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Consensus optimization

A connected network of n agents
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Each agent i has a private Lipschitz-differentiable function f;

Model: find a consensus solution ™ € R to

TERP

minimize f(x) := fo{l‘]
i=1

« ~ can mean average reading, common knowledge, joint decision ......

Assume bi-directional links and synchronized iterations in this talk




This talk

» Analyze DGD' (gradient descent with neighborhood averaging)

« | yapunov function, inexact gradient

» Relation step size and speed/accuracy

» Introduce EXTRA (DGD along with correction steps, much faster)

= Motivation

= Convergence properties

= Extension: PG-EXTRA for smanth—i—nonsmﬁoth objectives
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Challenges

Conventional algorithms don't apply

* No long-distance communication
= No center or lead agent

= Must optimize and exchange information at the same time

Applications:

» sensor networks: wireless and under-water sensors, security cameras
= groups robots and UAVs

= collaborative machine learning

= understanding social networks and predator-prey group behaviors
A




Compact notation

» Each agent i: local variable z;) € R”, placed on the ith row of x.
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= X is consensual if all its rows are equal: :z:m = :cm Vi #£ j.
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= original problem <—

minimize 17 F(x). subject to = Z(j)- Vi == 4.
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Decentralized gradient descent (DGD)

Introduce the communication matrix W = [wy]:

» wy = U, 15 j. if nodes ¢ and j are not neighbors

= this talk: symmetric, doubly stochastic W = W', W1 = 1.

Nedic-Ozdaglar'09: neighborhood averaging + local gradient descent
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Original form: =z = E wyx(n — oV filTy), by agemts i=1.2,..., .
j

Compact form: | x*™ = Wx* — aVf(x")

Convergence requires diminishing step sizes. Some recent works:

o op=a/k'? Jakovetic-Xavier-Moura'14

" e = erk”'z IFAn Chen'12




Original problem is equivalent to:

minimize le{}L'} subject to x = Wx.

X

DGD interpretation 1: the unit-step gradient descent applied to

ExlX) = érr{xT(f— Wix) —+allf(x).
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quad penalty of x=wx

Interpretation 2: multiply ﬁlT x (DGD updateformula):
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Replacing z;, by =* gives the gradient descent applied to
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Fixed-step size results

Theorem (Yuan-Ling-Y'14)
Assume V f; is Li-Lipschitz and fix o« < (1 + An( W))/ max; L;. Then
= the DGD jterates remain bounded

= any local solution is bounded from the mean up to O(25), where 3 is

rhe 2nd largest absolute eigenvalue of W
&

* progress stagnates at O(=3)

= objective error reduces at (J(—=) until stagnation

= f all f; strongly convex, objective error and solution converge linearly until
stagnation




Proposed algorithm: EXTRA

Introduce

W =(W+1)/2
Taking the difference between two DGD iterations

x"1 —Wx* —aVi(x"), (1)

X% = WxE —aVExT), (2)

gives a 3-point iteration: "EXTRA"

xR ekt et — a V(XY + aVE(xS). (3)

If x* — X, then easy to show
L
« X = Wx,

« 17Vf(x) =0,

so X is an optimal consensual solution.




Interpretation

Equivalent iteration:

k—1
x* — wxk — aVE(x*) + Z[ W - W)x'.

i=u

correction

= suppose that x"' = Wx" asymptotically
« we need 17Vf(x"*) — 0 (optimality)

. Ehﬂ (W — W)x"' is the simplest term we found that cancels Vf(x") over
span{1}— o

= is a nonstandard primal-dual algorithm for

minimize 1" f(x) subject to x = Wx.

X




Convergence

Theorem (sublinear convergence)

Assume (i) convex Lipschitz differentiable objectives, (ii) consensus solution
exists, (iii) symmetric doubly stochastic W and W obeying

W =0 and

If step size «v < 2Amin( W)/ max L;, EXTRA has O(1/k) ergodic convergence.

Theorem (linear convergence)

In addition, if

Z":f-i{l'-]
=1

is (restrict) strongly convex, then ||x* — x*||w linearly converges to 0.
i




Example: decentralized least squares
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Example: decentralized sum of Huber functions
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PG-EXTRA for composite objectives

Consider
minimize 17 (f(x) +r(x)) subject to x = WX,

X
where r; are possibly non-differentiable functions with simple proximal maps.
Applications: geometric mean, compressed sensing, machine learning

Proposed:

xFHHS gkt kb s ek V() — VE(xE)].

e ) 1 T B
T — arg nin r(X) + — Ix — x*+ ’-’]I%.
¥
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A nontrivial extension to EXTRA since {x*} and {x*"!/2} are interlaced.
W

Convergence and performance: similar to EXTRA's




Summary and future work

This talk

» analyzed decentralized gradient descent (DGD) method

» introduced methods that perform nearly as well as centralized gradient
methods
Future work

= obtain optimal 1/k* algorithms for Lipschitz differentiable problems

= extension to directed / asymmetric networks

= extension to asynchronous communication
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