
Error Estimation for Randomized Numerical Linear Algebra

via the Bootstrap

Miles E. Lopes Shusen Wang Michael W. Mahoney

UC Davis ICSI & UC Berkeley

1 / 28

Randomized numerical linear algebra (RandNLA)

Randomized (sketching) methods have been intensively studied in
order to accelerate large-scale matrix computations.

matrix multiplication

least squares

SVD / low-rank approximation

Netwon methods

. . .

Randomized methods can be competitive with highly optimized
software (e.g. LAPACK)

In exchange for reduced cost, randomized solutions also come with
(random) approximation error.

2 / 28

Randomized numerical linear algebra (RandNLA)

Randomized (sketching) methods have been intensively studied in
order to accelerate large-scale matrix computations.

matrix multiplication

least squares

SVD / low-rank approximation

Netwon methods

. . .

Randomized methods can be competitive with highly optimized
software (e.g. LAPACK)

In exchange for reduced cost, randomized solutions also come with
(random) approximation error.

2 / 28

Randomized numerical linear algebra (RandNLA)

Randomized (sketching) methods have been intensively studied in
order to accelerate large-scale matrix computations.

matrix multiplication

least squares

SVD / low-rank approximation

Netwon methods

. . .

Randomized methods can be competitive with highly optimized
software (e.g. LAPACK)

In exchange for reduced cost, randomized solutions also come with
(random) approximation error.

2 / 28

Randomized numerical linear algebra (RandNLA)

Randomized (sketching) methods have been intensively studied in
order to accelerate large-scale matrix computations.

matrix multiplication

least squares

SVD / low-rank approximation

Netwon methods

. . .

Randomized methods can be competitive with highly optimized
software (e.g. LAPACK)

In exchange for reduced cost, randomized solutions also come with
(random) approximation error.

2 / 28

Trading off computational cost and accuracy

Key question: How large is the error of a given randomized solution?

For many types of problems, theoretical guarantees can provide a
good qualitative description of the relationship between cost and
accuracy.

However, such guarantees typically have limitations:

worst-case/pessimistic

conservative or unknown constants

ignore unique problem structure

3 / 28

Trading off computational cost and accuracy

Key question: How large is the error of a given randomized solution?

For many types of problems, theoretical guarantees can provide a
good qualitative description of the relationship between cost and
accuracy.

However, such guarantees typically have limitations:

worst-case/pessimistic

conservative or unknown constants

ignore unique problem structure

3 / 28

Trading off computational cost and accuracy

Key question: How large is the error of a given randomized solution?

For many types of problems, theoretical guarantees can provide a
good qualitative description of the relationship between cost and
accuracy.

However, such guarantees typically have limitations:

worst-case/pessimistic

conservative or unknown constants

ignore unique problem structure

3 / 28

Trading off computational cost and accuracy

Key question: How large is the error of a given randomized solution?

For many types of problems, theoretical guarantees can provide a
good qualitative description of the relationship between cost and
accuracy.

However, such guarantees typically have limitations:

worst-case/pessimistic

conservative or unknown constants

ignore unique problem structure

3 / 28

Trading off computational cost and accuracy

Key question: How large is the error of a given randomized solution?

For many types of problems, theoretical guarantees can provide a
good qualitative description of the relationship between cost and
accuracy.

However, such guarantees typically have limitations:

worst-case/pessimistic

conservative or unknown constants

ignore unique problem structure

3 / 28

Practical error bounds?

Problem: It is difficult to use theoretical error bounds in practice to assess
the error of a given solution.

An alternative is to numerically estimate the error of a given solution:
a posteriori error estimation (see, e.g. Verfürth 1996, Ainsworth and Oden 2000).

This has been considered in a few works in RandNLA, but is underdeveloped:

Lopes et al., 2017, 2018, Halko et al., 2011, Woolfe et al., 2008, Liberty et al., 2007

Our approach: Estimate error via bootstrap.

1 Randomized matrix multiplication (MM)

2 Randomized least squares (LS)

4 / 28

Practical error bounds?

Problem: It is difficult to use theoretical error bounds in practice to assess
the error of a given solution.

An alternative is to numerically estimate the error of a given solution:
a posteriori error estimation (see, e.g. Verfürth 1996, Ainsworth and Oden 2000).

This has been considered in a few works in RandNLA, but is underdeveloped:

Lopes et al., 2017, 2018, Halko et al., 2011, Woolfe et al., 2008, Liberty et al., 2007

Our approach: Estimate error via bootstrap.

1 Randomized matrix multiplication (MM)

2 Randomized least squares (LS)

4 / 28

Practical error bounds?

Problem: It is difficult to use theoretical error bounds in practice to assess
the error of a given solution.

