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Mean Field Games (MFG) study collective behavior of rational agents.

@ collective behavior = infinitely many agents, having individually a negligible influence on
the global system

@ rational agents = each agent controls his state in order to minimize a cost which depends
on the other agents’ positions

Some references :

— Early work by Lasry-Lions (2006)
... and Caines-Huang-Malhamé (2006)

— Similar models in the economic literature :
heterogeneous agent models
(Aiyagari ('94), Bewley ('86),
Krusell-Smith (98),...)
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Amblematic equations

Two key equations :
@ The MFG system (finite dimensional)
@ The Master equation (infinite dimensional)

The MFG system :

—8 —vAU+ H(x,Du,m)=0  in(0,T) x RY
(MFG) dm — vAm — div (mDpH(x, Du,m)) =0  in (0, T) x RY
U(T7 X) = G(X’ m(T))a m(t07 ) = Mg in Rd

where

@ the unknown are u = u(t, x) and m = m(t, x) with m(t, -) a probability density for any
te[o, 7],

@ H=H(x,p,m):RY x R x P(RY) — R is a Hamiltonian (convex in p)
@ my € P(RY) is the initial condition for m,

@ G = G(x,m):RY x P(RY) — R is a terminal condition for u

@ v > 0is a fixed volatility.
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The Master equation :

—0U — (v + B)DxU + H(x, DU, m)
_(y+@)/ divy [DmU] dm(y)+/ DmU - DpH(y, Dy U, m) dm(y)
Rd JRd

—Zﬂ/ddivx [DmU] dm(y)—,8/2d T [ D8] dm@om =0
R R

in [0, T] x R x P(RY)
U(T,x,m) = G(x,m)  inRY x P(RY)

where
@ v, > 0 are fixed parameters,
@ the unknown is U : [0, T] x T9 x P(RY) — R,

@ 0:U, DxU and A, U stand for the usual derivatives with respect to the local variables (t, x)
of U,

@ DnU and D2,,U are the first and second order derivatives with respect to the measure m,
@ Hand G are the same as for the MFG system.
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Aim of the talk

@ Discuss the meaning and the well-posedness of the two equations.

@ Show that the MFG system can be obtained as a “mean field limit".

@ Discuss the numerical approximation of MFG.

Missing parts : the talk will not present the stochastic aspects of MFG.

(Caines-Huang-Malhamé, Carmona-Delarue, Kolokoltsov, Bensoussan-Frehse-Yam,...)

P. Cardaliaguet (Paris-Dauphine) Mean field games 5/79



Outline

0 Interpretation of the MFG system
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@ The Master equation
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Outline

0 Interpretation of the MFG system

The classical MFG system
@ The fixed-point approach
@ Variational aspects

The mean field limit and the master equation
@ The Master equation
@ Convergence of the Nash system

e Numerical approximation and application to crowd motion
@ Numerical approximation of mean field games
@ Crowd Motion
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Interpretation of the MFG system

Outline

0 Interpretation of the MFG system
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Interpretation of the MFG system

We discuss here the meaning of the MFG system :
()  —dw—vAu+H(x,Du,m)=0  in(0,T) x RY
(MFG) (ify  8tm—vAm — div(mDpH(x, Du,m)) =0 in (0, T) x RY

iy u(T,x) = G(x,m(T)), m(fy,) =mg  inRY
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Interpretation of the MFG system

By fixed point argument : fix a family (m = m(t));c[o, of probability densities on RY.
An average agent controls the stochastic differential equation
dXs = asds + V20dBs, X = x

where ¢ := /v, (as) is the control and (Bs) is a standard B.M. He aims at minimizing the cost

J(x, (as),m) :=E /[T L(Xs, s, m(s)) ds + G(X7,m(T))| .

where L(X7 q, m) = Sup {7<p7 Q> - H(vaa m)}
pER
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pER

His value function u is given by

u(t,x) = (ior):) J(x, (as), m) .
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Interpretation of the MFG system

By fixed point argument : fix a family (m = m(t));c[o, of probability densities on RY.
An average agent controls the stochastic differential equation
dXs = asds + V20dBs, X = x

where ¢ := /v, (as) is the control and (Bs) is a standard B.M. He aims at minimizing the cost

J(x, (as),m) :=E /[T L(Xs, s, m(s)) ds + G(X7,m(T))| .

where L(X7 q, m) = Sup {7<p7 Q> - H(vaa m)}
pER

His value function u is given by

u(t,x) = (ior):) J(x, (as), m) .

Recall that u depends on m!!!
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Interpretation of the MFG system

@ The value function u then satisfies the Hamilton-Jacobi equation
() =8 —vAu+H(x,Duym)=0 inR? x (0,T)
(i) u(x,T)= G(x,m(T))  inR?
@ The optimal control is given by

o (t,x) = —DpH(x, Du(t, x), m(t)) .
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Interpretation of the MFG system

@ The value function u then satisfies the Hamilton-Jacobi equation
() =8 —vAu+H(x,Duym)=0 inR? x (0,T)
{ (i) u(x,T)= G(x,m(T))  inR?
@ The optimal control is given by
o (t,x) = —DpH(x, Du(t, x), m(t)) .

