Rigorous Integration Forward in Time of PDEs Using Chebyshev Basis

Jacek Cyranka ${ }^{1}$
and
Jean-Philippe Lessard

${ }^{1}$ Rutgers University
Department of Mathematics

MS13 - Computer Assisted Proofs in Dynamical Systems Snowbird, SIAM DS 2017

Rigorous integration forward in time

Validated time-stepping routine

Rigorous numerics results for time-dependent PDEs

- P. Zgliczyński, Existence of periodic orbits for Kuramoto-Sivashinsky PDE, 2004
- S. Day, Y. Hiraoka, K. Mischaikow, T. Ogawa, Proofs of connecting orbits using Conley index, 2005
- S. Maier-Paape, K. Mischaikow, T. Wanner, Connection matrices approach for the Cahn-Hillard equation on a square, 2006
- G. Arioli, H. Koch, dissipative PDEs integration algorithm, periodic orbits for KS equation + stability, 2010
- T. Kinoshita, T. Kimura, M. T. Nakao, Numerical enclosure of solutions of parabolic PDEs using Finite Elements, 2012
- J. Mireles-James, C. Reinhardt, Parametrization of invariant manifolds of parabolic PDEs, 2016
- D. Wilczak, P. Zgliczyński, Computer assisted proof of chaos in Kuramoto-Sivashinsky equation, 2017
- M. Breden, J.-P. Lessard, R. Sheombarsing, work in progress on applying Chebyshev interpolation

J.C. and T. Wanner 2017, Computer assisted proof of heteroclinic connections in 1d Ohta-Kawasaki diblock copolymers model

J.C. and P. Zgliczyński 2015, Computer assisted proof of globally attracting solutions of the forced viscous Burgers equation - a generalization of a result by H. R. Jauslin, J. Moser, H.O. Kreiss

Let us consider a 1D PDE Cauchy problem

$$
\begin{aligned}
u_{t}(t, x) & =L(u(t, x))+N\left(u(t, x), u_{x}(t, x), \ldots\right), \\
u(0, x) & =u_{0}(x) \\
\Omega & =[0,1]
\end{aligned}
$$

+ bd. condition (periodic / Neumann / Dirichlet) .

Use the Fourier expansion

$$
u(t, x)=\sum_{k \in \mathbb{Z}} \tilde{a}_{k}(t) e^{i k x}
$$

Obtain system of equations for the Fourier coefficients $\left\{\tilde{a}_{k}\right\}_{k \in \mathbb{Z}}$

$$
\begin{aligned}
\tilde{a}_{k}^{\prime}(t) & =f_{k}(\tilde{a}(t)), \\
\tilde{a}_{k}(0) & =b_{k}
\end{aligned}
$$

Most of the approaches are based on the Taylor expansion in time.
$\tilde{a}(t)=\tilde{a}(0)+\tilde{a}^{[1]}(0) t+\tilde{a}^{[2]}(0) t^{2}+\cdots+\tilde{a}^{[p]}(0) t^{p}+\tilde{a}^{[p+1]}([0, t]) t^{p+1}+\ldots$.
Our goal is to apply the Chebyshev expansion instead.
$a_{k}(\tau)=a_{k, 0}+2 \sum_{j \geq 1} a_{k, j} T_{j}(\tau)=a_{k, 0}+2 \sum_{j \geq 1} a_{k, j} \cos (j \theta)=\sum_{j \in \mathbb{Z}} a_{k, j} e^{i j \theta}$,
where $\tau=\cos (\theta)$.
Rescale time, integrate the equations in time

$$
a_{k}(\tau)=h \int_{-1}^{h} f_{k}(a(s)+b) d s, \quad k \geq 0, \tau \in[-1,1] .
$$

We also expand $f_{k}(a(\tau))$ using the Chebyshev series

$$
f_{k}(a(\tau)+b)=\phi_{k, 0}(a, b)+2 \sum_{j \geq 1} \phi_{k, j}(a, b) \cos (j \theta)=\sum_{j \in \mathbb{Z}} \phi_{k, j}(a, b) e^{i j \theta}
$$

This results in solving $F(a)=0$, where $F(a)=\left(F_{k, j}(a)\right)_{k, j \geq 0}$ is given component-wise by

$$
F_{k, j}(a, b)= \begin{cases}a_{k, 0}+2 \sum_{\ell=1}^{\infty}(-1)^{\ell} a_{k, \ell}, & j=0, k \geq 0 \\ 2 j a_{k, j}+h\left(\phi_{k, j+1}(a, b)-\phi_{k, j-1}(a, b)\right), & j>0, k \geq 0\end{cases}
$$

It is tridiagonal in j.