An alternative is to numerically estimate the error of a given solution:
a posteriori error estimation (see, e.g. Verfürth 1996, Ainsworth and Oden 2000).

This has been considered in a few works in RandNLA, but is underdeveloped:

Lopes et al., 2017, 2018, Halko et al., 2011, Woolfe et al., 2008, Liberty et al., 2007

Our approach: Estimate error via bootstrap.

1 Randomized matrix multiplication (MM)

2 Randomized least squares (LS)

4 / 28

Practical error bounds?

Problem: It is difficult to use theoretical error bounds in practice to assess
the error of a given solution.

An alternative is to numerically estimate the error of a given solution:
a posteriori error estimation (see, e.g. Verfürth 1996, Ainsworth and Oden 2000).

This has been considered in a few works in RandNLA, but is underdeveloped:

Lopes et al., 2017, 2018, Halko et al., 2011, Woolfe et al., 2008, Liberty et al., 2007

Our approach: Estimate error via bootstrap.

1 Randomized matrix multiplication (MM)

2 Randomized least squares (LS)

4 / 28

Part I: Error estimation for matrix multiplication

5 / 28

Review of randomized MM

Consider two extremely large (non-random) matrices A,B ∈ Rn×d with

d � n.

Suppose we want to compute
A>B.

Ordinary matrix multiplication has cost O(nd2).

This cost can be a major bottleneck if matrix multiplication is used repeatedly in
the analysis of large datasets.

6 / 28

Review of randomized MM

Consider two extremely large (non-random) matrices A,B ∈ Rn×d with

d � n.

Suppose we want to compute
A>B.

Ordinary matrix multiplication has cost O(nd2).

This cost can be a major bottleneck if matrix multiplication is used repeatedly in
the analysis of large datasets.

6 / 28

Review of randomized MM

Recall that A and B each have a very large number of rows n.

One way to speed up the computation of A>B is to use smaller matrices, called
“sketches” Ã and B̃, each having t rows, where d � t � n.

Most commonly, the sketches are formed using a “sketching matrix” S ∈ Rt×n,

Ã = SA and B̃ = SB.

The sketching matrix is generated randomly, satisfying E[S>S] = In×n. Hence,

E[Ã>B̃] = E[A>S>SB] = A>B.

(Many sophisticated types of S matrices have been proposed, but we omit these details.)

7 / 28

Review of randomized MM

Recall that A and B each have a very large number of rows n.

One way to speed up the computation of A>B is to use smaller matrices, called
“sketches” Ã and B̃, each having t rows, where d � t � n.

Most commonly, the sketches are formed using a “sketching matrix” S ∈ Rt×n,

Ã = SA and B̃ = SB.

The sketching matrix is generated randomly, satisfying E[S>S] = In×n. Hence,

E[Ã>B̃] = E[A>S>SB] = A>B.

(Many sophisticated types of S matrices have been proposed, but we omit these details.)

7 / 28

Review of randomized MM

Recall that A and B each have a very large number of rows n.

One way to speed up the computation of A>B is to use smaller matrices, called
“sketches” Ã and B̃, each having t rows, where d � t � n.

Most commonly, the sketches are formed using a “sketching matrix” S ∈ Rt×n,

Ã = SA and B̃ = SB.

The sketching matrix is generated randomly, satisfying E[S>S] = In×n. Hence,

E[Ã>B̃] = E[A>S>SB] = A>B.

(Many sophisticated types of S matrices have been proposed, but we omit these details.)

7 / 28

Review of randomized MM

Choosing the number of rows of S specifies a tradeoff between cost and accuracy.

If s1, . . . , st are the rows of
√
tS , then S>S can be written as

S>S =
1

t

t∑
i=1

sis
>
i .

Usually the rows s1, . . . , st are (nearly) i.i.d., and so as t becomes large, LLN
suggests S>S ≈ In×n, giving

Ã>B̃ = A>S>SB ≈ A>B.

However, the cost of sketching grows proportionally with t.

8 / 28

Review of randomized MM

Choosing the number of rows of S specifies a tradeoff between cost and accuracy.

If s1, . . . , st are the rows of
√
tS , then S>S can be written as

S>S =
1

t

t∑
i=1

sis
>
i .

Usually the rows s1, . . . , st are (nearly) i.i.d., and so as t becomes large, LLN
suggests S>S ≈ In×n, giving

Ã>B̃ = A>S>SB ≈ A>B.

However, the cost of sketching grows proportionally with t.

8 / 28

Review of randomized MM

Choosing the number of rows of S specifies a tradeoff between cost and accuracy.

If s1, . . . , st are the rows of
√
tS , then S>S can be written as

S>S =
1

t

t∑
i=1

sis
>
i .

Usually the rows s1, . . . , st are (nearly) i.i.d., and so as t becomes large, LLN
suggests S>S ≈ In×n, giving

Ã>B̃ = A>S>SB ≈ A>B.

