Error Estimation for Randomized Numerical Linear Algebra via the Bootstrap

Miles E. Lopes Shusen Wang Michael W. Mahoney UC Davis ICSI & UC Berkeley

• Randomized (sketching) methods have been intensively studied in order to accelerate large-scale matrix computations.

- Randomized (sketching) methods have been intensively studied in order to accelerate large-scale matrix computations.
 - matrix multiplication
 - least squares
 - SVD / low-rank approximation
 - Netwon methods
 - ...

- Randomized (sketching) methods have been intensively studied in order to accelerate large-scale matrix computations.
 - matrix multiplication
 - least squares
 - SVD / low-rank approximation
 - Netwon methods
 - ...
- Randomized methods can be competitive with highly optimized software (e.g. LAPACK)

- Randomized (sketching) methods have been intensively studied in order to accelerate large-scale matrix computations.
 - matrix multiplication
 - least squares
 - SVD / low-rank approximation
 - Netwon methods
 - ...
- Randomized methods can be competitive with highly optimized software (e.g. LAPACK)
- In exchange for reduced cost, randomized solutions also come with (random) approximation error.

Key question: How large is the error of a given randomized solution?

• For many types of problems, theoretical guarantees can provide a good qualitative description of the relationship between cost and accuracy.

- For many types of problems, theoretical guarantees can provide a good qualitative description of the relationship between cost and accuracy.
- However, such guarantees typically have limitations:
 - worst-case/pessimistic

- For many types of problems, theoretical guarantees can provide a good qualitative description of the relationship between cost and accuracy.
- However, such guarantees typically have limitations:
 - worst-case/pessimistic
 - conservative or unknown constants

- For many types of problems, theoretical guarantees can provide a good qualitative description of the relationship between cost and accuracy.
- However, such guarantees typically have limitations:
 - worst-case/pessimistic
 - conservative or unknown constants
 - ignore unique problem structure

• **Problem:** It is difficult to use theoretical error bounds in practice to assess the error of a given solution.

- **Problem:** It is difficult to use theoretical error bounds in practice to assess the error of a given solution.
- An alternative is to *numerically estimate* the error of a given solution: a posteriori error estimation (see, e.g. Verfürth 1996, Ainsworth and Oden 2000).

Practical error bounds?

- **Problem:** It is difficult to use theoretical error bounds in practice to assess the error of a given solution.
- An alternative is to *numerically estimate* the error of a given solution: a posteriori error estimation (see, e.g. Verfürth 1996, Ainsworth and Oden 2000).
- This has been considered in a few works in RandNLA, but is underdeveloped: Lopes et al., 2017, 2018, Halko et al., 2011, Woolfe et al., 2008, Liberty et al., 2007

Practical error bounds?

- **Problem:** It is difficult to use theoretical error bounds in practice to assess the error of a given solution.
- An alternative is to *numerically estimate* the error of a given solution: a posteriori error estimation (see, e.g. Verfürth 1996, Ainsworth and Oden 2000).
- This has been considered in a few works in RandNLA, but is underdeveloped: Lopes et al., 2017, 2018, Halko et al., 2011, Woolfe et al., 2008, Liberty et al., 2007
- Our approach: Estimate error via bootstrap.
 - Randomized matrix multiplication (MM)
 - 2 Randomized least squares (LS)

Part I: Error estimation for matrix multiplication

Consider two extremely large (non-random) matrices $A, B \in \mathbb{R}^{n imes d}$ with

 $d \ll n$.

Suppose we want to compute

 $A^{\top}B.$

Consider two extremely large (non-random) matrices $A, B \in \mathbb{R}^{n imes d}$ with

 $d \ll n$.

Suppose we want to compute

 $A^{\top}B.$

Ordinary matrix multiplication has cost $\mathcal{O}(nd^2)$.

This cost can be a major bottleneck if matrix multiplication is used repeatedly in the analysis of large datasets.

Recall that A and B each have a very large number of rows n.

One way to speed up the computation of $A^{\top}B$ is to use smaller matrices, called "sketches" \tilde{A} and \tilde{B} , each having t rows, where $d \ll t \ll n$.

Recall that A and B each have a very large number of rows n.