Proof by verification : /f u solves (i) and (iii), we have by It6’s formula,

EE l:u(s Xs) — /TL(XT,aT,m(T))dT

= E[0su(s, Xs) + (Du, as) + vAu + L(Xs, as, m(8))]
> E[0su(s, Xs) + vAu — H(Xs, Du, m(s))] =

with equality only for a = a*.
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Interpretation of the MFG system

Integrating between 0 and T :
r
E |u(T,X7)— u(t,x)+ / L(Xr,ar,m(7))d7r| >0
t

with equality for a = a*.
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Interpretation of the MFG system

Integrating between 0 and T :
r
E [u(T, X7) — u(t,x)+/ L(XT,aT,m(-r))dr] >0
t

with equality for a = a*.

By (i), u(T, Xr) = G(Xr, m(T)), so that
T
u(t,x) < E [/ L(Xs, ar, m(r))dT + G(Xr, m( T))]
t

with equality fora = a*.
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Interpretation of the MFG system

Integrating between 0 and T :
r
E [u(T, X7) — u(t,x)+/ L(XT,aT,m(-r))dr] >0
t

with equality for a = a*.

By (iii), u(T, X7) = G(X7, m(T)), so that
T
u(t,x) < E [/ L(Xs, ar, m(r))dT + G(Xr, m( T))]
t
with equality fora = a*.

Therefore u is the value function.
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Interpretation of the MFG system

To summarize : Given a family (m(t));c[o, ) of probability densities,
@ the value function u of an average agent is the solution to the HJ eq

() —dwu—vAu+H(x,Du,m)=0 inR? x (0, T)
{ (i) u(x,T) = Gox,m(T))  inRY

@ The optimal control is given by
o™ (t,x) = —DpH(x, Du(t, x), m(t)) .
@ Therefore its optimal dynamics solves the SDE
dXs = —DpH(Xs, Du(t, Xs), m(s))ds + v20dBs, X; = x

@ Assuming that the initial distribution of the players is the probability my and that the

Brownian Motions of the players are all independent, the actual distribution (/(t))cpo, 77 Of

the players solves the Kolmogorov equation

{ (if)y 8y — vAm — div(m DpH(x, Du,m)) = 0 inRY x (0, T)

(iiy  m0)=my  inRY

A solution (u, m) of the MFG system is a fixed point of the map m — . J
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Interpretation of the MFG system

Comments :

@ The MFG system describes a Nash
equilibrium configuration.
—> no agent has interest to deviate
unilaterally.

@ It relies on two key assumptions :
— rationality of the agents

— the agents are infinitesimal, indistinguishable with independent noises.
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Interpretation of the MFG system

Validity of the MFG systems :

@ Used in many areas :

@ Economic models (Heterogeneous agent, finance,...)
@ Engineering literature (wireless power control,...)
@ Crowd motion, vaccination strategies, etc...

@ MFG models as limit of Nash equilibrium configuration for finitely many agents
(C.-Delarue-Lasry-Lions)

@ Learning procedures
(C.-Hadikhanloo)

In terms of mathematical analysis :

@ The forward-backward coupling is unusual and challenging in terms of PDE
@ ltis related to calculus of variation and optimal control of PDEs
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The classical MFG system

Outline

The classical MFG system
@ The fixed-point approach
@ Variational aspects
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The classical MFG system

We now discuss the well-posedness of the MFG system :
() —dw—vAu+H(x,Du,my=0 in(0,T) x RY
(MFG) (ify  8rm—vAm — div(mDpH(x, Du,m)) =0 in (0, T) x RY
(i) u(T,x) = G(x,m(T)), m(ty,) =my  inRY

4 different regimes :
@ Local/non local coupling,
@ either (x, p) — H(x, p, m) is “smooth" whatever m € P(R?),
@ or H(x,p, m) = H(x, p, m(x)) where m = m(x)dx

@ Uniformly parabolic/degenerate parabolic
Namely : either v > 0 or v = 0.

Here we study :
o Nonlocal, uniformly parabolic regime
@ Nonlocal, first order regime
e Local, first order regime (by variational methods)
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The classical MFG system The fixed-point approach

Outline

The classical MFG system
@ The fixed-point approach
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The classical MFG system The fixed-point approach

For simplicity, we work

@ with periodic boundary conditions
i.e., in the torus T = RY /79,

@ and with separate Hamiltonian :

H(x,p,m) = H(x,p) — F(x, m)

Under these conditions, the MFG system becomes :
()  —dw —vAu+ H(x,Du) = F(x,m(t))  in (0, T) x T¢
(MFG) (i) &m —vAm —div(mDpH(x, Du)) =0  in (0, T) x T¢

(i) u(T,x) = G(x,m(T)), m(ty,”) =my  inT9
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The classical MFG system The fixed-point approach

Nonlocal, uniformly parabolic regime

Existence : We assume that
0 v >0,
@ F and G are Lipschitz continuous in T¢ x P(T?).

© F(,m) and G(-, m) are bounded in C1+8(T9) and C2+A(T?) (for some 8 € (0,1))
uniformly with respect to m € P(T9).

@ The Hamiltonian H : T¢ x RY — R is locally Lipschitz continuous, DpH exists and is
continuous on T9 x R?, and H satisfies the growth condition

(DxH(x,p), p) > —Co(1 + |pI?)

for some constant C, > 0.

Q The probability measure my is absolutely continuous with respect to the Lebesgue
measure, has a C>t# continuous density.

Theorem (Lasry-Lions '06)

Under the above assumptions, there is at least one classical solution to the MFG system.
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The classical MFG system The fixed-point approach

Proof : Let m = (m(t)) € C'/3(|[0, T], P(T?)) with m(0) = my and let u solve
—8iUu — vAU+ H(x, Du) = F(x,m(t))  in (0, T) x T¢
{ u(T,x) = G(x,m(T)),  inT?
Then u € C'*+a/2:2+e with bounded norm.
Let now m be the solution to
A — vAM — div (MDpH(x,Du)) =0  in (0, T) x T¢
{ (ty,-) =mg  inTY

Then i € C'+a/2.2+a n ¢1/2([0, T], P(T?)) with bounded norm.