However, the cost of sketching grows proportionally with t.

8 / 28

How does error depend on sketch size?

Consider the error
εt :=

∥∥Ã>B̃ − A>B
∥∥, (1)

which is a random variable, since the sketches Ã and B̃ are random.

Sketch Size t
0 200 400 600 800 1000 1200 1400 1600 1800

L ∞
 N

or
m

 E
rro

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Sketch Size t
0 200 400 600 800 1000 1200 1400 1600 1800

L ∞
 N

or
m

 E
rro

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
0.99-quantile

Note: The user is not able to see these curves in practice.

9 / 28

How does error depend on sketch size?

Consider the error
εt :=

∥∥Ã>B̃ − A>B
∥∥, (1)

which is a random variable, since the sketches Ã and B̃ are random.

Sketch Size t
0 200 400 600 800 1000 1200 1400 1600 1800

L ∞
 N

or
m

 E
rro

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Sketch Size t
0 200 400 600 800 1000 1200 1400 1600 1800

L ∞
 N

or
m

 E
rro

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
0.99-quantile

Note: The user is not able to see these curves in practice.

9 / 28

How does error depend on sketch size?

Let q1−α(t) be the (1− α)-quantile of εt .

This is the tightest upper bound on εt that holds w.p. at least 1− α.

Sketch Size t
0 200 400 600 800 1000 1200 1400 1600 1800

L ∞
 N

or
m

 E
rro

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Sketch Size t
0 200 400 600 800 1000 1200 1400 1600 1800

L ∞
 N

or
m

 E
rro

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
0.99-quantile

If the user knew the function q1−α(t), they could know two things:

1. How accurate Ã>B̃ is likely to be for any given t.

2. How large t needs to be in order to achieve a given degree of accuracy.

10 / 28

Estimating the error quantiles

Sketch Size t
0 200 400 600 800 1000 1200 1400 1600 1800

L ∞
 N

or
m

 E
rro

r
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Sketch Size t
0 200 400 600 800 1000 1200 1400 1600 1800

L ∞
 N

or
m

 E
rro

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
0.99-quantile

Problem formulation:

We want to estimate the thick black curve q1−α(t) from only one run of
sketching. (i.e. just Ã and B̃)

It’s not clear this is even possible, because q1−α(t) reflects variation over
many runs.

We are computationally constrained: Any method we come up with should
be cheap, so that it does not defeat the purpose of sketching.

Also note that in practice, the user gets to see none of the curves above.

11 / 28

Intuition for bootstrap

If we could generate samples of ‖Ã>B̃ − A>B‖, we would be done.

For instance, if we could generate 100 samples, then we could take
the 99th largest to estimate q.99(t).

However, this is not possible since we don’t know A>B.

The bootstrap gives a way to generate “pseudo-samples” of
‖Ã>B̃ − A>B‖ using only the observed matrices Ã and B̃.

12 / 28

Bootstrap procedure

Input: a positive integer m and the sketches Ã and B̃.

For l = 1, . . . ,m do

1 Draw a vector (i1, . . . , it) by sampling t numbers with replacement
from {1, . . . , t}.

2 Let Ã∗ and B̃∗ denote the matrices obtained by selecting the rows
from Ã and B̃ that are indexed by (i1, . . . , it).

3 Compute the bootstrap sample ε∗l :=
∥∥(Ã∗)>(B̃∗)− Ã>B̃

∥∥.

Return: q̂1−α(t)←− the (1− α)-quantile of the values ε∗1, . . . , ε
∗
m.

13 / 28

Bootstrap procedure

Input: a positive integer m and the sketches Ã and B̃.

For l = 1, . . . ,m do

1 Draw a vector (i1, . . . , it) by sampling t numbers with replacement
from {1, . . . , t}.

2 Let Ã∗ and B̃∗ denote the matrices obtained by selecting the rows
from Ã and B̃ that are indexed by (i1, . . . , it).

3 Compute the bootstrap sample ε∗l :=
∥∥(Ã∗)>(B̃∗)− Ã>B̃

∥∥.

Return: q̂1−α(t)←− the (1− α)-quantile of the values ε∗1, . . . , ε
∗
m.

13 / 28

Bootstrap procedure

Input: a positive integer m and the sketches Ã and B̃.

For l = 1, . . . ,m do

1 Draw a vector (i1, . . . , it) by sampling t numbers with replacement
from {1, . . . , t}.

2 Let Ã∗ and B̃∗ denote the matrices obtained by selecting the rows
from Ã and B̃ that are indexed by (i1, . . . , it).

3 Compute the bootstrap sample ε∗l :=
∥∥(Ã∗)>(B̃∗)− Ã>B̃

∥∥.