We can write the operator F as

$$
F(a, b)=\mathcal{L} a+\mathcal{N}(a, b)
$$

The problem is to solve

$$
\begin{equation*}
F(a, b)=\mathcal{L} a+\mathcal{N}(a, b)=0 \Longleftrightarrow \mathcal{L} a=-\mathcal{N}(a, b) \tag{2}
\end{equation*}
$$

We interpret the zero-finding problem as the fixed point problem

$$
T(a)=\mathcal{L}^{-1}(-\mathcal{N}(a, b))=a
$$

Define the linear operator \mathcal{L} by

$$
\mathcal{L}_{k, j}(a)= \begin{cases}a_{k, 0}+2 \sum_{\ell=1}^{\infty}(-1)^{\ell} a_{k, \ell}, & j=0, k \geq 0 \\ \mu_{k} a_{k, j-1}+2 j a_{k, j}-\mu_{k} a_{k, j+1}, & j>0, \quad k \geq 0\end{cases}
$$

We use stability of the norm of the inverse of $\widetilde{\mathcal{L}}$ (projected operator) with respect to its projection size \mathbf{N}.
$\widetilde{\mathcal{L}}=\left[\begin{array}{cccc}\widetilde{\mathcal{L}}_{1} & 0 & \ldots & 0 \\ 0 & \widetilde{\mathcal{L}}_{2} & 0 & \ldots \\ & \ddots & \ddots & \\ 0 & \ldots & 0 & \widetilde{\mathcal{L}}_{N}\end{array}\right] \quad \widetilde{\mathcal{L}}_{k}=\left[\begin{array}{cccccc}1 & -2 & 2 & -2 & 2 & \cdots \\ \mu_{k} & 2 & -\mu_{k} & 0 & \cdots & \ldots \\ 0 & \mu_{k} & 4 & -\mu_{k} & 0 & \cdots \\ & \ddots & \ddots & \ddots & \ddots & \ddots \\ & \cdots & 0 & \mu_{k} & 2(N-1) & -\mu_{k} \\ & & \cdots & 0 & \mu_{k} & 2 N\end{array}\right]$

We use the Radii polynomial approach.
Tarah Day, Jean-Philippe Lessard, and Konstantin Mischaikow. Validated continuation for equilibria of PDEs. SIAM J. Numer. Anal., 45(4):1398-1424 (electronic), 2007.

We compute:

- The residual norm

$$
\|T(\bar{a})-\bar{a}\| \leq\left\|\mathcal{L}^{-1}\right\|\|F(\bar{a})\|=: Y,
$$

We use the Radii polynomial approach.
Tarah Day, Jean-Philippe Lessard, and Konstantin Mischaikow. Validated continuation for equilibria of PDEs. SIAM J. Numer. Anal., 45(4):1398-1424 (electronic), 2007.

We compute:

- The residual norm

$$
\|T(\bar{a})-\bar{a}\| \leq\left\|\mathcal{L}^{-1}\right\|\|F(\bar{a})\|=: Y
$$

- and the ' Z ' bound in a neighborhood - ball of radius r centered at \bar{a}

$$
\sup _{a \in B_{r}(\bar{a})}\|D T(a, b)\| \leq Z(r)
$$

we can bound it using

$$
Z(r):=\left\|\mathcal{L}^{-1}\right\|\|G(\|\bar{a}+b\|, r)\| h
$$

We use the Radii polynomial approach.
Tin Sarah Day, Jean-Philippe Lessard, and Konstantin Mischaikow. Validated continuation for equilibria of PDEs. SIAM J. Numer. Anal., 45(4):1398-1424 (electronic), 2007.

