5D Respiratory Motion Model Based Image Reconstruction Algorithm for 4D Cone-Beam Computed Tomography

Xiaoqun Zhang

School of mathematical sciences and Institute of Natural Sciences Shanghai Jiao Tong University (SJTU)

May 24, 2016

Joint work with Jiulong Liu¹, Xue Zhang, Hao Gao² (SJTU) Yu Gao, David Thomas, and Daniel A Low (UCLA) Hongkai Zhao (UC Irvine)

SIAM Conference on Imaging Science 2016

¹First author

²Corresponding author: hao.gao.2012@gmail.com

Background

Proposed 4DCBCT Reconstruction Model

Numerical Results

Conclusion and future work

 Background

Outline

Background

Proposed 4DCBCT Reconstruction Model

Numerical Results

Conclusion and future work

4D Cone-Beam CT (4DCBCT)

- 4DCBCT provides respiratory phase-resolved volumetric images
- utilized in radiation therapy to provide 4D image guidance in lung and upper abdomen area.
- However, clinical application of 4DCBCT is currently limited due to the long scan time and low image quality

Background

Challenges for 4DCBCT reconstruction

Figure: Projections: single projection per image

Figure: Rebinnig by cycle

- Few projections
- Binning errors
 - Inaccurate binning

æ

• Uneven binning

Some existing approaches

- No motion estimation: rebinning and reconstruction phase-by-phase (Jia et al., MICCAI, 2010; Gao et al., Medical Physics, 2012.);
- No motion estimation, no rebinning: Low rank matrix/rank sparsity (Cai et al., IEEE TMI, 2014);
- Time-dependent motion estimation (Christoffersen et al., IEEE TMI, 2013; Wang et al., Medical Physics, 2013; Yan et al., Medical Physics, 2014.).

Reconstruction by Rebinning

- Rebinning: Let $\{I_t(x_i, y_j), 1 \le i, j \le N, 1 \le t \le T\}$, y_t the binned projection data to the phase t, and A_t is the X-ray transform at these binned angles.
- The conventional phase-by-phase 4DCBCT methods

$$\min_{I_t} \|A_t I_t - y_t\|_2^2 + \mu |\nabla I_t|_1, 1 \le t \le T$$

• The state-of-art spatiotemporal-TV-based 4DCBCT

$$\min_{\{I_t\}} \sum_t \|A_t I_t - y_t\|_2^2 + \mu \sum_t |\nabla I_t|_1 + \lambda |\partial_t I_t|_1$$

Reconstruction by Rebinning

- Rebinning: Let $\{I_t(x_i, y_j), 1 \le i, j \le N, 1 \le t \le T\}$, y_t the binned projection data to the phase t, and A_t is the X-ray transform at these binned angles.
- The conventional phase-by-phase 4DCBCT methods

$$\min_{I_t} \|A_t I_t - y_t\|_2^2 + \mu |\nabla I_t|_1, 1 \le t \le T$$

• The state-of-art spatiotemporal-TV-based 4DCBCT

$$\min_{\{I_t\}} \sum_t \|A_t I_t - y_t\|_2^2 + \mu \sum_t |\nabla I_t|_1 + \lambda |\partial_t I_t|_2$$

Reconstruction by Rebinning

- Rebinning: Let $\{I_t(x_i, y_j), 1 \le i, j \le N, 1 \le t \le T\}$, y_t the binned projection data to the phase t, and A_t is the X-ray transform at these binned angles.
- The conventional phase-by-phase 4DCBCT methods

$$\min_{I_t} \|A_t I_t - y_t\|_2^2 + \mu |\nabla I_t|_1, 1 \le t \le T$$

• The state-of-art spatiotemporal-TV-based 4DCBCT

$$\min_{\{I_t\}} \sum_t \|A_t I_t - y_t\|_2^2 + \mu \sum_t |\nabla I_t|_1 + \lambda |\partial_t I_t|_1$$

Outline

Background

Proposed 4DCBCT Reconstruction Model

Numerical Results

Conclusion and future work

Proposed 4DCBCT Reconstruction Model

5D Respiratory Motion Model³

Developed to accurately estimate the respiratory motion from CT images.