Return: q̂1−α(t)←− the (1− α)-quantile of the values ε∗1, . . . , ε
∗
m.

13 / 28

Bootstrap procedure

Input: a positive integer m and the sketches Ã and B̃.

For l = 1, . . . ,m do

1 Draw a vector (i1, . . . , it) by sampling t numbers with replacement
from {1, . . . , t}.

2 Let Ã∗ and B̃∗ denote the matrices obtained by selecting the rows
from Ã and B̃ that are indexed by (i1, . . . , it).

3 Compute the bootstrap sample ε∗l :=
∥∥(Ã∗)>(B̃∗)− Ã>B̃

∥∥.

Return: q̂1−α(t)←− the (1− α)-quantile of the values ε∗1, . . . , ε
∗
m.

13 / 28

Speeding things up with extrapolation

The CLT indicates that q1−α(t) should decay like 1/
√
t.

Hence, we can bootstrap small “initial sketches” with t0 rows, and then use

q̂ ext
1−α(t) :=

√
t0√
t
q̂1−α(t0).

for t � t0.

Sketch Size t
0 200 400 600 800 1000 1200 1400 1600 1800

L ∞
 N

or
m

 E
rro

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
0.99-quantile

14 / 28

Speeding things up with extrapolation

The CLT indicates that q1−α(t) should decay like 1/
√
t.

Hence, we can bootstrap small “initial sketches” with t0 rows, and then use

q̂ ext
1−α(t) :=

√
t0√
t
q̂1−α(t0).

for t � t0.

Sketch Size t
0 200 400 600 800 1000 1200 1400 1600 1800

L ∞
 N

or
m

 E
rro

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
0.99-quantile

14 / 28

The cost of the bootstrap

Existing sketching methods can compute Ã>B̃ with cost

O(t · d2 + n · d · log(t)).

The cost of applying the extrapolated bootstrap to Ã and B̃ is
independent of large dimension n,

O(m · t0 · d2).

Hence, the cost of bootstrapping does not outweigh sketching when the
number of bootstrap samples satisifes

m = O(t
t0

+ n log(t)
d t0

).

Empirically, merely m = 20 produces good results! (plots given later).

Also, we take t
t0
≥ 20 in many experiments.

15 / 28

The cost of the bootstrap

Existing sketching methods can compute Ã>B̃ with cost

O(t · d2 + n · d · log(t)).

The cost of applying the extrapolated bootstrap to Ã and B̃ is
independent of large dimension n,

O(m · t0 · d2).

Hence, the cost of bootstrapping does not outweigh sketching when the
number of bootstrap samples satisifes

m = O(t
t0

+ n log(t)
d t0

).

Empirically, merely m = 20 produces good results! (plots given later).

Also, we take t
t0
≥ 20 in many experiments.

15 / 28

The cost of the bootstrap

Existing sketching methods can compute Ã>B̃ with cost

O(t · d2 + n · d · log(t)).

The cost of applying the extrapolated bootstrap to Ã and B̃ is
independent of large dimension n,

O(m · t0 · d2).

Hence, the cost of bootstrapping does not outweigh sketching when the
number of bootstrap samples satisifes

m = O(t
t0

+ n log(t)
d t0

).

Empirically, merely m = 20 produces good results! (plots given later).

Also, we take t
t0
≥ 20 in many experiments.

15 / 28

The cost of the bootstrap

Existing sketching methods can compute Ã>B̃ with cost

O(t · d2 + n · d · log(t)).

The cost of applying the extrapolated bootstrap to Ã and B̃ is
independent of large dimension n,

O(m · t0 · d2).

Hence, the cost of bootstrapping does not outweigh sketching when the
number of bootstrap samples satisifes

m = O(t
t0

+ n log(t)
d t0

).

Empirically, merely m = 20 produces good results! (plots given later).

Also, we take t
t0
≥ 20 in many experiments.

15 / 28

Empirical performance

MNIST data: computing A>A with A ∈ R60,000×780.

initial sketch size t0 = 390

bootstrap samples m = 20

16 / 28

Comments on theoretical results

It is possible to measure the quality of the estimator q̂1−α(t) in terms of the
Lévy-Prohorov metric between L(

√
tεt) and L(

√
tε∗t |S).

Results hold for several choices of S :

i.i.d. sub-Gaussian entries
“length sampling”
sub-sampled randomized Hadamard transform

Roughly speaking, our main results show that for `∞-norm error,

dLP
(
L(
√
tεt),L(

√
tε∗t |S)

)
→ 0

as long as

t � (‖A>A‖∞‖B>B‖∞)3 log(d)5 log(n)2.

Proof makes use of recent ideas on the “multiplier bootstrap” method in the
high-dimensional statistics literature, as well as sharp constants in Rosenthal’s
inequality.