We compute:

- The residual norm

$$
\|T(\bar{a})-\bar{a}\| \leq\left\|\mathcal{L}^{-1}\right\|\|F(\bar{a})\|=: Y,
$$

- and the ' Z ' bound in a neighborhood - ball of radius r centered at \bar{a}

$$
\sup _{a \in B_{r}(\bar{a})}\|D T(a, b)\| \leq Z(r)
$$

we can bound it using

$$
Z(r):=\left\|\mathcal{L}^{-1}\right\|\|G(\|\bar{a}+b\|, r)\| h
$$

- Finally, we use local version of Banach's contraction principle, which holds under the assumption that r satisfies

$$
P(r):=Y+Z(r) r-r<0 .
$$

A bound for the inverse of the infinite dimensional linear operator

$$
\left\|\mathcal{L}^{-1}\right\|
$$

is essential.
We work in the following Banach space

$$
X_{\nu, 1}^{(M)} \stackrel{\text { def }}{=}\left\{a=\left(a_{k, j}\right)_{\substack{k=0, \ldots, M \\ j \geq 0}}: a_{k, j} \in \mathbb{R}, \quad \sum_{k=0}^{M} \sum_{j \geq 0}\left|a_{k, j}\right| \nu^{k}<\infty\right\}
$$

Stability of the norm

$$
\|\widetilde{\mathcal{L}}\|_{1, \nu}=\sup _{\substack{1 \leq k \leq M \\ 1 \leq j \leq N}} \nu^{k}\left\|\widetilde{\mathcal{L}}_{k, \cdot, j}\right\|_{l^{1}} \frac{1}{\nu^{k}}=\sup _{k}\left\|\widetilde{\mathcal{L}}_{k}\right\|_{l^{1}}
$$

We exploit the tridiagonal + rank one form of blocks

$$
\widetilde{\mathcal{L}}_{k}=A_{k}+U_{k}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
\mu_{k} & & & \\
0 & & T_{k} & \\
\vdots & & &
\end{array}\right]+\left[\begin{array}{cccc}
0 & -2 & 2 & \cdots \\
& & & \\
& & &
\end{array}\right]
$$

Lemma

For any $\mu_{k} \in \mathbb{R}$. For all k and $N\left\|T_{k}^{-1}\right\|_{l^{1}}$ satisfies the following bound

$$
\left\|T_{k}^{-1}\right\|_{l^{1}} \leq 4
$$

T. J. Cyranka, P. Mucha, A construction of two different solutions to an elliptic system, (2015) arXiv:1502.03363 preprint.

Compute the bound for the inverse of \mathcal{L}_{k} as a rank-one perturbation of A_{k}, related with Sherman-Morrison formula.

$$
\widetilde{\mathcal{L}}_{k}^{-1}=A_{k}^{-1}-\frac{A_{k}^{-1} U_{k} A_{k}^{-1}}{1+v^{T} A_{k}^{-1} u} .
$$

Theorem

For all k such that $\mu_{k} \geq 0$ (k sufficiently large for a dissipative PDEs) and for all N it holds that

$$
\left\|\widetilde{\mathcal{L}}_{k}^{-1}\right\|_{l^{1}} \leq 2\left\|T_{k}^{-1}\right\|_{l^{1}} \leq 8
$$

Compute the bound for the inverse of \mathcal{L}_{k} as a rank-one perturbation of A_{k}, related with Sherman-Morrison formula.

$$
\widetilde{\mathcal{L}}_{k}^{-1}=A_{k}^{-1}-\frac{A_{k}^{-1} U_{k} A_{k}^{-1}}{1+v^{T} A_{k}^{-1} u} .
$$

Theorem

For all k such that $\mu_{k} \geq 0$ (k sufficiently large for a dissipative PDEs) and for all N it holds that

$$
\left\|\tilde{\mathcal{L}}_{k}^{-1}\right\|_{l^{1}} \leq 2\left\|T_{k}^{-1}\right\|_{l^{1}} \leq 8
$$