Conclusion by Schauder fixed point Theorem. O
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The classical MFG system The fixed-point approach

Uniqueness : Assume in addition that
@ Either T > 0is “small"
@ Or H = H(x, p) is uniformly convex in p and F and G are monotone :

/ (F(x, m) — F(x,m'))(m — m') >0, / (G(x, m) — G(x, m'))d(m — m') > 0,
Td Td
for any m, m’ € P(T9).

Theorem (Lasry-Lions '06)
Under the above assumptions, the solution to (MFG) is unique.

Typical example : F(m) = (p = m)  p, where p is smooth and symmetric.
Then

[ () = Fym—m) = [ (o (m—m))? > 0
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The classical MFG system The fixed-point approach

Proof : Let (u1, my) and (uz, my) be two solutions. Set & = uy — up and M = my — my. Then

%/Td um = /d(a,mr‘n+ u(0m)

= Td(*AU + H(x, Duy) — H(x, Dup) — F(x, my) + F(x, mz))m
+D(Aﬁ7 —+ div(m1 DpH(X7 DU1 )) — div(m2 DpH(X, DUZ)))

Note that
/ —(Au)m+u(Am)=0

and, from the monotonicity condition on F,
[ (RO m) + Foxama)m= [ (=Fxmi) + Foxme))(mi - me) <.
T T
Integrating by parts the termsin H :

[ (HOx. Duy) = Hi(x, Dug))in — (DG, my Dph(x, Dur) — me DaHi(x, D))
Td
= —/ my (H(x, Duz) — H(x, Duy) — (DpH(x, Duy), Dus, — Duy))
Td

~ [, me (H(x. Dur) — Hi(x. Dug) — (DoHi(x. D). Duy = D))
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The classical MFG system The fixed-point approach

The uniform convexity of H then implies :

/ (H(x, Duy) — H(x, Dup))m — (Du, my DpH(x, Duy) — mp DpH(x, Duy)))
Td

(my + my) 2
< - ~———~=2|Duy — Du
N T | Duy 2|

Putting the estimates together we get

d _ (m + my) 2
— m < — ~——=%|Duy — D .
dt/qrdu = /Td ac DU~ Dl

Integrating on [0, T] and rearranging :

/T M|Du1—Du2|2<—/
o <

Td 2C ' u(T)m(T) +/11‘d u(0)m(0) < 0

because m(0) = m;(0) — mo(0) = mg — my = 0 and
/ u(T)m(T) :/ (G(x, m(T)) — G(x, mz(T)))(m1(T) — mz(T)) > 0.
Td Td

Therefore Du; = Du, in {my > 0} U {mo > 0} : my and m, solve the Kolmogorov equation, so
that my = mo. Then, in turn, uy and u, solve the same HJ equation, and uy = us. O
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The classical MFG system The fixed-point approach

Nonlocal, first order regime

We now consider the first order MFG system
()  —dw+H(x,Du) = F(x,m(t))  in(0,T)xR?
(MFG) (ify ~ 0ym — div(mDpH(x, Du)) =0 in (0, T) x R?

(iily u(T,x) = G(x,m(T)), m(f,) =mg  inRY
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The classical MFG system The fixed-point approach

Assumptions : Same as before, except we also assume that H : T x RY — R is uniformly
convex in p.

Theorem (Lasry-Lions '06)

Under the above assumptions, there is at least one solution (u, m) to the MFG system, where
@ u is Lipschitz continuous and satisfies the HJ in the viscosity sense,
@ m e L*° and satisfies the Kolmogorov equation in the sense of distribution.

If, moreover, F and G are monotone, then the solution is unique.
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The classical MFG system The fixed-point approach

Proof : By viscous approximation : for ¢ > 0, let (us, m¢) be the solution to
(i)  —8U° — eAUF + H(x,Duf) = F(x,m*(t))  in (0, T) x RY
(i) 9m* —eAm® —div(m*DpH(x,Duf)) =0  in (0, T) x RY
(i) us(T,x) = G(x,m(T)), m*(ty,) =my  inRY

Then
@ (u®) is uniformly Lipschitz continuous and uniformly semi-concave :

U lloo + 10¢U% oo + (| DU ||oo + DPu® < C

In particular, (Du®) is pre-compact in L.
@ Because of the semi-concavity estimate, (m*®) is uniformly bounded in L.

Then any limit of the (u®, m®) as ¢ — 0 is a solution of the MFG system.

Uniqueness relies on Di Perna-Lions/Ambrosio theory on ODEs with discontinuous coefficients.
O
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The classical MFG system Variational aspects

Outline

e The classical MFG system

@ Variational aspects
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The classical MFG system Variational aspects

The first order MFG system with local coupling

We now concentrate on the first order Mean Field Game system :

(i) —o0wu+ H(x,Du) = F(x,m(t, x))
in (0, T) x T9
(MFG) (if)y  8ym — div(m DpH(x, Du)) =0
in (0,T) x TY
(i) m(0, x) = my(x), u(T x) =ur(x) inT?

where
@ H = H(x,p) is convex in p, periodic in x,
@ F = F(x, m)is alocal coupling, increasing in m, periodic in x
@ ur = ur(x) is a periodic terminal cost,
@ my is a probability density on T¢.