17 / 28

Comments on theoretical results

It is possible to measure the quality of the estimator q̂1−α(t) in terms of the
Lévy-Prohorov metric between L(

√
tεt) and L(

√
tε∗t |S).

Results hold for several choices of S :

i.i.d. sub-Gaussian entries
“length sampling”
sub-sampled randomized Hadamard transform

Roughly speaking, our main results show that for `∞-norm error,

dLP
(
L(
√
tεt),L(

√
tε∗t |S)

)
→ 0

as long as

t � (‖A>A‖∞‖B>B‖∞)3 log(d)5 log(n)2.

Proof makes use of recent ideas on the “multiplier bootstrap” method in the
high-dimensional statistics literature, as well as sharp constants in Rosenthal’s
inequality.

17 / 28

Comments on theoretical results

It is possible to measure the quality of the estimator q̂1−α(t) in terms of the
Lévy-Prohorov metric between L(

√
tεt) and L(

√
tε∗t |S).

Results hold for several choices of S :

i.i.d. sub-Gaussian entries
“length sampling”
sub-sampled randomized Hadamard transform

Roughly speaking, our main results show that for `∞-norm error,

dLP
(
L(
√
tεt),L(

√
tε∗t |S)

)
→ 0

as long as

t � (‖A>A‖∞‖B>B‖∞)3 log(d)5 log(n)2.

Proof makes use of recent ideas on the “multiplier bootstrap” method in the
high-dimensional statistics literature, as well as sharp constants in Rosenthal’s
inequality.

17 / 28

Comments on theoretical results

It is possible to measure the quality of the estimator q̂1−α(t) in terms of the
Lévy-Prohorov metric between L(

√
tεt) and L(

√
tε∗t |S).

Results hold for several choices of S :

i.i.d. sub-Gaussian entries
“length sampling”
sub-sampled randomized Hadamard transform

Roughly speaking, our main results show that for `∞-norm error,

dLP
(
L(
√
tεt),L(

√
tε∗t |S)

)
→ 0

as long as

t � (‖A>A‖∞‖B>B‖∞)3 log(d)5 log(n)2.

Proof makes use of recent ideas on the “multiplier bootstrap” method in the
high-dimensional statistics literature, as well as sharp constants in Rosenthal’s
inequality.

17 / 28

Part II: Error estimation for randomized least squares

18 / 28

Review of randomized LS

Consider a deterministic matrix A ∈ Rn×d and vector b ∈ Rn, with n� d .

The exact solution xopt := argmin
x∈Rd

‖Ax − b‖2 is too costly to compute.

We reduce problem with a random sketching matrix S ∈ Rt×n with d � t � n.
Define Ã := SA and b̃ := Sb.

We focus on two particular randomized LS algorithms:

1 Classic Sketch (CS). (Drineas et al, 2006)

x̃ := argmin
x∈Rd

∥∥Ãx − b̃
∥∥
2

2 Iterative Hessian Sketch (IHS). (Pilanci & Wainwright 2016)

x̂i+1 := argmin
x∈Rd

{
1
2‖Ã(x − x̂i)‖22 + 〈A>(Ax̂i − b) , x〉

}
, i = 1, . . . , k.

19 / 28

Review of randomized LS

Consider a deterministic matrix A ∈ Rn×d and vector b ∈ Rn, with n� d .

The exact solution xopt := argmin
x∈Rd

‖Ax − b‖2 is too costly to compute.

We reduce problem with a random sketching matrix S ∈ Rt×n with d � t � n.
Define Ã := SA and b̃ := Sb.

We focus on two particular randomized LS algorithms:

1 Classic Sketch (CS). (Drineas et al, 2006)

x̃ := argmin
x∈Rd

∥∥Ãx − b̃
∥∥
2

2 Iterative Hessian Sketch (IHS). (Pilanci & Wainwright 2016)

x̂i+1 := argmin
x∈Rd

{
1
2‖Ã(x − x̂i)‖22 + 〈A>(Ax̂i − b) , x〉

}
, i = 1, . . . , k.

19 / 28

Review of randomized LS

Consider a deterministic matrix A ∈ Rn×d and vector b ∈ Rn, with n� d .

The exact solution xopt := argmin
x∈Rd

‖Ax − b‖2 is too costly to compute.

We reduce problem with a random sketching matrix S ∈ Rt×n with d � t � n.
Define Ã := SA and b̃ := Sb.

We focus on two particular randomized LS algorithms:

1 Classic Sketch (CS). (Drineas et al, 2006)

x̃ := argmin
x∈Rd

∥∥Ãx − b̃
∥∥
2

2 Iterative Hessian Sketch (IHS). (Pilanci & Wainwright 2016)

x̂i+1 := argmin
x∈Rd

{
1
2‖Ã(x − x̂i)‖22 + 〈A>(Ax̂i − b) , x〉

}
, i = 1, . . . , k.