Lemma (Passage to the limit)

We have that

$$
\left(\widehat{\mathcal{L}}_{M, N}\right)^{-1} \rightarrow\left(\widehat{\mathcal{L}}_{M, \infty}\right)^{-1}, \text { as } N \rightarrow \infty \text { in } l^{1}
$$

Moreover, the limit $\left(\widehat{\mathcal{L}}_{M, \infty}\right)^{-1}$ satisfies the bound

$$
\left\|\left(\widehat{\mathcal{L}}_{M, \infty}\right)^{-1}\right\|_{l^{1}} \leq 8
$$

Final step

We obtain a solution, which is only l^{1} in time. We do a 'bruteforce' bootstrap of the regularity in time, to verify that we have in fact a solution to a PDE involving a time derivative.

Assume that
$\alpha_{j-\mathrm{t}} \leq C_{j-1} \mu$,
$C_{j-1} \geq 1$,
$a_{j} \leq(\mu-j)^{2}+\frac{d_{N-2 j+2}+\mu}{d_{N-2 j+1} d_{N-2 j+2}+d_{N-2 j+1} \mu+\mu^{2}} \cdot C_{j-1 \mu^{2}}$,
$\alpha_{j} \leq\left(\frac{(\mu-j)^{*}}{\mu}+\frac{d_{N-2 j+2}+\mu}{d_{N-2 j+1} d_{N-2 j+2}+d_{N-2 j+1} \mu+\mu^{2}} \cdot \mu\right) C_{j-1 \mu}$,
(10) 1 neq
(11)
a_{j-1} dissapeared in the formula (10), in the formula for α_{i} we used the trivial bound (3) $n_{j-1} \leq 1 / \mu$, and monotonicity w.r.t. a_{j-L}
Let

$$
f(x):=g(x)+h(x),
$$

$g(x)=(\mu-x)^{2} / \mu$.
$h(x)=\frac{2(2 \mu-2 x+2)+\mu}{4(2 \mu-2 x+1)(2 \mu-2 x+2)+2(2 \mu-2 x+1) \mu+\mu^{2}} \mu$.
Therefore, for $j=2, \ldots, \mu-1$ it holds that

$$
\alpha_{j} \leq f(j) C_{j-1} \mu
$$

(12) \qquad
Iterative application of (12) shows that
$\alpha_{y} \leq f(j) f(j-1) \cdots f(2) C_{1} \mu$,
(13)
Using substitution $y=\mu-x$ We write $f(x)$ as

$$
\hat{f}(y)=\frac{y^{z}}{\mu}+\frac{2(2 y+2)+\mu}{4(2 y+1)(2 y+2)+2(2 y+1) \mu+\mu^{2}} \mu .
$$

(14)
Using the change of variables (12) becomes

$$
\alpha_{j} \leq \hat{f}(\mu-j) C_{j-1} \mu,
$$

and (15) becomes

$$
\alpha_{j} \leq f(\mu-j) f(\mu-j+1) \cdots f(\mu-2) C_{1} \mu,
$$

(15) \square
The derivative of \bar{f} is
$f^{\prime}(y)=\frac{\varepsilon y^{\varepsilon-1}}{\mu}-\frac{\mu(\mu+2(2 y+2))(4 \mu+8(2 y+1)+8(2 y+2))}{\left(\mu^{2}+2 \mu(2 y+1)+4(2 y+1)(2 y+2)\right)^{2}}+\frac{4 \mu}{\mu^{2}+2 \mu(2 y+1)+4(2 y+1)(2 y+2)}$ (16) deex Let us pick the following constants

$$
\begin{aligned}
& C_{1}=0.01 \\
& C_{2}=0.1 \\
& C_{3}=0.2 .
\end{aligned}
$$

Usine the Mathenatice notebook bontstrarminanb we prove several facts about f, we list them belosy

Fact I f decreasing for $y \geq C_{3} H^{2 / 3}$.
$f^{\prime}(y)<0$ for $y \geq C_{x} \mu^{2 / 3}$ and μ sufficicntly $\operatorname{lnrge}(\mu>1000)$.
(17) fact1
see a proof in bootstrapping.nb.
Fact II
It bolis that $\hat{f}\left(C_{3} \mu^{2 / 3}\right)$ is less than 1 .