Specific difficulty : The fixed point argument does not work.
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The classical MFG system Variational aspects

Two approaches :

@ Reduction to a quasi-linear equation ~» smooth solutions for some smooth data
(Lasry-Lions)

Principle : by (i),
m(t,x) = F~' (x, —8iu + H(x, Du)).

Replace m by uin (i) : the equation
o (F*‘ (x, —du + H(x, Du))) — div (F” (x, —du + H(x, Du)) DpH(x, Du)) -0
is a (singular) elliptic equation in time-space.

@ MFG system as necessary conditions for two convex optimal control problems in duality
- for the Hamilton-Jacobi equations
- and for the continuity equations

— Reminiscent of optimal transport and Benamou-Brenier formulation of the Wasserstein
distance.
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The classical MFG system Variational aspects

Set: ;)
/ / .
]-'(x,m):{ /1 F(x,m)dm' ifm>0

+o00 otherwise

F*(x,a) = sup(am — F(x, m)) and and H*(x, v) = suppcga p-v — H(X, p).
meRr
@ The optimal control of continuity equation.

(m,w)

.
(K—Pb) inf {/0 [ A (=) + 7 m) dxdt+/Td ur(x)m(T,x)dx}

where the infimum is taken over the pairs (m, v) such that
dym + div(mv) = 0in (0, T) x TY, m@0)=my  inT?
in the sense of distributions.

@ The optimal control of HJ equation

(HJ — Pb) inf{/T/ F*(x,alt, X)) dxdt—/ u(O,x)mo(x)dx}
o 0o Jrd Td

where u is the solution to the HJ equation

—Ow+ H(x,Du) = ain (0,T) xT9 (T, )=ur  inTY
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The classical MFG system Variational aspects

Results :

@ Both problems are in duality and have the MFG system as optimality condition.

For instance, if (u, &) is optimal for (HJ — Pb), then (u, m) solves MFG with
m:=F1(x, ).

@ Existence of minimizers for both problems yields weak solutions of the MFG system.
(C., Graber, C.-Graber, C.-Graber-Porretta-Tonon, C.-Porretta-Tonon).

— Difficulty : the optimal control of HJ eq. is very singular.
Relies on new estimates on HJ eq. with discontinuous RHS.
(C. (°09), Cannarsa-C. ('10), C.-Rainer ('11), C.-Silvestre ('12), C.-Porretta-Tonon ('14))

@ Useful for numerical computations.
Works also for some non-local or second order MFG systems.
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The classical MFG system Variational aspects

Conclusion on the MFG system

Well-understood :
@ Existence/uniqueness of solutions in the 4 regimes
@ The solution can often be obtained by variational methods
@ Many extensions :

@ Fully non-linear equations,
@ Other boundary conditions,
@ Multi-population problems, eftc...

@ Few explicit solutions (Linear-quadratic MFG)
@ Long time behavior (convergence to the ergodic MFG system)

Several open questions :
@ Uniqueness issues (is the monotonicity condition necessary ?)

@ Existence of classical solution in the local regime poorly understood
(Gomes and al. ; Weak solutions : Lasry-Lions and Porretta)

@ Degenerate equations and state-constraints
@ Existence in the congestion setting
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The mean field limit and the master equation

Outline

The mean field limit and the master equation
@ The Master equation
@ Convergence of the Nash system
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The mean field limit and the master equation

MFG systems pretty well-understood, but do not answer two key points :

@ MFG with common noise or with a major agent

@ Mean field limit : Convergence of Nash equilibria of N—player differential games as
N — 4o0.
Derive the macroscopic model (=MFG system) from the microscopic one (= N—player
differential game).

These two different issues can be understood through the master equation.
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The mean field limit and the master equation

The Nash system for N—player differential games

The behavior of a N—person differential game is described by the Nash system

—opvMi(t, x) — ZAX vVigt x) - 8 Z TrDf, V™ (8, X) + H(x;, Dy v (t, X))
j,k=1
ZDp (%, Dy v (t, %)) - Dy v (8, x) = F(xi, mi!
j#i
in [0, T] x (TN, i=1,...,N,

VNIT x) = G, m) i (TN, i=1,.. N,
where my' = 726)9
J#i

The mean field problem :

’Analyse the limit of the vV as N — +oo.

Standing assumptions :
@ Here the individual noise is of level v := 1, 8 > 0 is the level of the common noise,
@ Ambient space T?,
@ H smooth, globally Lipschitz continuous, with D2,H > 0,
@ F and G “smooth" and monotone.
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The mean field limit and the master equation The Master equation

Outline

The mean field limit and the master equation
@ The Master equation
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The mean field limit and the master equation The Master equation

@ Because of the symmetry, the vV:/ can be written as

v x) = UN(t X, mbT),  where mi = N1 > ox-
i
@ Following Lasry-Lions, the expected limit U of the (UN) should formally satisfy the master
equation.
—0U — (1 + B)AxU + H(x, DxU)
~(1+6) [ divy [DnU] dm(y) + | DU Dby, DeU) ami(y)
R R
—28 / _divy [DnUJam(y) - 3 / LT [D,%,,,,U] dm® dm = F(x, m)
R R
in [0, T] x RY x P(RY)
U(T,x,m) = G(x,m)  inRY x P(RY)
where

@ the unknownis U : [0, T] x T9 x P(T9) — R,

@ 0:U, DxU and AxU stand for the usual derivatives with respect to the local variables
(t,x) of U,

@ DpU and DZ,,U are the first and second order derivatives with respect to the
measure m.

