	𝑜.	

•  Let	𝑀	be	the	transi4on	matrix	in	state	space:	

•  Let	𝑅	be	the	vector	of	u4li4es	for	the	defender	
expressed	in	state	space;	𝑅↓𝑠 = 𝑈↓𝑙↓𝑎  	for	𝑜(𝑠)=0	
and	 𝑅↓𝑠 =0	for	𝑜(𝑠)=1	

𝑀↓𝑠↑′ 𝑠 = 𝑇↓𝑙↓𝑑↑′ 𝑙↓𝑑  𝑎↓𝑙↓𝑎↑′  ( 𝑙↓𝑎 ,𝑜(𝑠))	
	



We	express	the	final	(Markov	process)	problem	
thusly:	

•  Then,	star4ng	from	ini4al	state	space	vector	𝑥 ↓0 ,	
which	may	depend	on	𝑐 ,	the	defender’s	expected	
u4lity	is	

	
•  Goal:	choose	𝑇	to	maximize	U.	
•  Note	that	this	is	a	nasty	problem!	
–  Nonlinear	constrained	op4miza4on	
–  𝑀	is	order	 𝑁↑2 	for	one	defender,	 𝑁↑1+𝐷 	for	𝐷	
defenders	

𝑈 = 𝑅 ∙(𝐼+𝛼𝑀+ 𝛼↑2 𝑀↑2 +⋯)𝑥 ↓0 = 𝑅 ∙ (𝐼−𝛼𝑀)↑−1 𝑥 ↓0 	



Let’s	take	a	pause	and	play	a	3	loca4on,	1	
defender	OSG,	assuming	you	all	are	very	ra4onal	

Visit	the	website	
h@ps://crimemath.shinyapps.io/osgame/	



Let’s	try	that	again,	assuming	you	all	are	not	so	
ra4onal…	

Visit	the	website	
h@ps://crimemath.shinyapps.io/osgame2/	



Solving	an	OSG	is	computa4onally	challenging.		
But,	an	approximate	problem	is	much	simpler…	

•  Consider	new	state	space	with	members	𝑠↓𝑐 =(𝑜, 
𝑙↓𝑎 )	

•  This	space	has	size	of	order	𝑁,	regardless	of	number	
of	defenders	𝐷	

•  Here,	instead	of	including	𝑙↓𝑑 	explicitly	in	the	state	
space,	we	simply	es4mate	it	given	𝑙↓𝑎 	and	𝑜,	the	
same	way	a	criminal	would	

•  The	rest	of	the	simplified	problem	is	analogous	to	
the	full	problem	previously	presented	



Some	results	for	ar4ficial	seZngs,	comparing	
the	full	and	approximate	algorithm	

Each	run	performed	for	30	
different	random	 𝑉 ,	each	𝑉↓𝑖 
∈𝑈(0,1]		All	 𝑈↓𝑖 =−1	



Defender	U4lity	versus	run4me	ra4onality	level	𝜆		



Defender	U4lity	versus	ra4onality	level	𝜆	

6	loca:ons	and	2	defenders	



Defender	u4lity	for	differing	𝐷	



Security	games	aren’t	just	theore4cal,	and	have	
been	deployed	in	many	domains.	

See	h@p://teamcore.usc.edu/projects/security/	for	more	details	



So,	where	does	this	leave	us?	

•  As	we’ve	(hopefully)	illustrated,	the	mathema4cs	
used	to	predict	and	prevent	crime	comes	from	many	
different	subfields,	each	with	interes4ng	
mathema4cal	problems	to	explore	

•  Consequently,	there	are	probably	many	new	
methods	that	will	be	developed	in	this	field	as	it	
progresses	

•  There	is	a	strong	track	record	of	field	
implementa4on	in	this	area,	so	impact	can	be	large	
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