19 / 28

Review of randomized LS

Consider a deterministic matrix A ∈ Rn×d and vector b ∈ Rn, with n� d .

The exact solution xopt := argmin
x∈Rd

‖Ax − b‖2 is too costly to compute.

We reduce problem with a random sketching matrix S ∈ Rt×n with d � t � n.
Define Ã := SA and b̃ := Sb.

We focus on two particular randomized LS algorithms:

1 Classic Sketch (CS). (Drineas et al, 2006)

x̃ := argmin
x∈Rd

∥∥Ãx − b̃
∥∥
2

2 Iterative Hessian Sketch (IHS). (Pilanci & Wainwright 2016)

x̂i+1 := argmin
x∈Rd

{
1
2‖Ã(x − x̂i)‖22 + 〈A>(Ax̂i − b) , x〉

}
, i = 1, . . . , k.

19 / 28

Problem formulation (error estimation)

We will estimate the errors of the random solutions x̃ and x̂k in terms of
high-probability bounds.

Let ‖ · ‖ denote any norm on Rd , and let α ∈ (0, 1) be fixed.

Goal: Compute numerical estimates q1−α(t) and q̂1−α(t, k), such that the
bounds

‖x̃ − xopt‖ ≤ q̃1−α(t)

‖x̂k − xopt‖ ≤ q̂1−α(t, k)

each hold with probability at least 1− α.

20 / 28

Intuition for the bootstrap

Key idea: Artificially generate a bootstrapped solution x̃∗ such that the
fluctuations of x̃∗ − x̃ are statistically similar to the fluctuations of x̃ − xopt.

In the“bootstrap world”, x̃ plays the role of xopt, and x̃∗ plays the role of x̃ .

The bootstrap sample x̃∗ is the LS solution obtained by “perturbing” Ã and b̃.

(The same intuition also applies to the IHS solution x̂k .)

21 / 28

Algorithm (Error estimate for Classic Sketch)

Input: A positive integer m, and the sketches Ã, b̃, and x̃ .

For: l = 1, . . . ,m do

Draw a random vector i := (i1, . . . , it) by sampling t numbers with
replacement from {1, . . . , t}.

Form the matrix Ã∗ := Ã(i, :), and vector b̃∗ := b̃(i).

Compute the vector
x̃∗ := argmin

x∈Rd

‖Ã∗x − b̃∗‖2,

and the scalar ε∗l := ‖x̃∗ − x̃‖.

Return: q̃1−α(t) := quantile(ε∗1 , . . . , ε
∗
m; 1− α).

Note: A similar algorithm works for IHS.

22 / 28

Algorithm (Error estimate for Classic Sketch)

Input: A positive integer m, and the sketches Ã, b̃, and x̃ .

For: l = 1, . . . ,m do

Draw a random vector i := (i1, . . . , it) by sampling t numbers with
replacement from {1, . . . , t}.

Form the matrix Ã∗ := Ã(i, :), and vector b̃∗ := b̃(i).

Compute the vector
x̃∗ := argmin

x∈Rd

‖Ã∗x − b̃∗‖2,

and the scalar ε∗l := ‖x̃∗ − x̃‖.

Return: q̃1−α(t) := quantile(ε∗1 , . . . , ε
∗
m; 1− α).

Note: A similar algorithm works for IHS.

22 / 28

Algorithm (Error estimate for Classic Sketch)

Input: A positive integer m, and the sketches Ã, b̃, and x̃ .

For: l = 1, . . . ,m do

Draw a random vector i := (i1, . . . , it) by sampling t numbers with
replacement from {1, . . . , t}.

Form the matrix Ã∗ := Ã(i, :), and vector b̃∗ := b̃(i).

Compute the vector
x̃∗ := argmin

x∈Rd

‖Ã∗x − b̃∗‖2,

and the scalar ε∗l := ‖x̃∗ − x̃‖.

Return: q̃1−α(t) := quantile(ε∗1 , . . . , ε
∗
m; 1− α).

Note: A similar algorithm works for IHS.

22 / 28

Algorithm (Error estimate for Classic Sketch)

Input: A positive integer m, and the sketches Ã, b̃, and x̃ .

For: l = 1, . . . ,m do

Draw a random vector i := (i1, . . . , it) by sampling t numbers with
replacement from {1, . . . , t}.

Form the matrix Ã∗ := Ã(i, :), and vector b̃∗ := b̃(i).

Compute the vector
x̃∗ := argmin

x∈Rd

‖Ã∗x − b̃∗‖2,

and the scalar ε∗l := ‖x̃∗ − x̃‖.