- X_0 is the reference position
- X the predicted position
- $\vec{lpha}(\vec{X_0})$ and $\vec{eta}(\vec{X_0})$ motion vectors
- v the breathing amplitude, f the breathing rate.

³Low et al., International Journal of Radiation Oncology Biology Physics, 2005, તાલા માટે વાલા માટે વાલા ગાળવાયાં છે. તાલા ગાળવાયાં ગાળવાયાં ગાળવાયાં આવ્યાં છે. તાલા ગાળવાયાં આવ્યાં આવ્યા આવ્યાં આવ્યા આવ્યાં આવ્યા આવ્યાં આવ્યાં આવ્યાં આવ્યાં આવ્યાં આવ્યાં આવ્યા આવ્યાં આવ્યાં આવ્યાં આવ્યાં આવ્યાં આવ્યા આવ્યાં આવ્યા આ

- Let $\{I_t\}$ be the image sequence to be reconstructed from the observed projection data $\{y_t\}$ (without binning).
- The object at \vec{X} in I_0 deforms to a new location \vec{X}_t in an arbitrary image phase I_t through the 5D motion model, i.e.

$$\begin{split} I_0(\vec{X}) &= I_t(\vec{X}_t) \\ \vec{X}_t &= \vec{X} + v_t \vec{M}_1 + f_t \vec{M}_2, \text{ for } 1 \leq t \leq T \end{split}$$

where the displacement vectors (M_1, M_2) are time-independent and the breathing amplitude (f_t) and the breathing rate (v_t) are time-dependent.

• In practice, we assume that the breathing amplitude f_t and rate v_t can be experimentally measured in advance (for regular breathing).

- Let {*I_t*} be the image sequence to be reconstructed from the observed projection data {*y_t*} (without binning).
- The object at \vec{X} in I_0 deforms to a new location \vec{X}_t in an arbitrary image phase I_t through the 5D motion model, i.e.

$$\begin{split} I_0(\vec{X}) &= I_t(\vec{X_t}) \\ \vec{X_t} &= \vec{X} + v_t \vec{M_1} + f_t \vec{M_2}, \text{ for } 1 \leq t \leq T \end{split}$$

where the displacement vectors (M_1, M_2) are time-independent and the breathing amplitude (f_t) and the breathing rate (v_t) are time-dependent.

• In practice, we assume that the breathing amplitude f_t and rate v_t can be experimentally measured in advance (for regular breathing).

- Let {*I_t*} be the image sequence to be reconstructed from the observed projection data {*y_t*} (without binning).
- The object at \vec{X} in I_0 deforms to a new location \vec{X}_t in an arbitrary image phase I_t through the 5D motion model, i.e.

$$\begin{split} I_0(\vec{X}) &= I_t(\vec{X}_t) \\ \vec{X}_t &= \vec{X} + v_t \vec{M}_1 + f_t \vec{M}_2, \text{ for } 1 \leq t \leq T \end{split}$$

where the displacement vectors (M_1, M_2) are time-independent and the breathing amplitude (f_t) and the breathing rate (v_t) are time-dependent.

• In practice, we assume that the breathing amplitude f_t and rate v_t can be experimentally measured in advance (for regular breathing).

• In 2D, let
$$\vec{M_1} = (M_{1x}, M_{1y})$$
 and $\vec{M_2} = (M_{2x}, M_{2y})$. $M = (M_{1x}, M_{1y}, M_{2x}, M_{2y})$.

$$I_0(\vec{X}) = I_t(\vec{X} + L_t(M))$$

with
$$L_t(M) = v_t \vec{M_1} + f_t \vec{M_2}$$
.

Linearization

$$I_0(\vec{X}) \approx I_t(\vec{X}) + \nabla^T I_t \cdot L_t(M)$$

• Finally, we attempt to solve

$$\min_{I_0,M} \sum_t \|A_t(I_0 - \nabla^T I_t \cdot L_t(M)) - y_t\|_2^2 + \mu |\nabla I_0|_1 + \lambda |\nabla M|_1$$

• In 2D, let
$$\vec{M}_1 = (M_{1x}, M_{1y})$$
 and $\vec{M}_2 = (M_{2x}, M_{2y})$. $M = (M_{1x}, M_{1y}, M_{2x}, M_{2y})$.

$$I_0(\vec{X}) = I_t(\vec{X} + L_t(M))$$

with $L_t(M) = v_t \vec{M_1} + f_t \vec{M_2}$.

