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Motivation

Climate change represents an urgent challenge for humanity.

Carbon markets are currently being implemented worldwide (e.g. EU
ETS).

More mathematical studies of such markets are needed.
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Carbon markets: overview

The EU ETS is described in the following way.

Cap and trade scheme. European Commission sets the cap and
market participants trade allowances.

At the end of each trading year, firms must submit a report of their
emissions, and subsequently surrender one EUA for each ton of CO2
emitted.

For any other CO2 emissions, they are charged the penalty
(currently 100 Euros) per ton of CO2.
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Carbon markets: overview

More on the EU ETS:

EUAs that are not used for compliance can be retained and used in
the next year, though this was not the case during phase one.

There was a huge over-supply of allowances during phase 2
(2008-2012).

A market stability reserve will be in place from 2018.
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FBSDEs: an overview

T > 0 terminal time.

W an n-dimensional Brownian motion over [0,T ]

b : [0,T ]× Rn × R→ Rn,
σ : [0,T ]× Rn × R→ Rn×n,
g : Rn → R,
f : [0,T ]× Rn × R× Rn → R
measurable functions.

Find a triple of adapted processes (X ,Y ,Z ) satisfying the
forward-backward stochastic differential equation (FBSDE):

Xt = x +

∫ t

0

b(s,Xs ,Ys) ds +

∫ t

0

σ(s,Xs ,Ys) dWs ,

Yt = g(XT ) +

∫ T

t

f (s,Xs ,Ys ,Zs) ds −
∫ T

t

Zs dWs .

(1)
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FBSDEs: an overview

Applications: stochastic control, mathematical finance, numerical
methods for PDE, and others.

If the system is decoupled with b(s, x , y) ≡ b(s, x),
σ(s, x , y) ≡ σ(s, x), f (s, x , y , z) ≡ f (s, y , z), then
’b, σ, f , g all Lipschitz continuous with linear growth’ =⇒
’FBSDE has a unique adapted solution’.

For a fully coupled system, these conditions are not sufficient for the
existence of a unique adapted solution.

Fully coupled FBSDE have been studied with the following
conditions (this list is not exhaustive):
-Non-degenerate diffusion coefficient, σ (Delarue, 2002),
-Small terminal time T (Antonelli, 1993),
-A monotonicity condition on f and g (Pardoux & Tang, 1999).
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Setup: carbon markets

Primary example is the EU ETS (in operation since 2005).

Single-period setting: firms submit allowances at time T for their
emissions during the period [0,T ]. Excess emissions (over the cap
Λ) are penalized at a penalty (π = 1 here). After that, emissions
regulation is no longer in effect.

Two-period setting: two compliance periods [0,T1] and [T1,T2]
with separate caps Λ1 and Λ2 at T1 and T2, respectively. Excess
allowances at T1 continue into [T1,T2].
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Setup: carbon markets

We study FBSDE of the following form (called ’singular FBSDE’)

dPt = b(t,Pt) dt + σ(Pt) · dWt , P0 = p ∈ RN , (2)

dEt = µe(Pt ,Yt) dt, E0 = e ∈ R,
dYt = Zt · dWt , YT = φ(ET ).

where φ is a monotonic increasing and discontinuous function. Note that
X = (P,E ) is the forward component. In applications, we often choose

φ(x) = 1[Λ,+∞)(x). (3)

FBSDE of this kind were studied in (Carmona et al, 2013) and (Carmona
& Delarue, 2013).
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Working assumptions

Assumption 1

There exist three constants L ≥ 1, l1, l2 > 0, 1/L ≤ l1 ≤ l2 ≤ L satisfying

1 b, σ have L-linear growth and are L-Lipschitz continuous (this holds
uniformly in time for b):

2 µe also has L-linear growth, and is Lipschitz continuous, satisfying

|µe(p, y)| ≤ L(1 + |p|+ |y |),
|µe(p, y)− µe(p′, y ′)| ≤ L

(
|p − p′|+ |y − y ′|

)
,

p, p′ ∈ RN , y , y ′ ∈ R.