One way to speed up the computation of $A^{\top}B$ is to use smaller matrices, called "sketches" \tilde{A} and \tilde{B} , each having t rows, where $d \ll t \ll n$.

Most commonly, the sketches are formed using a "sketching matrix" $S \in \mathbb{R}^{t \times n}$,

$$\tilde{A} = SA$$
 and $\tilde{B} = SB$.

Recall that A and B each have a very large number of rows n.

One way to speed up the computation of $A^{\top}B$ is to use smaller matrices, called "sketches" \tilde{A} and \tilde{B} , each having t rows, where $d \ll t \ll n$.

Most commonly, the sketches are formed using a "sketching matrix" $S \in \mathbb{R}^{t \times n}$,

$$\tilde{A} = SA$$
 and $\tilde{B} = SB$.

The sketching matrix is generated randomly, satisfying $\mathbb{E}[S^{\top}S] = I_{n \times n}$. Hence,

$$\mathbb{E}[\tilde{A}^{\top}\tilde{B}] = \mathbb{E}[A^{\top}S^{\top}SB] = A^{\top}B.$$

(Many sophisticated types of S matrices have been proposed, but we omit these details.)

Choosing the number of rows of S specifies a tradeoff between cost and accuracy.

Choosing the number of rows of S specifies a tradeoff between cost and accuracy.

If $\mathbf{s}_1, \ldots, \mathbf{s}_t$ are the rows of $\sqrt{t}S$, then $S^{\top}S$ can be written as

$$S^{\top}S = rac{1}{t}\sum_{i=1}^{t}\mathbf{s}_i\mathbf{s}_i^{\top}.$$

Choosing the number of rows of S specifies a tradeoff between cost and accuracy.

If $\mathbf{s}_1, \ldots, \mathbf{s}_t$ are the rows of $\sqrt{t}S$, then $S^{\top}S$ can be written as

$$S^{\top}S = rac{1}{t}\sum_{i=1}^{t}\mathbf{s}_i\mathbf{s}_i^{\top}.$$

Usually the rows $\mathbf{s}_1, \ldots, \mathbf{s}_t$ are (nearly) i.i.d., and so as t becomes large, LLN suggests $S^{\top}S \approx \mathbf{I}_{n \times n}$, giving

$$\tilde{A}^{\top}\tilde{B} = A^{\top}S^{\top}SB \approx A^{\top}B.$$

However, the cost of sketching grows proportionally with t.

How does error depend on sketch size?

Consider the error

$$\varepsilon_t := \|\tilde{A}^\top \tilde{B} - A^\top B\|, \qquad (1$$

which is a random variable, since the sketches \tilde{A} and \tilde{B} are random.

How does error depend on sketch size?

Consider the error

$$\varepsilon_t := \|\tilde{A}^\top \tilde{B} - A^\top B\|, \qquad (1$$

which is a random variable, since the sketches \tilde{A} and \tilde{B} are random.

Note: The user is not able to see these curves in practice.

How does error depend on sketch size?

Let $q_{1-\alpha}(t)$ be the $(1-\alpha)$ -quantile of ε_t .

This is the tightest upper bound on ε_t that holds w.p. at least $1 - \alpha$.

If the user knew the function $q_{1-\alpha}(t)$, they could know two things:

- 1. How accurate $\tilde{A}^{\top}\tilde{B}$ is likely to be for any given *t*.
- 2. How large t needs to be in order to achieve a given degree of accuracy.

Estimating the error quantiles

Problem formulation:

- We want to estimate the thick black curve q_{1-α}(t) from only one run of sketching. (i.e. just à and B̃)
- It's not clear this is even possible, because q_{1-α}(t) reflects variation over many runs.
- We are computationally constrained: Any method we come up with should be cheap, so that it does not defeat the purpose of sketching.
- Also note that in practice, the user gets to see none of the curves above.

• If we could generate samples of $\|\tilde{A}^{\top}\tilde{B} - A^{\top}B\|$, we would be done.

• For instance, if we could generate 100 samples, then we could take the 99th largest to estimate q_{.99}(t).

• However, this is not possible since we don't know $A^{\top}B$.