It holids that
$\bar{f}\left(C_{3} \mu^{2 / 3}\right)<1$
$f(y)<1$, for $y \geq C_{s} \mu^{2 / a}$.
Fact III \bar{j} has at least one local max in the interval $\left[C_{1} \mu^{2 / 3}, C_{2} \mu^{2 / 3}\right]$.
$f^{\prime}\left(C_{1} \mu^{2 / s}\right)>0$ and $f^{\prime}\left(C_{2 \mu^{2 / 3}}\right)<0$.
(20)

Fact. IV \bar{f} is concave down in the interval $\left[0, C_{2} \mu^{2 / 3}\right]$. The second derivative of $\bar{f}(y)$ is
$-\rho^{4}-128 \mu^{3} p^{3 / 2}-12 \mu^{5} v-6 \mu^{3}+256 \mu^{4} p^{3 / 2}-96 \mu^{4} y^{2}-120 \mu^{4} y-36 \mu^{4}+6144 \mu^{3} y^{3 / 2}$
$+12268 \mu^{3} y^{5 / 2}+614 \mu_{\mu^{3}} \mathrm{~b}^{7 / 2}-445 \mu^{3} y^{3}-664 \mu^{3} y^{2}-525 \mu^{3} y-104 \mu^{3}+8102 \mu^{2} y^{3 / 2}+21576 \mu^{2} \mathrm{~B}^{5 / 2}$
$+24 \pi 75 \mathrm{y}^{2} \mathrm{y}^{7 / 2}+8192 \rho^{2} \mathrm{~B}^{3 / 2}-1539 \mu^{2} y^{4}-4224 \mu^{2} y^{3}-4224 \mu^{2} y^{2}-1824 \mu^{2} y-285 \mu^{2}-3072 \mu y^{4}-10752 \mu y^{4}-14592 \mu \mathrm{~B}^{3}$

By plugging in $y=C \mu^{2 / 3}$ for any possible value of the constant $C \in[0,0.2]$. From Mathamatic computation using interval arithmetic with $y=[0,0.2] \mu^{2 / 3}$ we obtain (see bootstrapping.nb file)

	$\left.+\mu^{2} \mid-238.048 .0\right]-125 \mu^{5}\left(\mu^{2 / 3}[0,0.2)^{3 / 2}+266 \mu^{4}\left(\mu^{2 / 3}[0,0.2]\right]^{2 / 2}+6144 \mu^{3}\left(\mu^{2 / 3 /[0,0.2] ~}\right)^{3 / 2}+12258 \mu^{3}\left(\mu^{2 / 3}[0,0.2]\right)^{1 / 2}\right.$
	$+8192 \mu^{2}\left(\mu^{2 / 3}[0,0.2]\right)^{9 / 2}-\mu^{6}-6 \mu^{5}-35 \mu^{4}-104 \mu^{5}-255 \mu^{2}-384 \mu-312$

We take right-end of the intervals for all of the terms with + sign in front of them, and left-end for the terms with - sign and obtain

$$
\begin{aligned}
& +256 \mu^{4}\left(\mu^{2 / 20.2 .2}\right)^{3 / 2}+6144 \mu^{3}\left(\mu^{2 / 20.2}\right)^{3 / 2}+12255 \mu^{3}\left(\mu^{2 / 40.2}\right)^{5 / 2} \\
& +6144 \mu^{2}\left(\mu^{2 / 2 / 0.2}\right)^{T / 2}+8142 \mu^{2}\left(\mu^{2 / 2 / 0.2}\right)^{3 / 2}+24556 s^{2}\left(\mu^{2 / 2} 0.2\right)^{3 / 2}+24576 \mu^{2}\left(\mu^{2 / 2 / 0.2}\right)^{T / 2}
\end{aligned}
$$

The term $-\mu^{\phi}$ dominates in the numerator. Now it is clearly seen that $j^{\prime \prime \prime}\left([0,0.2] \mu^{2 / 3}\right)<0$ foe sufficiently large μ.