P. Cardaliaguet (Paris-Dauphine) Mean field games 37/79



The mean field limit and the master equation The Master equation

Derivatives in the space of measures

We denote by P(T9) the set of Borel probability measures on T¢, endowed for the
Monge-Kantorovich distance

dy(m,m') =sup [ o(y) o —m)(»)

where the supremum is taken over all Lipschitz continuous maps ¢ : T¢ — R with a Lipschitz
constant bounded by 1.

2 notions of derivatives :
@ The directional derivative 22 (m, y)
(see, e.g., Mischler-Mouhot)
@ The intrinsic derivative DnU(m, y)
(see, e.g., Otto, Ambrosio-Gigli-Savaré, Lions)
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The mean field limit and the master equation The Master equation

Derivatives in the space of measures

We denote by P(T9) the set of Borel probability measures on T¢, endowed for the
Monge-Kantorovich distance

dy(m,m') =sup [ o(y) o —m)(»)

where the supremum is taken over all Lipschitz continuous maps ¢ : T¢ — R with a Lipschitz
constant bounded by 1.

2 notions of derivatives :
@ The directional derivative 22 (m, y)
(see, e.g., Mischler-Mouhot)
@ The intrinsic derivative DnU(m, y)
(see, e.g., Otto, Ambrosio-Gigli-Savaré, Lions)

Directional derivative

. . . . U
Amap U : P(T9) — Ris C! if there exists a continuous map S P(TY) x T? — R such that,
for any m, m’ € P(T9),

22 m, )t — m)(y).

im U((1 —sym+sm’) — U(m) :/
T

s—0t S
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The mean field limit and the master equation The Master equation

A computation : Let ¢ : T¢ — R be a Borel measurable and bounded vector field. Then

h=" (U((id + he)gm) — U(m))

1

ht [ S m ) + hoyem — m)(y)

h Ad(%(m,w hé(y)) — %(m,y))dm(y)

[, 050 (my)-6ty) om(y).

R

1

This yields to the definition :

Intrinsic derivative

oU . . . T -
If Sm is of class C! with respect to the second variable, the intrinsic derivative
DmU : P(T9) x T9 — R is defined by

U
DmU(m,y) := Dy%(m,}’)

For instance, if U(m) = / g(x)dm(x), then &(m y)y=9y)— / gdm while
Td om Td
DmU(m, y) = Dg(y)-

Second order derivatives are defined in a similar way.
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The mean field limit and the master equation The Master equation

Well-posedness of the master equation

The master equation is the backward equation
—0:U — (1+ B)AxU + H(x, DxU)
~(1+8) [ divy [DnU] am(y) + | DU DoHy. DxU) am()
R R

—25/d divy [DmU] dm(y) — B /2d Tr [D?,,mu] dm® dm = F(x, m)
R R

in [0, T] x R x P(RY)
U(T,x,m) = G(x,m(T))  inRY x P(RY)

Theorem (C.-Delarue-Lasry-Lions, '15)

Under our standing assumptions, the master equation (M) has a unique classical solution.

Previous results : Lions ('13), Buckdahn-Li-Peng-Rainer ('14), Gangbo-Swiech ('14),
Chassagneux-Crisan-Delarue ('15), Bessi ('15).

Relies on the key idea that the master equation is a nonlinear
transport equation in the space of measure.
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The mean field limit and the master equation The Master equation

Idea of proof (5 = 0)

@ When 3 = 0, the master equation becomes

—0U — AU + H(x, DyU) — F(x, m)
= [ divy [0nU] am(y) + [ DU~ DoH(y, D:U) dim(y) = 0
R R
in [0, T] x RY x P(RY)
U(T,x,m) = G(x,m)  inRY x P(RY)

@ The proof relies on the method of characteristics in infinite dimension.

@ Given (ty, my) € [0, T) x P(T9), let (u, m) = (u(t, x), m(t, x)) be the solution of the MFG

system :
—0tu — Au + H(x, Du) = F(x, m(t))
(MFG) orm — Am — div(mDpH(x, Du)) = 0
u(T,x) = G(x,m(T)), m(tp,") = mo
@ Under our monotonicity assumptions on F and G, the (MFG) system is well-posed.
(Lasry-Lions, 2007)
@ We define U by
U(IO» ) mO) = U(to, )

Then formally U solves the master equation.
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The mean field limit and the master equation The Master equation

@ Note that, forany h € [0, T — 1],
U(to + h, ) = U(to + h7 N m(to + h))

U
Olto,x) = AUlto,xmo) + [ S (to.x, mo, Y)orm(to, )l
Td (Sm
U .
= OU(to, s mo) + [ 3 (mo.y) (Am - div(mDoH(x, Du))) oy
T
= SU(¢ m)+/A y}(m )Ymo(y)a)
= tU(lp, -, Mo Tdyém o, Y )Moly)ay

~ [, 0[50 ] (o) - Doticx, Dyt
= O, mo) + [ divy [DnU] (mo. y)mo(y)dy
~ [, DmU(mo.y) - DpH(x. D)) mo(y)aly

@ As
oru(ty, x) = —Au+ H(x,Du) — F(x, mg)
= —A)(U(t(),x,mo)—l-H(X7 D)(U(fo,X,I'rlo))—F(X,mo)7
the map U satisfies (M).
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The mean field limit and the master equation The Master equation

Main difficulty :
@ Show that U defined by
U(to, -, mo) := u(to, -)

is smooth enough to perform the computation.

@ This is obtained by linearization procedure
(to compute the directional derivative).

@ Requires to keep track of the monotonicity condition.