• The bootstrap gives a way to generate "pseudo-samples" of $\|\tilde{A}^{\top}\tilde{B} - A^{\top}B\|$ using only the observed matrices \tilde{A} and \tilde{B} .

Bootstrap procedure

Input: a positive integer m and the sketches \tilde{A} and \tilde{B} .

- For $l = 1, \ldots, m$ do
 - Oraw a vector (i₁,..., i_t) by sampling t numbers with replacement from {1,..., t}.

Bootstrap procedure

Input: a positive integer m and the sketches \tilde{A} and \tilde{B} .

- For $l = 1, \ldots, m$ do
 - Oraw a vector (i₁,..., i_t) by sampling t numbers with replacement from {1,..., t}.
 - 2 Let \tilde{A}^* and \tilde{B}^* denote the matrices obtained by selecting the rows from \tilde{A} and \tilde{B} that are indexed by (i_1, \ldots, i_t) .

Input: a positive integer *m* and the sketches \tilde{A} and \tilde{B} .

- For $l = 1, \ldots, m$ do
 - Oraw a vector (i₁,..., i_t) by sampling t numbers with replacement from {1,..., t}.
 - 2 Let \tilde{A}^* and \tilde{B}^* denote the matrices obtained by selecting the rows from \tilde{A} and \tilde{B} that are indexed by (i_1, \ldots, i_t) .
 - Sompute the bootstrap sample $\varepsilon_I^* := \| (\tilde{A}^*)^\top (\tilde{B}^*) \tilde{A}^\top \tilde{B} \|$.

Input: a positive integer *m* and the sketches \tilde{A} and \tilde{B} .

- For $l = 1, \ldots, m$ do
 - Oraw a vector (i₁,..., i_t) by sampling t numbers with replacement from {1,..., t}.
 - 2 Let \tilde{A}^* and \tilde{B}^* denote the matrices obtained by selecting the rows from \tilde{A} and \tilde{B} that are indexed by (i_1, \ldots, i_t) .

Sompute the bootstrap sample $\varepsilon_I^* := \| (\tilde{A}^*)^\top (\tilde{B}^*) - \tilde{A}^\top \tilde{B} \|$.

Return: $\widehat{q}_{1-\alpha}(t) \longleftarrow$ the $(1-\alpha)$ -quantile of the values $\varepsilon_1^*, \ldots, \varepsilon_m^*$.

Speeding things up with extrapolation

The CLT indicates that $q_{1-lpha}(t)$ should decay like $1/\sqrt{t}$.

Hence, we can bootstrap small "initial sketches" with t_0 rows, and then use

$$\widehat{q}_{1-lpha}^{ ext{ ext}}(t) := rac{\sqrt{t_0}}{\sqrt{t}} \widehat{q}_{1-lpha}(t_0).$$

for $t \gg t_0$.

Speeding things up with extrapolation

The CLT indicates that $q_{1-\alpha}(t)$ should decay like $1/\sqrt{t}$.

Hence, we can bootstrap small "initial sketches" with t_0 rows, and then use

$$\widehat{q}_{1-lpha}^{ ext{ ext}}(t) := rac{\sqrt{t_0}}{\sqrt{t}} \widehat{q}_{1-lpha}(t_0).$$

for $t \gg t_0$.

The cost of the bootstrap

Existing sketching methods can compute $\tilde{A}^\top \tilde{B}$ with cost

$$\mathcal{O}(t \cdot d^2 + n \cdot d \cdot \log(t)).$$

The cost of the bootstrap

Existing sketching methods can compute $\tilde{A}^\top \tilde{B}$ with cost

$$\mathcal{O}(t \cdot d^2 + n \cdot d \cdot \log(t)).$$

The cost of applying the extrapolated bootstrap to \tilde{A} and \tilde{B} is independent of large dimension n,

$$\mathcal{O}(m \cdot t_0 \cdot d^2).$$
The cost of the bootstrap

Existing sketching methods can compute $\tilde{A}^{\top}\tilde{B}$ with cost

$$\mathcal{O}(t \cdot d^2 + n \cdot d \cdot \log(t)).$$

The cost of applying the extrapolated bootstrap to \tilde{A} and \tilde{B} is independent of large dimension n,

