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nonlinear filter problem*
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*"The Oxford handbook of nonlinear filtering," edited by Dan Crisan and 

Boris Rozovskii, Oxford University Press, 2011.
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curse of dimensionality for classic particle filter*

optimal

accuracy:

r = 1.0

5
*Daum & Huang, IEEE AES Big Ski Conference, March 2003.
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prediction of  

conditional

probability 

density from 

tk-1 to tk

nonlinear filter*

solution of 

Fokker-Planck

equation

measurements

),(),(),(

:rule Bayes'     

1 kkkkkk txzpZtxpZtxp −=
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*Yu-Chi Ho & R. C. K. Lee, "A Bayesian approach to problems in stochastic estimation 

and control," IEEE Transactions on automatic control, pages 333-339, October 1964.
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particle degeneracy*

likelihood

h(x)
prior

density

g(x)

particles to represent the prior

7

*Daum & Huang, “Particle degeneracy: root cause & solution,”  SPIE Proceedings 2011.
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particle degeneracy*

likelihood

h(x)
prior

density

g(x)

particles to represent the prior

8

*Daum & Huang, “Particle degeneracy: root cause & solution,”  SPIE Proceedings 2011.
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chicken & egg problem

How do you pick a 

good way to represent 

the product of two 

functions before you 

compute the product 

itself?
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induced flow of particles for Bayes’ rule

pdf pdf

particles particles

flow of density

flow of particles

(sample from
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prior = g(x) posterior = g(x)h(x)/K(1)
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λ = continuous parameter         

(like time)

λ = 0λ = 0λ = 0λ = 0 Unrestricted Content



likelihood of 

measurement
prior

density

particles to represent the prior

pdf pdf

particles particles

flow of density

flow of particles
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initial probability distribution of particles:

λ = 0.0
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λ = 0.1

flow of particles (for one noisy measurement of sin(θ) with Bayes’ rule):
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λ = 0.2

flow of particles (for one noisy measurement of sin(θ) with Bayes’ rule):
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λ = 0.3

flow of particles (for one noisy measurement of sin(θ) with Bayes’ rule):
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λ = 0.4

flow of particles (for one noisy measurement of sin(θ) with Bayes’ rule):
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λ = 0.5

flow of particles (for one noisy measurement of sin(θ) with Bayes’ rule):
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λ = 0.6

flow of particles (for one noisy measurement of sin(θ) with Bayes’ rule):
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λ = 0.7

flow of particles (for one noisy measurement of sin(θ) with Bayes’ rule):
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λ = 0.8

flow of particles (for one noisy measurement of sin(θ) with Bayes’ rule):
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λ = 0.9

flow of particles (for one noisy measurement of sin(θ) with Bayes’ rule):
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one noisy measurement of sin(θ) with Bayes’ rule):

λ = 1
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incompressible 
flow

irrotational flow
Coulomb’s law 

flow
small curvature 

flow

Gaussian 
densities

exponential 
family

Fourier 
transform flow

constant curvature 
& constant speed 

flows

differential 
Knothe-

Rosenblatt flow
stochastic flows

method of 
characteristics

geodesic 

flows

stabilized 

flows

finite 
dimensional 

flow

direct 
integration

optimal Monge-
Kantorovich 

transports

Gibbs sampler 
like flow

Gromov’s

method

renormalization 
group flow 

inspired by QFT

Monge-Ampère 
with N-principle

separation of 
variables 

non-optimal 
transport

Moser coupling 
flow

Monge-Ampère 
flow

hybrid particle-
parameter flow
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exact particle flow for Gaussian densities:
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dx/dλ does not 

depend on K(λ), 

despite the fact that 

the PDE does!
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incompressible particle flow
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dx/dλ does not 

depend on K(λ), 

despite the fact that 

the PDE does!
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geodesic particle flow* :
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If we approximate the density p as Gaussian, then the observed Fisher information matrix 

can be computed using the sample covariance matrix (C) over the set of particles:

dx/dλ does not 

depend on K(λ), 

despite the fact that 

the PDE does!