P. Cardaliaguet (Paris-Dauphine) Mean field games 43/79



The mean field limit and the master equation The Master equation

Idea of proof (5 > 0)

@ Same principle, but the system of characteristics becomes the stochastic MFG system

drup = {—(1+ B)Aur + H(x, Dut) — F(x, ms) — \/2Bdiv(v;) } ot
+vi-/2BdW;  in[ty, T] x TY,
(MFGs) § dimy = [(1 + B)Am; + div(mDpH(my, Duy)) ] dt — /2Bdiv(mdWy)
in [ty, T] x T¢

my, = mo, ur(x) = G(x,mr)  inTY

where () is a vector field which ensures (u;) to be adapted to the filtration (F):c(y,, 1)
generated by the M.B. (Wi)cpo, ;-

@ Intermediate result : well-posedness of (MFGs).

@ Proof much more difficult than for the case 8 = 0.
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The mean field limit and the master equation Convergence of the Nash system

Outline

e The mean field limit and the master equation

@ Convergence of the Nash system
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The mean field limit and the master equation Convergence of the Nash system

Convergence of the Nash system

We come back to the solution (vN/) of the N—player Nash system :

=N =37 AN = B3 TDE v+ H(x;, Dy v
j ik ,
(Nash) +3 7 DpH(x;, Dy VM) - DyvNd = F(xi,my™") i [0, T] x T
#i ,
VAT, x) = GO, mY)y  in TV

L
where we have set, for x = (x1,...,xy) € (TN, mi' = N1 > oy,
7
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The mean field limit and the master equation Convergence of the Nash system

Theorem (C.-Delarue-Lasry-Lions, *15)

Let (vV/) be the solution to the Nash system and U be the classical solution to the master
equation (M). Fix N > 1 and (ty, mp) € [0, T] x P(T9).

(i) Foranyx € (TY)V, let my := & SN, 6. Then

N

1 )

N2 :’vN”(to,x) - U(to,x,-,m,’)’)’ < CN1.
i=1

(i) Foranyic {1,...,N}andx € TY, let us set

vN”(to,x)Hmo(d)(,—) where X = (Xq,..., Xy).

wNi(ty, X, mo) = /
j#i

(jrd)N—1

Then
HWN,I'(t -, mo) — U(ly, -, m )H < CcN—1/d ifd>3
05, Mo 05, Mo i) — CN=1/21og(N) ifd=2

In (i) and (ii), the constant C does not depend on i, fy, mg, i nor N.
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The mean field limit and the master equation Convergence of the Nash system

(Small) idea of proof

Let U be the solution of the master equation.

@ Finite dimensional projection of U. For N > 2 and i € {1,..., N} we set

. ; . 1
uM(tx) = Ut x;, my”) - where x = (x1,...xw) € (TN, m" = =3 "oy
A

@ Then, forany N >2,i€ {1,...,N}, the uN'" are of class C'? and “almost" solution to the
Nash system : forany i € {1,..., N},

—oulNi — ZijuN” - BZTTD)%,xk uNT 4 H(x;, Dy uMN+)

j Ik . )
+ 37 DyuMNi(t, x) - DpH(xj, D u™i(t, X)) = F(xi, my") + Vit x)
j#i
~ in(0,T)x TV
uNi(T, x) = G(x, my"")  in TN
where M- e ¢0([0, T] x T9) with ||r™/]|ee < %

@ This is enough to conclude thanks to the symmetry on the system.
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The mean field limit and the master equation Convergence of the Nash system

Conclusion on the mean field problem and the master equation

@ Well-posedness of the master equation : understood under the monotonicity condition
ensuring its continuity.

However, the analysis of discontinuous solutions remains very challenging
...even in its finite dimensional version :

ou
— + (F(U).V)U=0
o+ (F).9)
@ Field field limit : proved in a weak sense and under strong monotonicity assumption on the
system.
However

@ we do not know if a stronger convergence can be expected,

@ the problem is completely open without monotonicity condition.
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Numerical approximation and application to crowd motion

Outline

e Numerical approximation and application to crowd motion
@ Numerical approximation of mean field games
@ Crowd Motion
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Numerical approximation and application to crowd motion

Slides and numerical simulations by Y. Achdou

(Thanks a lot, Yves!)
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Outline

e Numerical approximation and application to crowd motion
@ Numerical approximation of mean field games
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Numerical approximation and application to crowd motion Numerical approximation of mean field games

Numerical methods :

@ Used extensively by economists
as early as Krussel-Smith ('98)

@ For the MFG system :

@ Finite difference schemes
Achdou-Camilli-Capuzzo Dolcetta ('12, ’13), Camilli-Silva ('12),...

@ Variational techniques (augmented Lagrangian methods (ALG2))
Benamou-Carlier ('14), ...