$$\mathcal{O}(m \cdot t_0 \cdot d^2).$$

Hence, the cost of bootstrapping does not outweigh sketching when the number of bootstrap samples satisifes

$$m = \mathcal{O}(\frac{t}{t_0} + \frac{n\log(t)}{dt_0}).$$

The cost of the bootstrap

Existing sketching methods can compute $\tilde{A}^\top \tilde{B}$ with cost

$$\mathcal{O}(t \cdot d^2 + n \cdot d \cdot \log(t)).$$

The cost of applying the extrapolated bootstrap to \tilde{A} and \tilde{B} is independent of large dimension n,

$$\mathcal{O}(m \cdot t_0 \cdot d^2).$$

Hence, the cost of bootstrapping does not outweigh sketching when the number of bootstrap samples satisifes

$$m = \mathcal{O}(\frac{t}{t_0} + \frac{n\log(t)}{dt_0}).$$

Empirically, merely m = 20 produces good results! (plots given later). Also, we take $\frac{t}{t_0} \ge 20$ in many experiments.

Empirical performance

MNIST data: computing $A^{\top}A$ with $A \in \mathbb{R}^{60,000 \times 780}$.

- initial sketch size $t_0 = 390$
- bootstrap samples m = 20

• It is possible to measure the quality of the estimator $\hat{q}_{1-\alpha}(t)$ in terms of the Lévy-Prohorov metric between $\mathcal{L}(\sqrt{t}\varepsilon_t)$ and $\mathcal{L}(\sqrt{t}\varepsilon_t^*|S)$.

- It is possible to measure the quality of the estimator $\hat{q}_{1-\alpha}(t)$ in terms of the Lévy-Prohorov metric between $\mathcal{L}(\sqrt{t}\varepsilon_t)$ and $\mathcal{L}(\sqrt{t}\varepsilon_t^*|S)$.
- Results hold for several choices of S:
 - i.i.d. sub-Gaussian entries
 - "length sampling"
 - sub-sampled randomized Hadamard transform

- It is possible to measure the quality of the estimator $\hat{q}_{1-\alpha}(t)$ in terms of the Lévy-Prohorov metric between $\mathcal{L}(\sqrt{t}\varepsilon_t)$ and $\mathcal{L}(\sqrt{t}\varepsilon_t^*|S)$.
- Results hold for several choices of S:
 - i.i.d. sub-Gaussian entries
 - "length sampling"
 - sub-sampled randomized Hadamard transform
- $\bullet\,$ Roughly speaking, our main results show that for $\ell_\infty\text{-norm}$ error,

$$d_{LP} ig(\mathcal{L}(\sqrt{t} arepsilon_t), \mathcal{L}(\sqrt{t} arepsilon_t^* | S) ig) o 0$$

as long as

$$t \gg (\|A^{\top}A\|_{\infty}\|B^{\top}B\|_{\infty})^3 \log(d)^5 \log(n)^2.$$

- It is possible to measure the quality of the estimator $\hat{q}_{1-\alpha}(t)$ in terms of the Lévy-Prohorov metric between $\mathcal{L}(\sqrt{t}\varepsilon_t)$ and $\mathcal{L}(\sqrt{t}\varepsilon_t^*|S)$.
- Results hold for several choices of S:
 - i.i.d. sub-Gaussian entries
 - "length sampling"
 - sub-sampled randomized Hadamard transform
- $\bullet\,$ Roughly speaking, our main results show that for $\ell_\infty\text{-norm}$ error,

$$d_{LP} ig(\mathcal{L}(\sqrt{t} arepsilon_t), \mathcal{L}(\sqrt{t} arepsilon_t^* | S) ig) o 0$$

as long as

$$t \gg (\|A^{\top}A\|_{\infty}\|B^{\top}B\|_{\infty})^3 \log(d)^5 \log(n)^2.$$

• Proof makes use of recent ideas on the "multiplier bootstrap" method in the high-dimensional statistics literature, as well as sharp constants in Rosenthal's inequality.

Part II: Error estimation for randomized least squares

Consider a deterministic matrix $A \in \mathbb{R}^{n \times d}$ and vector $b \in \mathbb{R}^n$, with $n \gg d$.

The exact solution $x_{opt} := \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \|Ax - b\|_2$ is too costly to compute.