*Daum & Huang, “particle flow with non-zero diffusion for nonlinear 

filters," SPIE conference proceedings, San Diego, August 2013.
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derivation of PDE for particle flow with Q ≠ 0:
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stochastic particle flow:
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stochastic particle flow:
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new
flow

incompressible flow

Gaussian flow

MALA, HMC, auxiliary & bootstrap

N = 1,000 particles

nonlinear dynamics & nonlinear measurements 

dimension of state vector = 17

100 Monte Carlo trials, SNR = 20 dB

time

d = 42 states
N = 10,000 particles

10

Metropolis adjusted Langevin

Hamiltonian Monte Carlo

regularized bootstrap
auxiliary particle filter

stochastic particle flow filter

incompressible flow

Gaussian flowmedian

error
over 

100

Monte 
Carlo 

runs

stochastic

particle flow

100

1000

1

10,000

100,000
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31

There exists a “nice” solution (i.e., no integration required) to a

linear constant coefficient PDE for smooth functions if and only if

the number of unknowns is sufficiently large (at least the number 

of linearly independent equations plus the dimension of x).Unrestricted Content



simplest non-trivial example of 

Gromov’s method:
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generalization of Gromov’s method:
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further generalization of Gromov’s method:
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even further generalization of Gromov’s method:
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stochastic particle flow:
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WHY 
STOCHASTIC

?
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benefit of stochastic vs. deterministic flow

deterministic flow

stochastic flow
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WHY STOCHASTIC?
1. it works better (see plots)

2. all practical particle filters that actually work robustly use 

stochastic methods; e.g., “roughening” in bootstrap filter, 

“rejuvenation” in optimal transport, “pseudo-noise” in second 

generation ensemble Kalman filter, Metropolis-Hastings, 

Hamiltonian Monte Carlo, Metropolis adjusted Langevin (MALA)

3. correction for bias of fixed (random) initial distribution of particles

4. the solution of our PDE using Gromov’s method requires a 

stochastic term (to make the PDE sufficiently 

underdetermined)

5. stochastic term is required in order to give correct uncertainty 

quantification (e.g., covariance consistency); theory & MC

6. simple intuition from real world: how well would your car work at 

absolute zero temperature?
39Unrestricted Content



algorithm randomness comment

bootstrap particle filter 
(1993)

roughening & 
resampling

ad hoc randomness

other standard particle 

filters

roughening & 

resampling

ad hoc randomness

optimal transport none rigorous math theorems

Reich’s optimal 
transport particle filters

rejuvenation ad hoc randomness

early ensemble Kalman 

filters (1994)

none did not work well for many

problems

mature ensemble 

Kalman filters (1998)

artificial measurement 

noise

fixes problems of early 

ensemble Kalman filters

early particle flow filters none covariance optimistic for 
many problems

stochastic particle flow 

filters (2016)

non-zero diffusion for 

Bayes’ rule

principled math derivation 

of stochastic flow & 
improved accuracy & 

covariance consistency
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new nonlinear filter: particle flow

new particle flow filter standard particle filters

many orders of magnitude faster than 

standard particle filters for difficult high 

dimensional problems

suffers from curse of dimensionality due to 

particle degeneracy

Bayes’ rule is computed using particle flow 

(like physics)

Bayes’ rule is computed using a pointwise 

multiplication of two functions 

no proposal density depends on proposal density (e.g., 

Gaussian from EKF or UKF or other)

no resampling of particles resampling is needed to repair the damage 

done by Bayes’ rule

embarrassingly parallelizable suffers from bottleneck due to resampling

computes log of unnormalized density suffers from severe numerical problems 

due to computation of normalized density

avoid normalization of conditional density & 

mitigate stiffness of flow

pick good proposal density for resampling 

(e.g., bootstrap or EKF or UKF)

stochastic particle flow ad hoc roughening or rejuvenation of 

particles (covariance inflation)

assumes smooth nowhere vanishing 

densities (and exploits such regularity)

does not exploit any smoothness or other 

regularity of densities or functions
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stochastic particle flow:
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Daum, Huang & Noushin,

“new theory & numerical 

experiments for Gromov’s 

method,” researchgate

(free on-line) 

May 2017
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BACKUP
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further research:

(1) compute f & Q assuming that g & h are in the exponential family 
(rather than Gaussian) or Gaussian mixture or exponential mixture

(2) compute f & Q without assuming that the last 3 terms in the PDE 
sum to zero (but rather something else nice of our design)

(3) use Dirac approximation to solution of Fokker-Planck equation

(4) geometric solutions of PDE using involution or other EDS ideas 
(Deane Yang, Robert Bryant, Shirley Yap)

(5) compute SQRT(Q) rather than Q

(6) use QMC with Hilbert space filling curve rather than boring old 
Monte Carlo samples (Gerber & Chopin 2015)

(7) numerical experiments & practical applications

(8) many more open problems; state & prove theorems, bounds,….
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how to mitigate stiffness in ODEs for certain particle flows* 

method computational

complexity

filter 

accuracy

comments

1. use a stiff ODE solver (e.g., implicit 

integration rather than explicit)
large to 

extremely large

uncertain standard textbook 

advice

2. use very small integration steps everywhere extremely large good brute force 

solution

3. use very small integration steps only where 

needed (adaptively determined)
small to medium 2nd best Shozo Mori & 

Daum (2016)

4. use very small integration steps only where 

needed (determined non-adaptively)
small 3rd best easy to do with 

particle flow

5. transform to principal coordinates or 

approximately principal coordinates
small best easy for certain 

applications

6. Battin’s trick (i.e., sequential scalar 

measurement updates)
small very bad destroys particle 

flow

7. Tychonov regularization of the 

Hessian of  log p
very small often helps

8. shrinkage of the Hessian of log p very small often helps Khan & Ulmke

(2015)

45*Daum & Huang, “seven dubious methods to mitigate stiffness in particle 

flow for nonlinear filters,” Proceedings of SPIE Conference, May 2014.
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item deep learning particle flow

purpose learning & decisions learning & estimation & decisions

interesting wrinkle (which 

annoys many people)

lack of uniqueness of solution for 

highly non-convex loss functions

lack of uniqueness for solution of 

highly underdertermined transport 

PDE

architecture many layers many steps in log-homotopy

fundamental issues curse of dimensionality & 

ill-conditioning & singularity of 

Hessian

curse of dimensionality &

ill-conditioning & singularity of 

Hessian

tools stochastic gradient or natural gradient stochastic natural gradient

representation of geometry Hessian of loss function (log p) Hessian of log p

useful theory to explain 

performance

none none

performance evaluation numerical experiments numerical experiments

theory of design ersatz Bayesian echt Bayesian

computers of choice today GPUs GPUs

regularization random dropout & sparsity of 

coupling between layers and within 

layers 

Tychonov regularization or 

shrinkage or preferred coordinate 

system

key adaptive method adaptive learning rate adaptive step size in λ

dynamics of learning backpropagation (i.e., chain rule) Fokker-Planck equation (i.e., chain 

rule) 46Unrestricted Content



BIG DIG (17 million cubic yards of dirt, one 
million truckloads & $24 billion)*

47

*Daum & Huang, “particle flow & Monge-Kantorovich transport,”
proceedings of FUSION conference, Singapore, July 2012.Unrestricted Content



superb books on transport theory

Cédric Villani, “Topics in 

optimal transportation,” 

AMS Press 2003.  

Very clear & accessible 

introduction; wonderful 

book!

Cédric Villani, “Optimal 

transport: old & new,” 

Springer-Verlag 2009.  More 

detailed & rigorous math; 

free on internet!
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history of mathematics

1. creation of the integers

2. invention of counting

3. invention of addition as a fast 

method of counting

4. invention of multiplication as a 

fast method of addition

5. invention of particle flow as a 

fast method of multiplication*
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(1) Fred Daum, Jim Huang & Arjang Noushin, “Gromov’s method for Bayesian 

stochastic particle flow: a simple exact formula for Q,” Proceedings of IEEE 

Conference on Multisensor Data Fusion, Baden-Baden, September 2016.