Linearization

$$I_0(\vec{X}) \approx I_t(\vec{X}) + \nabla^T I_t \cdot L_t(M)$$

• Finally, we attempt to solve

$$\min_{I_0,M} \sum_t \|A_t(I_0 - \nabla^T I_t \cdot L_t(M)) - y_t\|_2^2 + \mu |\nabla I_0|_1 + \lambda |\nabla M|_1$$

Numerical method

 $\bullet\,$ Given I_t^K , we apply the proximal alternating minimization (PAM)^4 to solve

$$\min_{I_0,M} \sum_t \|A_t(I_0 - \nabla^T I_t^K \cdot L_t(M)) - y_t\|_2^2 + \mu |\nabla I_0|_1 + \lambda |\nabla M|_1.$$

$$\begin{cases} I_0^{K+1} = \underset{I_0}{\operatorname{argmin}} & \sum_t \|A_t(I_0 - \nabla^T I_t^K \cdot L_t(M^K)) - y_t\|_2^2 \\ +\mu |\nabla I_0|_1 + \frac{1}{2\sigma} \|I_0 - I_0^K\|_2^2 \\ M^{K+1} = \underset{M}{\operatorname{argmin}} & \sum_t \|A_t(I_0^{K+1} - \nabla^T I_t^K \cdot L_t(M)) - y_t\|_2^2 \\ +\lambda |\nabla M|_1 + \frac{1}{2\eta} \|M - M^K\|_2^2. \end{cases}$$

 $\bullet~{\rm Given}~(I_0^{K+1},M^{K+1}),$ update I_t^{K+1} according to the deformation model

$$I_t^{K+1}(\vec{X} + L_t(M^{K+1})) = I_0^{K+1}(\vec{X})$$

Note that interpolation is needed to compute the cartesian coordinate of I_t from the deformation of I_0 .

⁴Attouch-Bolte-Redont-Soubeyran,2010

Numerical method

 $\bullet\,$ Given I_t^K , we apply the proximal alternating minimization (PAM)^4 to solve

$$\min_{I_0,M} \sum_t \|A_t(I_0 - \nabla^T I_t^K \cdot L_t(M)) - y_t\|_2^2 + \mu |\nabla I_0|_1 + \lambda |\nabla M|_1.$$

$$\begin{cases} I_0^{K+1} = \underset{I_0}{\operatorname{argmin}} & \sum_t \|A_t(I_0 - \nabla^T I_t^K \cdot L_t(M^K)) - y_t\|_2^2 \\ +\mu |\nabla I_0|_1 + \frac{1}{2\sigma} \|I_0 - I_0^K\|_2^2 \\ M^{K+1} = \underset{M}{\operatorname{argmin}} & \sum_t \|A_t(I_0^{K+1} - \nabla^T I_t^K \cdot L_t(M)) - y_t\|_2^2 \\ +\lambda |\nabla M|_1 + \frac{1}{2\eta} \|M - M^K\|_2^2. \end{cases}$$

 $\bullet~{\rm Given}~(I_0^{K+1},M^{K+1}),$ update I_t^{K+1} according to the deformation model

$$I_t^{K+1}(\vec{X} + L_t(M^{K+1})) = I_0^{K+1}(\vec{X})$$

Note that interpolation is needed to compute the cartesian coordinate of I_t from the deformation of I_0 .