Consider a deterministic matrix $A \in \mathbb{R}^{n \times d}$ and vector $b \in \mathbb{R}^n$, with $n \gg d$.

The exact solution $x_{\text{opt}} := \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \|Ax - b\|_2$ is too costly to compute.

We reduce problem with a random sketching matrix $S \in \mathbb{R}^{t \times n}$ with $d \ll t \ll n$. Define $\tilde{A} := SA$ and $\tilde{b} := Sb$.

Consider a deterministic matrix $A \in \mathbb{R}^{n \times d}$ and vector $b \in \mathbb{R}^n$, with $n \gg d$.

The exact solution $x_{\text{opt}} := \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \|Ax - b\|_2$ is too costly to compute.

We reduce problem with a random sketching matrix $S \in \mathbb{R}^{t \times n}$ with $d \ll t \ll n$. Define $\tilde{A} := SA$ and $\tilde{b} := Sb$.

We focus on two particular randomized LS algorithms:

Classic Sketch (CS). (Drineas et al, 2006)

$$\tilde{x} := \operatorname*{argmin}_{x \in \mathbb{R}^d} \left\| \tilde{A}x - \tilde{b} \right\|_2$$

Consider a deterministic matrix $A \in \mathbb{R}^{n \times d}$ and vector $b \in \mathbb{R}^n$, with $n \gg d$.

The exact solution $x_{opt} := \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \|Ax - b\|_2$ is too costly to compute.

We reduce problem with a random sketching matrix $S \in \mathbb{R}^{t \times n}$ with $d \ll t \ll n$. Define $\tilde{A} := SA$ and $\tilde{b} := Sb$.

We focus on two particular randomized LS algorithms:

Classic Sketch (CS). (Drineas et al, 2006)

$$\widetilde{x} := \operatorname*{argmin}_{x \in \mathbb{R}^d} \left\| \widetilde{A}x - \widetilde{b} \right\|_2$$

2 Iterative Hessian Sketch (IHS). (Pilanci & Wainwright 2016)

$$\widehat{x}_{i+1} := \operatorname*{argmin}_{x \in \mathbb{R}^d} \left\{ \frac{1}{2} \| \widetilde{A}(x - \widehat{x}_i) \|_2^2 + \langle A^\top (A \widehat{x}_i - b), x \rangle \right\}, \quad i = 1, \dots, k.$$

Problem formulation (error estimation)

We will estimate the errors of the random solutions \tilde{x} and \hat{x}_k in terms of high-probability bounds.

Let $\|\cdot\|$ denote any norm on \mathbb{R}^d , and let $\alpha \in (0,1)$ be fixed.

Goal: Compute numerical estimates $q_{1-\alpha}(t)$ and $\widehat{q}_{1-\alpha}(t,k)$, such that the bounds

$$\| ilde{x} - x_{\mathsf{opt}}\| \leq ilde{q}_{1-lpha}(t)$$

$$\|\widehat{x}_k - x_{\mathsf{opt}}\| \leq \widehat{q}_{1-lpha}(t,k)$$

each hold with probability at least $1 - \alpha$.

Key idea: Artificially generate a bootstrapped solution \tilde{x}^* such that the fluctuations of $\tilde{x}^* - \tilde{x}$ are statistically similar to the fluctuations of $\tilde{x} - x_{opt}$.

In the "bootstrap world", \tilde{x} plays the role of x_{opt} , and \tilde{x}^* plays the role of \tilde{x} .

The bootstrap sample \tilde{x}^* is the LS solution obtained by "perturbing" \tilde{A} and \tilde{b} .

(The same intuition also applies to the IHS solution \hat{x}_{k} .)

Input: A positive integer *m*, and the sketches \tilde{A} , \tilde{b} , and \tilde{x} .

Input: A positive integer *m*, and the sketches \tilde{A} , \tilde{b} , and \tilde{x} .

For: l = 1, ..., m **do**

Input: A positive integer *m*, and the sketches \tilde{A} , \tilde{b} , and \tilde{x} .

For: l = 1, ..., m **do**

• Draw a random vector $\mathbf{i} := (i_1, \dots, i_t)$ by sampling t numbers with replacement from $\{1, \dots, t\}$.