@ Very little is known for the stochastic MFG system (common noise)
... and even less for the master equation.
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Numerical approximation and application to crowd motion Numerical approximation of mean field games

Finite Differences

Take d = 1.
ou + vAu — H(x,Vu) = —®[m] in[0,T) xT
88—’;7 — vAm — div (m%(x, Vu)) =0 in(0, T] xT (*)
u(t=T) = ®o[m(t = T)]
m(t=0)=mo

@ Let Ty, be a uniform grid on the torus with mesh step h, and x; be a generic point in Ty,
@ Uniform time grid : At = T/Nr, th = nAt
@ The values of u and mat (x;, t,) are approximated by v and m/
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Numerical approximation and application to crowd motion Numerical approximation of mean field games

Notation

@ The discrete Laplace operator :
1
(Apw)j = 5 (Wit1 — 2w + Wj_1)
h2

@ Right and left sided finite difference formula for %(x,—)

87W(X_)zwf+1—wf ow Wi — W1
ox ! h 7 ox h

@ The collection of the 2 first order finite difference formulas at x;

Wih— W W— W
[DhW]/:{ l+1h I7 i h/ 1}€R2
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Numerical approximation and application to crowd motion Numerical approximation of mean field games

For the Bellman equation, a semi-implicit monotone scheme

ou

i +vAu— H(x,Vu) = —d[m]
n+1 n

1
% ar V(Ahu")i - g(Xj, [Dhun]i) — (q)h[mn+1])

i

where [Dpu]; € R? is the collection of the two first order finite difference formulas at x; for dxu.

n 0 _ N
—u gy “4;1)

un
906, [Dp") = g (3, = =
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Numerical approximation and application to crowd motion Numerical approximation of mean field games

Assumptions on the discrete Hamiltonian g : (g1, g2) — 9 (X, g1, Q2) -

@ Monotonicity :

@ g is nonincreasing with respect to g4
@ g is nondecreasing with respect to g
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Assumptions on the discrete Hamiltonian g : (g1, g2) — 9 (X, g1, Q2) -

@ Monotonicity :

@ g is nonincreasing with respect to g4
@ g is nondecreasing with respect to g

@ Consistency :
9(x,9,9) = H(x,q), vxeT,vgeR
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Assumptions on the discrete Hamiltonian g : (g1, g2) — 9 (X, g1, Q2) -

@ Monotonicity :

@ g is nonincreasing with respect to g4
@ g is nondecreasing with respect to g

@ Consistency :
9(x,9,q9) = H(x,q), vxeT,VgeR
@ Differentiability : g is of class C'
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Numerical approximation and application to crowd motion Numerical approximation of mean field games

Assumptions on the discrete Hamiltonian g : (g1, g2) — 9 (X, g1, Q2) -

@ Monotonicity :

@ g is nonincreasing with respect to g4
@ g is nondecreasing with respect to g

@ Consistency :
g(x,9,9) = H(x,q), VYxeT,vqgeR
@ Differentiability : g is of class C'
@ Convexity (for uniqueness and stability) :
(a1,82) = g(x. a1, g2) is convex
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Numerical approximation and application to crowd motion Numerical approximation of mean field games

The approximation of the Fokker-Planck equation

387’;7 — vAm — div (m%’;(x, VV)) =0. (t)

It is chosen so that

@ each time step leads to a linear system for m with a matrix

@ whose diagonal coefficients are positive
@ whose off-diagonal coefficients are nonpositive

in order to hopefully get a discrete maximum principle
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The approximation of the Fokker-Planck equation

387’;7 — vAm — div (m%’;(x, VV)) =0. (t)

It is chosen so that

@ each time step leads to a linear system for m with a matrix

@ whose diagonal coefficients are positive
@ whose off-diagonal coefficients are nonpositive

in order to hopefully get a discrete maximum principle

@ The argument for uniqueness should hold in the discrete case, so the discrete
Hamiltonian g should be used for () as well
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Principle

Discretize —/div (m%(x,VU)> w
T op
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Principle

OH " OH
Discretize —/div (m— x,Vu ) w= / m—(x,Vu)-Vw
i ap( ) g ap( )
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Principle

OH " OH
Discretize —/div (m— x,Vu ) w= / m—(x,Vu)-Vw
i ap( ) g ap( )

by hz m;V q9(Xi, [Dnul;) - [Daw];
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Numerical approximation and application to crowd motion Numerical approximation of mean field games

Principle

oH " OH
Discretize —/d' (m— x,Vu ) w= / m—(x,Vu)-Vw
| div ap( ) g ap( )
by —h E 77(LI, m)w, =h E m,ng(x,-, [Dhu],) . [DhW],'
i i

Discrete version of div(mH,(x, Vu)) :

Ti(u, m)
P 0
o M2 (6 [Dhl) = My £ 2 (-1, [Daly 1)
— 5(% o aq1 o
h +Miyq a—i(xm  [Datliv1) — miafi(xiv [Dnuli)
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Numerical approximation and application to crowd motion Numerical approximation of mean field games

Semi-implicit scheme

u()+1 __qyn

u’
# + (DU — g(xi, D) = — (@p[m™]),
m™t—mp
By y(Ahmn-H )i — Ti(u", mn+1) —0
At
The operator m — —v(Apm); — T;(u, m) is the adjoint of the linearized version of
U= —v(Apu);i + g(Xi, [Dpul;)- J

The discrete MFG system has the same structure as the continuous one. )
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Numerical approximation and application to crowd motion Numerical approximation of mean field games

Semi-implicit scheme

gt n

—uf
S AR = 9, [Dn")) = — (@n[m™])
mt — mn

’Tt’ + V(Ahmn+1 )i _ 77(Un, mn+1) -0

Well known discrete Hamiltonians g can be chosen.

