Distributed Optimization in Undirected Graphs Gradient and EXTRA Algorithms

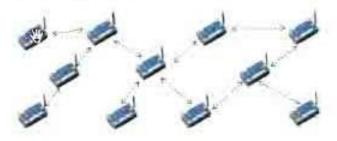
Wotao Yin (UCLA Math)

Joint work with Qing Ling, Wei Shi, Kun Yuan (USTC Automation)

March 15, 2014 - SIAM CSE, Salt Lake City

Consensus optimization

A connected network of n agents



- Each agent i has a private Lipschitz-differentiable function fi
- Model: find a consensus solution $x^* \in \mathbb{R}^p$ to

$$\underset{x \in \mathbb{R}^p}{\operatorname{minimize}} f(x) := \sum_{i=1}^n f_i(x)$$

- x* can mean average reading, common knowledge, joint decision
- Assume bi-directional links and synchronized iterations in this talk

This talk

- Analyze DGD¹ (gradient descent with neighborhood averaging)
 - Lyapunov function, inexact gradient
 - Relation step size and speed/accuracy
- Introduce EXTRA (DGD along with correction steps, much faster)
 - Motivation
 - Convergence properties
- Extension: PG-EXTRA for smooth+nonsmooth objectives

¹Nedic-Ozdaglar'09

Challenges

Conventional algorithms don't apply

- No long-distance communication
- No center or lead agent
- Must optimize and exchange information at the same time

Applications:

- · sensor networks: wireless and under-water sensors, security cameras
- groups robots and UAVs
- collaborative machine learning
- understanding social networks and predator-prey group behaviors

Compact notation

Each agent i: local variable x_(i) ∈ ℝ^p, placed on the ith row of x.

$$\mathbf{x} riangleq egin{pmatrix} - & x_{(1)}^{\mathrm{T}} & - \ - & x_{(2)}^{\mathrm{T}} & - \ dots & dots \ - & x_{(n)}^{\mathrm{T}} & - \end{pmatrix} \in \mathbb{R}^{n imes p}$$

• x is consensual if all its rows are equal: $x_{(i)}^T = x_{(j)}^T, \ \forall i \neq j$.

$$\mathbf{f}(\mathbf{x}) \triangleq \begin{pmatrix} f(x_{(1)}) \\ f(x_{(2)}) \\ \vdots \\ f(x_{(n)}) \end{pmatrix} \in \mathbb{R}^{n}, \quad \nabla \mathbf{f}(\mathbf{x}) \triangleq \begin{pmatrix} - & \nabla f_{1}(x_{(1)})^{\mathrm{T}} & - \\ - & \nabla f_{2}(x_{(2)})^{\mathrm{T}} & - \\ \vdots & \vdots & - \\ - & \nabla f_{n}(x_{(n)})^{\mathrm{T}} & - \end{pmatrix} \in \mathbb{R}^{n \times p}.$$

original problem ←⇒

minimize
$$\mathbf{1}^T \mathbf{f}(\mathbf{x})$$
, subject to $x_{(i)} = x_{(j)}, \ \forall i \neq j$.

Decentralized gradient descent (DGD)

Introduce the communication matrix $W = [w_{ij}]$:

- $w_{ij}=0,\ i \neq j,$ if nodes i and j are not neighbors
- this talk: symmetric, doubly stochastic $W = W^T$, W1 = 1.

Nedic-Ozdaglar'09: neighborhood averaging + local gradient descent

Original form:
$$x_{(i)}^{k+1} = \sum_{j} w_{ij} x_{(j)}^k - \alpha \nabla f_i(x_{(i)}^k)$$
, by agents $i = 1, 2, \dots, n$.

Compact form:
$$\mathbf{x}^{k+1} = W\mathbf{x}^k - \alpha \nabla \mathbf{f}(\mathbf{x}^k)$$

Convergence requires diminishing step sizes. Some recent works:

- $\alpha_k = \alpha/k^{1/3}$: Jakovetic-Xavier-Moura'14
- $\alpha_k = \alpha/k^{1/2}$; I-An Chen'12

Original problem is equivalent to:

$$\underset{\mathbf{x}}{\text{minimize }} \mathbf{1}^T \mathbf{f}(\mathbf{x}) \quad \text{subject to } \mathbf{x} = W \mathbf{x}.$$

DGD interpretation 1: the unit-step gradient descent applied to

$$\xi_{\alpha}(\mathbf{x}) := \underbrace{\frac{1}{2} \operatorname{tr}(\mathbf{x}^{T}(I - W)\mathbf{x})}_{\text{quad penalty of } \mathbf{x} = W\mathbf{x}} + \alpha \mathbf{1}^{T} \mathbf{f}(\mathbf{x}).$$

Interpretation 2: multiply $\frac{1}{n}\mathbf{1}^T \times (DGD \text{ updateformula})$:

$$\bar{x}^{k+1} = \bar{x}^k - \alpha \left[\frac{1}{n} \sum_{i=1}^n \nabla f_i(x_{(i)}^k) \right].$$

Replacing $x_{(i)}^k$ by \bar{x}^k gives the gradient descent applied to

$$\underset{\bar{x}}{\text{minimize}} \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(\bar{x}).$$

Fixed-step size results

Theorem (Yuan-Ling-Y'14)

Assume ∇f_i is L_i -Lipschitz and fix $\alpha \leq (1 + \lambda_n(W)) / \max_i L_i$. Then

- the DGD iterates remain bounded
- any local solution is bounded from the mean up to $O(\frac{\alpha}{1-\beta})$, where β is the 2nd largest absolute eigenvalue of W
- progress stagnates at $O(\frac{\alpha}{1-\beta})$
- objective error reduces at $O(\frac{1}{\alpha k})$ until stagnation
- if all f_i strongly convex, objective error and solution converge linearly until stagnation