Input: A positive integer *m*, and the sketches \tilde{A} , \tilde{b} , and \tilde{x} .

For: l = 1, ..., m **do**

• Draw a random vector $\mathbf{i} := (i_1, \dots, i_t)$ by sampling t numbers with replacement from $\{1, \dots, t\}$.

• Form the matrix
$$ilde{A}^* := ilde{A}(\mathbf{i}, :)$$
, and vector $ilde{b}^* := ilde{b}(\mathbf{i})$.

Input: A positive integer *m*, and the sketches \tilde{A} , \tilde{b} , and \tilde{x} .

For: l = 1, ..., m **do**

 Draw a random vector i := (i₁,..., i_t) by sampling t numbers with replacement from {1,..., t}.

• Form the matrix
$$ilde{A}^* := ilde{A}(\mathbf{i}, :)$$
, and vector $ilde{b}^* := ilde{b}(\mathbf{i})$.

• Compute the vector

$$ilde{x}^* := \operatorname*{argmin}_{x \in \mathbb{R}^d} \| ilde{\mathcal{A}}^* x - ilde{b}^* \|_2,$$

and the scalar $\varepsilon_I^* := \|\tilde{x}^* - \tilde{x}\|$.

Input: A positive integer *m*, and the sketches \tilde{A} , \tilde{b} , and \tilde{x} .

For: l = 1, ..., m **do**

• Draw a random vector $\mathbf{i} := (i_1, \dots, i_t)$ by sampling t numbers with replacement from $\{1, \dots, t\}$.

• Form the matrix
$$ilde{A}^* := ilde{A}(\mathbf{i}, :)$$
, and vector $ilde{b}^* := ilde{b}(\mathbf{i})$.

• Compute the vector
$$\tilde{x}^* := \operatorname*{argmin}_{x \in \mathbb{R}^d} \| \tilde{A}^* x - \tilde{b}^* \|_2,$$

and the scalar $\varepsilon_I^* := \|\tilde{x}^* - \tilde{x}\|.$

Return: $\tilde{q}_{1-\alpha}(t) := \text{quantile}(\varepsilon_1^*, \dots, \varepsilon_m^*; 1-\alpha).$

Input: A positive integer *m*, and the sketches \tilde{A} , \tilde{b} , and \tilde{x} .

For: l = 1, ..., m **do**

 Draw a random vector i := (i₁,..., i_t) by sampling t numbers with replacement from {1,..., t}.

• Form the matrix
$$ilde{A}^* := ilde{A}(\mathbf{i}, :)$$
, and vector $ilde{b}^* := ilde{b}(\mathbf{i})$.

$$ilde{x}^* := \operatorname*{argmin}_{x \in \mathbb{R}^d} \| ilde{A}^* x - ilde{b}^* \|_2,$$

and the scalar $\varepsilon_I^* := \|\tilde{x}^* - \tilde{x}\|.$

Return:
$$\tilde{q}_{1-\alpha}(t) := \text{quantile}(\varepsilon_1^*, \dots, \varepsilon_m^*; 1-\alpha).$$

Note: A similar algorithm works for IHS.

• Cost of error estimation is independent of large dimension *n*, whereas most randomized LS algorithms scale linearly in *n*.

- Cost of error estimation is independent of large dimension n, whereas most randomized LS algorithms scale linearly in n.
- **2** In practice, as few as m = 20 bootstrap samples are sufficient.

- Cost of error estimation is independent of large dimension n, whereas most randomized LS algorithms scale linearly in n.
- **2** In practice, as few as m = 20 bootstrap samples are sufficient.

Implementation is embarrassingly parallel.
(Per-processor cost is O(td²), with modest communication.)

- Cost of error estimation is independent of large dimension n, whereas most randomized LS algorithms scale linearly in n.
- **2** In practice, as few as m = 20 bootstrap samples are sufficient.

 Implementation is embarrassingly parallel. (Per-processor cost is O(td²), with modest communication.)

Bootstrap computations have free warm starts.

- Cost of error estimation is independent of large dimension n, whereas most randomized LS algorithms scale linearly in n.
- **2** In practice, as few as m = 20 bootstrap samples are sufficient.