⁴Attouch-Bolte-Redont-Soubeyran,2010

Convergence Analysis

• Consider approximated model:

 $\min_{0 \le I_0 \le \alpha, |M|_{\infty} \le \beta} P(I_0, M) := \|A(I_0 - \nabla^T I_0 \cdot L_t(M)) - y_t\|_2^2 + \mu |\nabla I_0|_1 + \lambda |\nabla M|_1$

• Analysis based on Kurdyka-Łojasiewicz (K-Ł) Inequality (Attouch-Bolte-Redont-Soubeyran, Mathematics of Operations Research, 2010).

$$\begin{cases} f(I_0) &= \mu |\nabla I_0|_1 + \mathcal{C}_{0 \le I_0 \le \alpha}(I_0) \\ Q(I_0, M) &= \sum_t ||A_t(I_0 - \nabla^T I_0 \cdot L_t(M)) - y_t||_2^2, \\ g(M) &= \lambda |\nabla M|_1 + \mathcal{C}_{-\beta \le M \le \beta}(M) \end{cases}$$

- It can be shown that
 - $P(I_0, M)$ is a K-Ł function.
 - The sequence $Z^K = (I_0^K, M^K)$ is subsequence-convergent.
 - $\nabla Q(I_0, M)$ has a Lipschitz constant on any bounded set.
 - The sequence $Z^K = (I_0^K, M^K)$ converges to the critical point of $P(I_0, M)$.

Outline

Background

Proposed 4DCBCT Reconstruction Model

Numerical Results

Conclusion and future work

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Simulation

- Methods in comparison: FBP, spatial TV (phase-by-phase), spatialtemporal-TV
- 570 projections are evenly distributed between 0 and 2π and the image size is 500×500 (visualization size 500×300)
- For the proposed method, every I_t has a single projection data y_t .
- The motion are simulated via 5D model with measured data.

Figure: Breathing amplitude v and breathing rate f. (Left) Periodic breathing; (Right) non-periodic breathing.

Rebinning for the methods in comparison

• 570 projections are binned to 10 phases.

Phase Period	1 st	2 nd	3 rd	4 th	5 th `	6 th	7 th	8 th	9 th	10 th
1	1-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31	32-35	36-38
2	39-41	42-45								
3	77-79									

Figure: Ground truth(Phase 3). (a) Periodic breathing; (b) non-periodic breathing.

Reconstruction results for periodic breathing

Figure: Reconstruction results for periodic breathing (Phase 3). (a) FBP; (b) spatial TV; (c) spatiotemporal TV; (d) 5D Method.

Reconstruction errors for periodic breathing

Figure: Reconstruction errors and zoom-in details for periodic breathing (Phase 3). (a) FBP; (b) spatial TV; (c) spatiotemporal TV; (d) 5D Method.

Reconstruction results for non-periodic breathing

Figure: Reconstruction results for non-periodic breathing (Phase 3). (a) FBP; (b) spatial TV; (c) spatiotemporal TV; (d) 5D Method.

Reconstruction errors for non-periodic breathing (Phase 3)

Figure: Reconstruction errors and zoom-in details for non-periodic breathing (Phase 3). (a) FBP; (b) spatial TV; (c) spatiotemporal TV; (d) 5D Method.

Reconstructed motion vector

Figure: M_{1x} for periodic breathing. (Left) Ground truth; (Middle) Reconstructed; (Right) The error.

Figure: M_{1x} for non-periodic breathing. (Left) Ground truth; (Middle) Reconstructed; (Right) The error.

Quantitative reconstruction errors

Table: Relative errors between reconstructed images and ground truth (unit in %)

Method	FBP	spatial TV	spatiotemporal TV	5D Method
Periodic	27.63	3.75	2.91	0.44
Non-periodic	28.14	3.86	2.96	0.45

Conclusion and future work

Outline

Background

Proposed 4DCBCT Reconstruction Model

Numerical Results

Conclusion and future work

↓ □ ▶ ↓ ● ▶ ↓ ■ ▶ ↓ ■ → Q @
23/25

Conclusions and future work

- Conclusions
 - developed a new 4DCBCT image reconstruction method incorporating the breath motion.
 - improved image reconstruction from standard and state-of-art methods for both periodic and non-periodic breathing.
- Future work
 - validation on 4D image (ongoing) and real data.
 - convergence analysis on the original model.

Thank you

Thank you!

Jiulong Liu, Xue Zhang, Xiaoqun Zhang, Hongkai Zhao, Yu Gao, David Thomase, Daniel A Lowe, and Hao Gao. 5D respiratory motion model based image reconstruction algorithm for 4D cone-beam computed tomography. *Inverse Problems*, Volume 31, Number 11, 2015