Return: q̃1−α(t) := quantile(ε∗1 , . . . , ε
∗
m; 1− α).

Note: A similar algorithm works for IHS.

22 / 28

Algorithm (Error estimate for Classic Sketch)

Input: A positive integer m, and the sketches Ã, b̃, and x̃ .

For: l = 1, . . . ,m do

Draw a random vector i := (i1, . . . , it) by sampling t numbers with
replacement from {1, . . . , t}.

Form the matrix Ã∗ := Ã(i, :), and vector b̃∗ := b̃(i).

Compute the vector
x̃∗ := argmin

x∈Rd

‖Ã∗x − b̃∗‖2,

and the scalar ε∗l := ‖x̃∗ − x̃‖.

Return: q̃1−α(t) := quantile(ε∗1 , . . . , ε
∗
m; 1− α).

Note: A similar algorithm works for IHS.

22 / 28

Algorithm (Error estimate for Classic Sketch)

Input: A positive integer m, and the sketches Ã, b̃, and x̃ .

For: l = 1, . . . ,m do

Draw a random vector i := (i1, . . . , it) by sampling t numbers with
replacement from {1, . . . , t}.

Form the matrix Ã∗ := Ã(i, :), and vector b̃∗ := b̃(i).

Compute the vector
x̃∗ := argmin

x∈Rd

‖Ã∗x − b̃∗‖2,

and the scalar ε∗l := ‖x̃∗ − x̃‖.

Return: q̃1−α(t) := quantile(ε∗1 , . . . , ε
∗
m; 1− α).

Note: A similar algorithm works for IHS.

22 / 28

Algorithm (Error estimate for Classic Sketch)

Input: A positive integer m, and the sketches Ã, b̃, and x̃ .

For: l = 1, . . . ,m do

Draw a random vector i := (i1, . . . , it) by sampling t numbers with
replacement from {1, . . . , t}.

Form the matrix Ã∗ := Ã(i, :), and vector b̃∗ := b̃(i).

Compute the vector
x̃∗ := argmin

x∈Rd

‖Ã∗x − b̃∗‖2,

and the scalar ε∗l := ‖x̃∗ − x̃‖.

Return: q̃1−α(t) := quantile(ε∗1 , . . . , ε
∗
m; 1− α).

Note: A similar algorithm works for IHS.

22 / 28

Computational cost

1 Cost of error estimation is independent of large dimension n, whereas
most randomized LS algorithms scale linearly in n.

2 In practice, as few as m = 20 bootstrap samples are sufficient.

3 Implementation is embarrassingly parallel.
(Per-processor cost is O(td2), with modest communication.)

4 Bootstrap computations have free warm starts.

5 Error estimates can be extrapolated (similar to MM context).

23 / 28

Computational cost

1 Cost of error estimation is independent of large dimension n, whereas
most randomized LS algorithms scale linearly in n.

2 In practice, as few as m = 20 bootstrap samples are sufficient.

3 Implementation is embarrassingly parallel.
(Per-processor cost is O(td2), with modest communication.)

4 Bootstrap computations have free warm starts.

5 Error estimates can be extrapolated (similar to MM context).

23 / 28

Computational cost

1 Cost of error estimation is independent of large dimension n, whereas
most randomized LS algorithms scale linearly in n.

2 In practice, as few as m = 20 bootstrap samples are sufficient.

3 Implementation is embarrassingly parallel.
(Per-processor cost is O(td2), with modest communication.)

4 Bootstrap computations have free warm starts.

5 Error estimates can be extrapolated (similar to MM context).

23 / 28

Computational cost

1 Cost of error estimation is independent of large dimension n, whereas
most randomized LS algorithms scale linearly in n.

2 In practice, as few as m = 20 bootstrap samples are sufficient.

3 Implementation is embarrassingly parallel.
(Per-processor cost is O(td2), with modest communication.)

4 Bootstrap computations have free warm starts.

5 Error estimates can be extrapolated (similar to MM context).

23 / 28

Computational cost

1 Cost of error estimation is independent of large dimension n, whereas
most randomized LS algorithms scale linearly in n.

2 In practice, as few as m = 20 bootstrap samples are sufficient.

3 Implementation is embarrassingly parallel.
(Per-processor cost is O(td2), with modest communication.)

4 Bootstrap computations have free warm starts.

5 Error estimates can be extrapolated (similar to MM context).

23 / 28

Empirical performance

‘YearPredictionMSD’ data from LIBSVM: n ≈ 5× 105 and d = 90

CS: fix initial sketch size t0 = 5d and extrapolate on t � t0

IHS: fix sketch size t = 10d and extrapolate on number of iterations

bootstrap samples m = 20

CSCS IHS

24 / 28

Comments on theoretical results

Main result shows that under certain asymptotic assumptions

lim inf
n→∞

P
(
‖x̃ − xopt‖ ≤ q̃1−α(t)

)
≥ 1− α,

and similarly for q̂1−α(t, k) with regard to IHS.