 Implementation is embarrassingly parallel. (Per-processor cost is O(td²), with modest communication.)

Bootstrap computations have free warm starts.

Servor estimates can be extrapolated (similar to MM context).

'YearPredictionMSD' data from LIBSVM: $n \approx 5 \times 10^5$ and d = 90

- CS: fix initial sketch size $t_0 = 5d$ and extrapolate on $t \gg t_0$
- **IHS**: fix sketch size t = 10d and extrapolate on number of iterations
- bootstrap samples m = 20

• Main result shows that under certain asymptotic assumptions

$$\liminf_{n\to\infty}\mathbb{P}\Big(\|\tilde{x}-x_{\mathsf{opt}}\|\leq \tilde{q}_{1-\alpha}(t)\Big)\ \geq 1-\alpha,$$

and similarly for $\hat{q}_{1-\alpha}(t,k)$ with regard to IHS.

• Main result shows that under certain asymptotic assumptions

$$\liminf_{n\to\infty}\mathbb{P}\Big(\|\tilde{x}-x_{\mathsf{opt}}\|\leq \tilde{q}_{1-\alpha}(t)\Big)\ \geq 1-\alpha,$$

and similarly for $\hat{q}_{1-\alpha}(t,k)$ with regard to IHS.

- Result holds for any choice of norm $\|\cdot\|$, provided
 - $(n,t) \rightarrow \infty$ with d held fixed
 - S has i.i.d. entries.
 - the matrix $A^{\top}A$ and $A^{\top}b$ are "stable" as $n \to \infty$

• Main result shows that under certain asymptotic assumptions

$$\liminf_{n\to\infty} \mathbb{P}\Big(\|\tilde{x}-x_{\mathsf{opt}}\|\leq \tilde{q}_{1-\alpha}(t)\Big) \geq 1-\alpha,$$

and similarly for $\hat{q}_{1-\alpha}(t,k)$ with regard to IHS.

- Result holds for any choice of norm $\|\cdot\|$, provided
 - $(n, t) \rightarrow \infty$ with d held fixed
 - S has i.i.d. entries.
 - the matrix $A^{ op}A$ and $A^{ op}b$ are "stable" as $n \to \infty$
- The most difficult part of the proof concerns the IHS algorithm which is iterative. This leads to analyzing the distribution of \hat{x}_k conditionally on the previous iterates, and this requires approximations that hold "uniformly" over past iterates.

• Bootstrapping is a flexible approach to error estimation that can be adapted to a variety of RandNLA algorithms.

- Bootstrapping is a flexible approach to error estimation that can be adapted to a variety of RandNLA algorithms.
- This provides a practical alternative to worst-case error bounds, and adapts to the input at hand.

- Bootstrapping is a flexible approach to error estimation that can be adapted to a variety of RandNLA algorithms.
- This provides a practical alternative to worst-case error bounds, and adapts to the input at hand.
- The cost of bootstrapping does not outweigh the benefits of sketching.

- Bootstrapping is a flexible approach to error estimation that can be adapted to a variety of RandNLA algorithms.
- This provides a practical alternative to worst-case error bounds, and adapts to the input at hand.
- The cost of bootstrapping does not outweigh the benefits of sketching.
- The bootstrap computations are highly scalable since they do not depend on large dimension *n*, are easily parallelized, and can be extrapolated.

- Bootstrapping is a flexible approach to error estimation that can be adapted to a variety of RandNLA algorithms.
- This provides a practical alternative to worst-case error bounds, and adapts to the input at hand.
- The cost of bootstrapping does not outweigh the benefits of sketching.
- The bootstrap computations are highly scalable since they do not depend on large dimension *n*, are easily parallelized, and can be extrapolated.
- Numerical performance is encouraging, and is supported by theoretical guarantees.

• A Bootstrap Method for Error Estimation in Randomized Matrix Multiplication arxiv:1708.01945

• Error Estimation for Randomized Least-Squares Algorithms via the Bootstrap ICML 2018, and arxiv:1803.08021

• Estimating the Algorithmic Variance of Randomized Ensembles via the Bootstrap The Annals of Statistics (to appear) 2018
Thanks for your attention and NSF DMS-1613218 for partial support.