3 Finally, for any p ∈ RN , the real function y 7→ µe(p, y) is strictly
decreasing and −µe satisfies the following monotonicity condition

l1|y − y ′|2 ≤ (y − y ′)
(
µe(p, y ′)− µe(p, y)

)
≤ l2|y − y ′|2,

p ∈ RN , y , y ′ ∈ R
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Existing results

Theorem 1 (Carmona & Delarue 2013)

Under the assumptions set out above, and given (p, e) ∈ R2, (2) admits
a unique progressively measurable 4-tuple (P,E ,Y ,Z ) with

E

[
sup

t∈[0,T ]

(
|Pt |2 + |Et |2 + |Yt |2

)
+

∫ T

0

|Zs |2 ds

]
<∞,

such that P0 = p, E0 = e, and (P,E ,Y ,Z ) satisfies the dynamics in (2)
over [0,T ), but YT only satisfies

P[φ−(ET ) ≤ YT ≤ φ+(ET )] = 1

where φ− and φ+ are the left and right continuous versions, respectively,
of φ. Finally, |Zt | ≤ C for every t ∈ [0,T ], where C is a constant
depending only on T and the Lipschitz constants in Assumption 1.
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Existing results

Theorem 2 (Carmona & Delarue 2013)

Consider the case φ(x) = 1[Λ,+∞)(x). In addition to the earlier
assumptions, assume also that σ is uniformly elliptic in the sense that

(σ(p))Tσ(p) ≥ L−1 > 0, p ∈ RN .

Also, assume that the function p 7→ µe(p, 0) is uniformly continuous over
Rn and satisfies

|∂pµe(p, 0)| ≥ L−1, p ∈ RN .

Then, for any starting point (P0,E0) = (p, e), the solution (P,E ,Y ,Z )
to (2) satisfies

P[ET = Λ] > 0.
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A model for a two-period carbon market

Consider two periods [0,T1], [T1,T2] and two caps Λ1, Λ2 and a penalty
π > 0 for each period. Let

dPt = b(Pt) dt + σ(Pt) dWt , P0 = p ∈ Rn, t ∈ [0,T2]

and consider a pair of FBSDE in the following form.

For t ∈ [0,T1]:

dE 1
t = µe(Pt ,Y

1
t ) dt, E 1

0 = eT0 ,

dY 1
t = Z 1

t dWt , Y 1
T1

= φ1(E 1
T1

) =

{
Y 2
T1
, if E 1

T1
< Λ1 + Λ2,

π, otherwise.

For t ∈ [T1,T2]:

dE 2
t = µe(Pt ,Y

2
t ) dt, E 2

T1
= E 1

T1
,

dY 2
t = Z 2

t dWt , Y 2
T2

=

{
0, if E 2

T2
< Λ̂2(E 2

T1
) = (Λ1 + Λ2 − E 1

T1
)+,

π, otherwise.
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A model for a two-period carbon market

This is a model for a two-period carbon market (with banking,
borrowing, and withdrawal of allowances).

Setting π = 1, we now need to consider FBSDE of the following
form:

For t ∈ [0,T1]:

dE 1
t = µe(Pt ,Y

1
t ) dt, E 1

0 = eT0 ,

dY 1
t = Z 1

t dWt ,

Y 1
T1

= φ1(E 1
T1

) =

{
v 2(T1,PT1 ,ET1 , Λ̂2(E 1

T1
)), if E 1

T1
< Λ1 + Λ2,

1, otherwise.

where v 2(·, ·, ·,Λ) is the value function constructed in Theorem 1 with
parameter Λ (Yt = v 2(t,Pt ,Et ,Λ) in Theorem 1).
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Current research

Consider the terminal condition φ1 and find conditions under which
it is continuous or monotonic increasing.

Show that the two-period pricing problem is well-posed under
appropriate conditions (e.g. find conditions under which φ1 is
monotonic increasing.)

Further numerical investigation and calibration (of a model in which
P consists of electricity market factors) to real data.
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Some numerical results (single period model)

We first approximate the discontinuous terminal condition φ by a
Lipschitz continuous function. Then we apply the Markovian scheme of
Bender and Zhang (2008).

We set Pt = (Sc
t ,S

g
t ,Dt) where Sc is the coal price, Sg the gas

price, D the demand for electricity.

The emissions rate µ̄e followed the bid-stack approach.

The choice of processes, functions and parameters was as in (Carmona,
Coulon and Schwarz, 2012). Please see the figures below for two typical
paths (scenarios) of the process (Sg

t ,S
c
t ,Et ,Yt).
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Some numerical results (single period model)

Figure: Realized paths of the gas price , Sg
t (left) and coal price Sc

t (right)

Figure: Realized paths of the emissions Et (left) and allowance price Yt (right)
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