For example, if the Hamiltonian is of the form H(x, Vu) = v(x, |Vu|), a possible choice is the

upwind scheme :

9(x,q1,G) =¥ (x, \/W) :
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Theoretical results on the finite difference scheme

@ Existence and a priori bounds (Lipschitz estimate if  is a smoothing operator)
@ Uniqueness

@ Convergence as At,h— 0

@ Solvers (a crucial issue)

Some references :
@ Achdou and Capuzzo-Dolcetta ('10)
@ Camilli-Silva ('14) : first order MFG.
@ Achdou-Porretta ('15) : convergence in the local case.
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Outline

e Numerical approximation and application to crowd motion

@ Crowd Motion
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Main Purpose

@ Many models for crowd motion are inspired by statistical mechanics

@ microscopic models : pedestrians = particles with more or less complex interactions (e.g.
B. Maury et al)

@ macroscopic models were recently proposed by T. Hughes et al

@ in all these models, rational anticipation is not taken into account

@ mean field games may lead to crowd motion models including rational anticipation
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A Model for Congestion

—% —vAu+ H(x,Du,m) = F(m) in(0,T) xQ

H
oM _ Am — div (mi(‘, D, m)) —0  in(0,T)xQ
ot 8p
ou Bm
— — m— Du,m)-n=0 on walls
on Bn + G )

u_k m=20 at exits

P. Cardaliaguet (Paris-Dauphine) Mean field games 66/79



Numerical approximation and application to crowd motion Crowd Motion

A Model for Congestion

—% —vAu+ H(x,Du,m) = F(m) in(0,T) xQ

H
oM _ Am — div (m‘l(‘, D, m)) —0  in(0,T)xQ
ot op
% Z—Z’er—( Du,m)-n=0 on walls
u==k m=20 at exits
Congestion
H(xpom) = () + — A
(co + cym)>

withcy >0,c1 >0, >1and0<a<4(8—-1)/8
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Numerical approximation and application to crowd motion Crowd Motion

A Prototypical Case : Exit from a Hall with Obstacles

The geometry
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Numerical approximation and application to crowd motion Crowd Motion

The Data

@ The initial density my is piecewise constant and takes two values 0 and 4 people/m?.
There are 3300 people in the hall.

density at t=0 seconds

@ »—0012 L
@ H(x,p,m)=—2—+|pP — 5 i

(1+m)4 0
@ F(m)~0

which leads to the following HJB equation
0 6 8
= —— [Dul?

—— — — Au+
ot 500 (1+m)i
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Numerical approximation and application to crowd motion Crowd Motion

The Results

The horizon is T = 40 min. The two doors stay openfromt=0tot=T.

3500

3000

2500

2000

1500

1000

500

0 5 10 15 20 25 30 35 40

FIGURE: The number of people in the room vs. time
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(Loading m2doors.mov)
FIGURE: The evolution of the density
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Evolution of the Distribution

density at t=10 seconds density at t=2 minutes
4 6
3.5
3 5
2.5 4
2 3
1.5
B 2
0.5 1
0 0
density at t=5 minutes density at t=15 minutes

10 5
: g0

* 7 3.5
6 3
s 2.5
1 2
3 is
2 1
1 0.5
0 0

CrNWEGnI©0o

(the scale varies w.r.t. t)
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Numerical approximation and application to crowd motion Crowd Motion

Exit from a Hall with a Common Uncertainty

Same geometry. The horizon is T.
@ Before t = T /2, the two doors are closed.
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Numerical approximation and application to crowd motion Crowd Motion

Exit from a Hall with a Common Uncertainty

Same geometry. The horizon is T.
@ Before t = T /2, the two doors are closed.

@ People know that one of the two doors will be opened at t = T/2 and will stay open until
t = T, but they do not know which.
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Exit from a Hall with a Common Uncertainty

Same geometry. The horizon is T.
@ Before t = T /2, the two doors are closed.

@ People know that one of the two doors will be opened at t = T/2 and will stay open until
t = T, but they do not know which.

@ At T/2, the probability that a given door be opened is 1/2.
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Numerical approximation and application to crowd motion Crowd Motion

Exit from a Hall with a Common Uncertainty

Same geometry. The horizon is T.
@ Before t = T /2, the two doors are closed.

@ People know that one of the two doors will be opened at t = T/2 and will stay open until
t = T, but they do not know which.

@ At T/2, the probability that a given door be opened is 1/2.

Hence the model involves three pairs of unknown functions
@ (u€, m®) is defined on (0, T/2) x Q and corresponds to the situation when the room is
closed.
@ (ut, mt) and (uff, mF) are defined on (T/2, T) x Q and resp. correspond to the case
when the left (resp. right) door is open.
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The Boundary Value Problem

The systems of PDEs : for j = C, L, R,

A + H(m/, DUy = F(m),

ot
om . OH . .
— —vAm —div ( m —(n?, D =
5 7 IV( 8p( , u’)) 0,
in (0,T/2) x Qforj=Candin(T/2,T)x Qforj=L,R.

The boundary conditions

o _ ome
an  dn

T
=0 on (O,E)xaﬂ,

ou  om . J
andforj = L, R, on - on 0 on(zT)x Ty,
U=m = 0 on(f,T)xr,
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Transmission conditions at t = T/2
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Results
T = 40 min.
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FIGURE: The number of people in the room vs. time
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(Loading densitynuonethird.mov)
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@ Such a behavior cannot be predicted by mechanical models

@ Other examples with two populations (segregation, ...)
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General conclusion

@ MFG is a very active area in math, economics and engineering.

@ Main equations :

@ The MFG system : the basic models are well-understood
... but not the more realistic ones,
... nor the stochastic MFG systems

@ The master equation remains very challenging
... as well as its finite dimensional analogue

@ The mean field issue
@ Still relatively little work on the numerical analysis

@ Where to learn?
- Lasry-Lions papers, Lions’ courses at the College de France (in French)
- Few lecture notes and monographs : Achdou, C., Gomes and al.,
Bensoussan-Frehse-Yam...
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Thank you'!
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