Proposed algorithm: EXTRA

Introduce

$$\overline{W} := (W+I)/2.$$

Taking the difference between two DGD iterations

$$\mathbf{x}^{k+1} = \overline{W}\mathbf{x}^k - \alpha \nabla \mathbf{f}(\mathbf{x}^k), \tag{1}$$

$$\mathbf{x}^{k+2} = W\mathbf{x}^{k+1} - \alpha \nabla \mathbf{f}(\mathbf{x}^{k+1}), \tag{2}$$

gives a 3-point iteration: "EXTRA"

$$\mathbf{x}^{k+2} - \mathbf{x}^{k+1} = W\mathbf{x}^{k+1} - \overline{W}\mathbf{x}^k - \alpha\nabla\mathbf{f}(\mathbf{x}^{k+1}) + \alpha\nabla\mathbf{f}(\mathbf{x}^k).$$
(3)

If $\mathbf{x}^k \to \bar{\mathbf{x}}$, then easy to show

- $\bar{\mathbf{x}} = W\bar{\mathbf{x}}$,
- 1^T∇f(x̄) = 0,

so $\bar{\mathbf{x}}$ is an optimal consensual solution.

Interpretation

Equivalent iteration:

$$\mathbf{x}^{k+1} = W\mathbf{x}^k - \alpha \nabla \mathbf{f}(\mathbf{x}^k) + \underbrace{\sum_{i=0}^{k-1} (W - \overline{W})\mathbf{x}^i}_{\text{correction}}.$$

- suppose that $\mathbf{x}^{k+1} = W\mathbf{x}^k$ asymptotically
- we need $\mathbf{1}^T \nabla \mathbf{f}(\mathbf{x}^k) \to 0$ (optimality)
- $\sum_{i=0}^{k-1}(W-\overline{W})\mathbf{x}^i$ is the simplest term we found that cancels $\nabla\mathbf{f}(\mathbf{x}^k)$ over $\mathrm{span}\{\mathbf{1}\}^\perp$
- · is a nonstandard primal-dual algorithm for

$$\underset{\mathbf{x}}{\text{minimize }} \mathbf{1}^T \mathbf{f}(\mathbf{x}) \quad \text{subject to } \mathbf{x} = W \mathbf{x}.$$

Convergence

Theorem (sublinear convergence)

Assume (i) convex Lipschitz differentiable objectives, (ii) consensus solution exists, (iii) symmetric doubly stochastic W and \overline{W} obeying

$$\overline{W} \succ 0$$
 and $\frac{I+W}{2} \succeq \overline{W} \succeq W$.

If step size $\alpha < 2\lambda_{\min}(\overline{W})/\max L_i$, EXTRA has O(1/k) ergodic convergence.

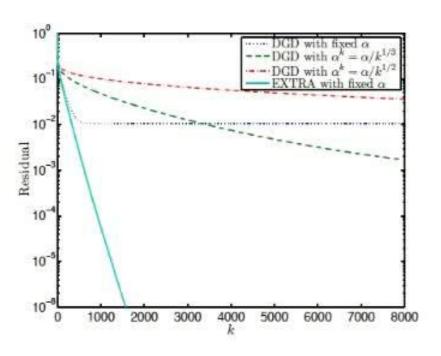
Theorem (linear convergence)

In addition, if

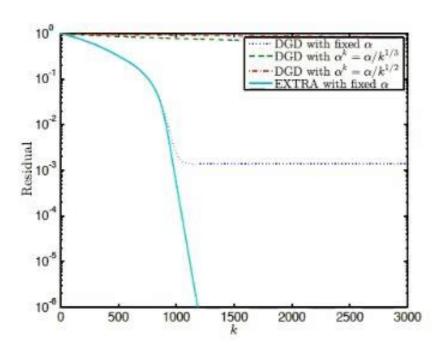
$$\sum_{i=1}^{n} f_i(x)$$

is (restrict) strongly convex, then $\|\mathbf{x}^k - \mathbf{x}^*\|_W$ linearly converges to 0.

Example: decentralized least squares



Example: decentralized sum of Huber functions



PG-EXTRA for composite objectives

Consider

$$\underset{\mathbf{x}}{\text{minimize}} \mathbf{1}^{T} (\mathbf{f}(\mathbf{x}) + \mathbf{r}(\mathbf{x})) \quad \text{subject to } \mathbf{x} = W\mathbf{x},$$

where r_i are possibly non-differentiable functions with simple proximal maps. Applications: geometric mean, compressed sensing, machine learning

Proposed:

$$\begin{split} \mathbf{x}^{k+1+\frac{1}{2}} &= W\mathbf{x}^{k+1} + \mathbf{x}^{k+\frac{1}{2}} - \overline{W}\mathbf{x}^k - \alpha[\nabla\mathbf{f}(\mathbf{x}^{k+1}) - \nabla\mathbf{f}(\mathbf{x}^k)], \\ \mathbf{x}^{k+2} &= \arg\min_{\mathbf{x}} \ \mathbf{r}(\mathbf{x}) + \frac{1}{2\alpha}\|\mathbf{x} - \mathbf{x}^{k+1+\frac{1}{2}}\|_{\mathrm{F}}^2. \end{split}$$

A nontrivial extension to EXTRA since $\{\mathbf{x}^k\}$ and $\{\mathbf{x}^{k+1/2}\}$ are interlaced.

Convergence and performance: similar to EXTRA's

Summary and future work

This talk

- analyzed decentralized gradient descent (DGD) method
- introduced methods that perform nearly as well as centralized gradient methods

Future work

- ullet obtain optimal $1/k^2$ algorithms for Lipschitz differentiable problems
- extension to directed / asymmetric networks
- extension to asynchronous communication