(2) Fred Daum, “nonlinear filters: beyond the Kalman filter," IEEE Aerospace & 

Electronic Systems Magazine special tutorial, pages 57-69, August 2005. 
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transport” Proceedings of SPIE Conference, Baltimore, April 2014.
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(7) Muhammad Khan & Martin Ulmke, “improvements in the implementation of log-

homotopy based particle flow filters,” Proceedings of IEEE FUSION Conference, 

Washington DC, July 2015.
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Transactions on Signal Processing, preprint, February 2017.
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derivation of particle flow with Q ≠ 0:
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assuming that Q is a constant positive multiple of the identity 

matrix, i.e., Q = αI, and approximating f using small curvature 

flow & natural gradient flow, we get:
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Chris Kreucher, “A Geodesic Flow Particle Filter for

Non-Thresholded Measurements,” 14 October 2016.
Unrestricted Content



54
Nima Moshtagh, Jonathan Chan, Moses Chan, “Homotopy Particle Filter for Ground-

Based Tracking of Satellites at GEO,” AMOS Conference, Hawaii September 2016. 

boring old EKF standard 
particle 

filter 

particle flow filter 
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Nima Moshtagh, Jonathan Chan, Moses Chan, “Homotopy Particle Filter for Ground-

Based Tracking of Satellites at GEO,” AMOS Conference, Hawaii September 2016. 
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MATLAB 
was vectorized

for SIRPF but 
not the HPF 

Nima Moshtagh, Jonathan Chan, Moses Chan, “Homotopy Particle Filter for Ground-

Based Tracking of Satellites at GEO,” AMOS Conference, Hawaii September 2016. 
Unrestricted Content



new filter improves angle rate estimation accuracy 
by two or three orders of magnitude

extended Kalman filter diverges because it cannot model 

multimodal conditional probability densities accurately

highly nonlinear dynamics:

3121233

2313122

1232311

)(

)(

)(

MIII

MIII

MIII

=−+

=−+

=−+

ωωω

ωωω

ωωω

&

&

&

0 2 4 6 8 10
10

-3

10
-2

10
-1

10
0

10
1

10
2

Time (sec)

 

 

EKF

PF Incompressible

PF Ax+B

extended Kalman filter

standard particle filter

particle flow filter

N = 500 particles

SNR = 20 dB

WB range & Doppler data

d = 6

median error in 

angle rates

(rad/sec)

Unrestricted Content



N = 1,000 particles

100 Monte Carlo trials
20 dB SNR

10% tropo & SDMB 
d = 6
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particle flow
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IMU-only Navigation problem (no GPS)

Time after Launch (s)

P
o
s.

 E
st

.

E
rr

o
r 

(m
)

V
el

. 
E

st
.

E
rr

o
r 

(m
/s

ec
)

A
tt

. 
E

st
.

E
rr

o
r 

(a
rc

se
c)

particle flow

NAV solution
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particle flow

NAV solution =

particle flow

EKF diverges (not shown); d = 15, N = 1000
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(1) linear PDE in unknown f or q

(2) constant coefficient PDE in q

(3) first order PDE

(4) highly underdetermined PDE

(5) same as the Gauss law in Maxwell’s equations

(6) same as Euler’s equation in fluid dynamics

(7) existence of solution if and only if volume integral of η is zero

(i.e., neutral charge density for plasma; satisfied automatically)
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the N-principle*

64

*Emily Walsh & Chris Budd, “moving mesh methods for problems 

in meteorology,” talk at ICIAM Vancouver 2011.
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STIFFNESS
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What is 
“stiffness” 
(in the 

context of 
ODEs)?
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various definitions of “stiff” ODE:

1. An ODE is “stiff” if certain numerical integration 

methods are unstable unless we use an extremely 

small step size.

2. An ODE is “stiff” if explicit methods for 

numerical integration do not work well.

3. An ODE is “stiff” if the Jacobian matrix of the 

flow is ill-conditioned.

4. An ODE is “stiff” if the solution changes rapidly 

over a time scale that is short compared with the 

time interval of interest.