Result holds for any choice of norm ‖ · ‖, provided

(n, t)→∞ with d held fixed
S has i.i.d. entries.
the matrix A>A and A>b are “stable” as n→∞

The most difficult part of the proof concerns the IHS algorithm which is iterative.
This leads to analyzing the distribution of x̂k conditionally on the previous iterates,
and this requires approximations that hold “uniformly” over past iterates.

25 / 28

Comments on theoretical results

Main result shows that under certain asymptotic assumptions

lim inf
n→∞

P
(
‖x̃ − xopt‖ ≤ q̃1−α(t)

)
≥ 1− α,

and similarly for q̂1−α(t, k) with regard to IHS.

Result holds for any choice of norm ‖ · ‖, provided

(n, t)→∞ with d held fixed
S has i.i.d. entries.
the matrix A>A and A>b are “stable” as n→∞

The most difficult part of the proof concerns the IHS algorithm which is iterative.
This leads to analyzing the distribution of x̂k conditionally on the previous iterates,
and this requires approximations that hold “uniformly” over past iterates.

25 / 28

Comments on theoretical results

Main result shows that under certain asymptotic assumptions

lim inf
n→∞

P
(
‖x̃ − xopt‖ ≤ q̃1−α(t)

)
≥ 1− α,

and similarly for q̂1−α(t, k) with regard to IHS.

Result holds for any choice of norm ‖ · ‖, provided

(n, t)→∞ with d held fixed
S has i.i.d. entries.
the matrix A>A and A>b are “stable” as n→∞

The most difficult part of the proof concerns the IHS algorithm which is iterative.
This leads to analyzing the distribution of x̂k conditionally on the previous iterates,
and this requires approximations that hold “uniformly” over past iterates.

25 / 28

Summary

Bootstrapping is a flexible approach to error estimation that can be
adapted to a variety of RandNLA algorithms.

This provides a practical alternative to worst-case error bounds, and
adapts to the input at hand.

The cost of bootstrapping does not outweigh the benefits of
sketching.

The bootstrap computations are highly scalable – since they do not
depend on large dimension n, are easily parallelized, and can be
extrapolated.

Numerical performance is encouraging, and is supported by
theoretical guarantees.

26 / 28

Summary

Bootstrapping is a flexible approach to error estimation that can be
adapted to a variety of RandNLA algorithms.

This provides a practical alternative to worst-case error bounds, and
adapts to the input at hand.

The cost of bootstrapping does not outweigh the benefits of
sketching.

The bootstrap computations are highly scalable – since they do not
depend on large dimension n, are easily parallelized, and can be
extrapolated.

Numerical performance is encouraging, and is supported by
theoretical guarantees.

26 / 28

Summary

Bootstrapping is a flexible approach to error estimation that can be
adapted to a variety of RandNLA algorithms.

This provides a practical alternative to worst-case error bounds, and
adapts to the input at hand.

The cost of bootstrapping does not outweigh the benefits of
sketching.

The bootstrap computations are highly scalable – since they do not
depend on large dimension n, are easily parallelized, and can be
extrapolated.

Numerical performance is encouraging, and is supported by
theoretical guarantees.

26 / 28

Summary

Bootstrapping is a flexible approach to error estimation that can be
adapted to a variety of RandNLA algorithms.

This provides a practical alternative to worst-case error bounds, and
adapts to the input at hand.

The cost of bootstrapping does not outweigh the benefits of
sketching.

The bootstrap computations are highly scalable – since they do not
depend on large dimension n, are easily parallelized, and can be
extrapolated.

Numerical performance is encouraging, and is supported by
theoretical guarantees.

26 / 28

Summary

Bootstrapping is a flexible approach to error estimation that can be
adapted to a variety of RandNLA algorithms.

This provides a practical alternative to worst-case error bounds, and
adapts to the input at hand.

The cost of bootstrapping does not outweigh the benefits of
sketching.

The bootstrap computations are highly scalable – since they do not
depend on large dimension n, are easily parallelized, and can be
extrapolated.

Numerical performance is encouraging, and is supported by
theoretical guarantees.

26 / 28

Recent work

A Bootstrap Method for Error Estimation in Randomized Matrix Multiplication
arxiv:1708.01945

Error Estimation for Randomized Least-Squares Algorithms via the Bootstrap
ICML 2018, and arxiv:1803.08021

Estimating the Algorithmic Variance of Randomized Ensembles via the Bootstrap
The Annals of Statistics (to appear) 2018

27 / 28

Thanks for your attention and NSF DMS-1613218 for partial support.

28 / 28