Fact $\mathbf{V} f$ has at the global max in the interval $\left[C_{1} \mu^{2 / 3}, C_{2} \mu^{2 / 3}\right]$.
Follows from Fact III and Fact IV
Chebyshev PDE

Numerical tests

A numerical comparison test using some Galerkin approximations of the Fisher equation.

$$
\begin{aligned}
\frac{\partial}{\partial t} u(t, x) & =\frac{\partial^{2}}{\partial x^{2}} u(t, x)+\lambda u(t, x)(1-u(t, x)), \quad t \in[0,2 h], \quad x \in[0, \pi] \\
u(0, x) & =u_{0}(x), \quad x \in[0, \pi], \\
\frac{\partial}{\partial x} u(t, 0) & =\frac{\partial}{\partial x} u(t, \pi)=0, \quad \text { for all } t \geq 0
\end{aligned}
$$

We have for this equation

$$
\mu_{k}=\lambda-k^{2} .
$$

We compared performing one time-step using our prototype implementation of a Chebyshev method, and a solver based on the Taylor method + Lohner algorithm.
固
J. Cyranka, Efficient and generic algorithm for rigorous integration forward in time of dPDEs: Part I. Journal of Scientific Computing, 59(1):28-52, 2014.

Numerical tests 2

As the initial condition we take

$$
\left\{C(k+1)^{-4}\right\}_{k=0}^{m}
$$

Fixed Taylor method order 15, \# Chebyshev modes 25 (it is much cheaper to compute Chebyshev expansion)

			time step/error/remainder	
λ	\# Fourier modes m	i.c. ∞ norm C	Taylor	Chebyshev
20	200	10	$1 \mathrm{e}-05 / 2 \mathrm{e}-8 / 1 \mathrm{e}-28$	$1.2 \mathrm{e}-04 / 1 \mathrm{e}-09 / 1 \mathrm{e}-11$
20	200	1	$1 \mathrm{e}-04 / 2 \mathrm{e}-9 / 1 \mathrm{e}-13$	$1 \mathrm{e}-03 / 1 \mathrm{e}-06 / 1 \mathrm{e}-13$
20	200	0.1	$1 \mathrm{e}-04 / 2 \mathrm{e}-12 / 1 \mathrm{e}-14$	$2 \mathrm{e}-03 / 1 \mathrm{e}-06 / 6 \mathrm{e}-11$
20	50	10	$1 \mathrm{e}-04 / 5 \mathrm{e}-10 / 1 \mathrm{e}-27$	same as for $m=200$
20	50	1	$1 \mathrm{e}-03 / 5 \mathrm{e}-11 / 1 \mathrm{e}-14$	same as for $m=200$
20	50	0.1	$1 \mathrm{e}-03 / 5 \mathrm{e}-14 / 1 \mathrm{e}-15$	same as for $m=200$
2	200	10	$1 \mathrm{e}-04 / 4 \mathrm{e}-8 / 1 \mathrm{e}-12$	$1 \mathrm{e}-03 / 1 \mathrm{e}-07 / 1 \mathrm{e}-11$
2	200	1	$1 \mathrm{e}-04 / 4 \mathrm{e}-9 / 1 \mathrm{e}-13$	$8 \mathrm{e}-03 / 1 \mathrm{e}-05 / 3 \mathrm{e}-10$
2	200	0.1	$1 \mathrm{e}-04 / 2 \mathrm{e}-12 / 1 \mathrm{e}-14$	$2 \mathrm{e}-02 / 3 \mathrm{e}-05 / 2 \mathrm{e}-10$
2	50	10	$1 \mathrm{e}-04 / 1 \mathrm{e}-07 / 3 \mathrm{e}-27$	same as for $m=200$
2	50	1	$1 \mathrm{e}-03 / 2 \mathrm{e}-8 / 2 \mathrm{e}-14$	same as for $m=200$
2	50	0.1	$1 \mathrm{e}-03 / 5 \mathrm{e}-14 / 1 \mathrm{e}-15$	same as for $m=200$