5. Stiff ODEs are evil.
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geodesic particle flow :
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If we approximate the density p as Gaussian, then the observed 

Fisher information matrix can be computed using the sample 

covariance matrix (C) over the set of particles:
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how to mitigate stiffness in ODEs for certain particle flows* 

method computational

complexity

filter 

accuracy

comments

1. use a stiff ODE solver (e.g., implicit 

integration rather than explicit)
large to 

extremely large

uncertain standard textbook 

advice

2. use very small integration steps everywhere extremely large good brute force 

solution

3. use very small integration steps only where 

needed (adaptively determined)
small to medium 2nd best Shozo Mori & 

Daum (2016)

4. use very small integration steps only where 

needed (determined non-adaptively)
small 3rd best easy to do with 

particle flow

5. transform to principal coordinates or 

approximately principal coordinates
small best easy for certain 

applications

6. Battin’s trick (i.e., sequential scalar 

measurement updates)
small very bad destroys particle 

flow

7. Tychonov regularization of the 

Hessian of  log p
very small often helps

8. shrinkage of the Hessian of log p very small often helps Khan & Ulmke

(2015)

69*Daum & Huang, “seven dubious methods to mitigate stiffness in particle 

flow for nonlinear filters,” Proceedings of SPIE Conference, May 2014.
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lambda = 

0
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example of non-adaptive

non-uniform step size in lambda
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this flow requires adaptive 

numerical integration to mitigate 

stiffness (see Shozo Mori 2016)
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stan v2.10.0
Daniel Lee; Bob Carpenter; Peter Li; Michael Betancourt; maverickg; Marcus Brubaker; Rob Trangucci; 
Marco Inacio; Alp Kucukelbir; Mitzi Morris; bgoodri; Jeffrey Arnold; Dustin Tran; Matt Hoffman; Stan 
buildbot; Avraham Adler; Alexey Stukalov; Allen Riddell; Rob J Goedman; Kevin S. Van Horn; Juan 
Sebastián Casallas; Mike Lawrence; Amos Waterland; Jonah Gabry; Daniel Mitchell; tosh1ki; wds15; 
Krzysztof Sakrejda; Guido Biele; Damjan Vukcevic

v2.10.0 (17 June 2016) New Team Members

�  Aki Vehtari (Aalto Uni) --- GPs, LOO, statistical modeling, MATLAB
�  Rayleigh Lei (U. Michigan) --- vectorizing functions
�  Sebastian Weber (Novartis) --- diff eq models

�  �  �  �  stiff diff eq solver CVODES from Sundials

�  add control parameters (tolerance, max iteraitons) to ODE solvers

�  rename ODE solvers based on algorithm, integrate_ode_rk45 for existing non-stiff Runge-Kutta
solver

and integrate_ode_bdf for the stiff backward differentiation form; deprecate the unmarked 

integrate_ode
function (#1886)

�  limiting diff eq iterations in solvers (Boost/CVODES)
�  unit_vector as parameter (#1713) [it never worked in the past]
�  rename multiply_log and log_binomial_coefficient to lmultiply and lchoose (also part of #1811)
�  incomplete beta function as inc_beta (#1540)
New Internal Features

�  exhaustive HMC (XHMC)
�  multinomial variant of NUTS (#1846)
�  simplified NUTS criterion (#1852)
�  uniform static HMC (#1849)

�  Riemannian HMC with SoftAbs (#304)

14.7 MB Preview Download
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What is Stan? 

•“Probabilistic programming language implementing full 
Bayesian statistical inference” 
–MCMC sampling (Hamiltonian MC, NUTS) 
–Maximum likelihood estimation (BFGS) 

•Coded in C++ and runs on all major platforms 
•Open-source software (+ maintained): http://mc-stan.org/ 
•Standalone software, or interfaces with R, Python, Matlab, 
Julia 
•HMC uses gradient information � less affected by 
correlations between parameters than random walk MC 
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Contributions from ExaScience Lab

•More complex models 
•Bug fixes: 
–Memory leak (later incorporated into Stan 2.6) 
–Initial condition ODE (t0): removed restriction (timepoints
≠ t0) 
•Implemented better ODE solver: CVODE (Sundials) 
–Currently in Stan: only Runge-Kutta (simple/non-stiff) 
–CVODE: can deal with difficult (stiff/unstable) models 
–Jacobian: built using the auto-diff system of Stan 
•Stan development team (Daniel Lee) is currently looking at 
Stan-CVODE implementation 
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