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Patch-based image denoising

� most of the denoising methods rely on the description of the image by
patches (NL-means, NL-Bayes, S-PLE, LDMM, PLE, BM3D, DA3D)

� part of them rely on a clustering in the patch space and a statistical
model (NL-Bayes, S-PLE, PLE)
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The curse of dimensionality

Parameters estimation for Gaussian models or GMMs suffers from the curse
of dimensionality

In the litterature, this issue is worked around by
� the use of small patches in NL-Bayes (5× 5)
� a model of mixture with fixed lower dimensions covariances in S-PLE

We propose a fully statistical model, that estimates a lower dimension for
each group.
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Noise model and notations
We denote
� {y1, . . . , yn} ∈ Rp the (observed) noisy patches of the image;
� {x1, . . . , xn} ∈ Rp the corresponding (unobserved) clean patches.

We suppose they are realizations of random variables Y and X that follow
the classical degradation model:

= +

We design for X the High-Dimensional Mixture Model for Image Denoising
(HDMI)
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The HDMI model

� Model on the actual patches X . Let Z be the latent random variable
indicating the group from which the patch X has been generated. We
assume that X lives in a low-dimensional subspace which is specific to its
latent group:

X|Z=k = UkT + µk ,

where Uk is a p × dk orthonormal transformation matrix and T ∈ Rdk

such that
T | Z = k ∼ N (0,Λk),

with Λk = diag(λk1 , . . . , λ
k
dk

).
� Model on the noisy patches. This implies that Y follow

p(y) =
K∑

k=1

πkg (y ;µk ,Σk)

where πk is the mixture proportion for the kth component and
Σk = UkΛkU

T
k + σ2Ip.
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The HDMI model

Let Qk = [Uk ,Rk ] be a p × p matrix made from Uk and an orthogonal
complementary Rk , then the projection of the covariance matrix
∆k = QkΣkQ

t
k has the specific structure:

∆k =



ak1 0
. . .

0 akd

0

0
σ2 0

. . .
0 σ2



 dk

 (p − dk)

where akj = λkj + σ2 and akj > σ2, for j = 1, . . . , dk . This model, called
hereafter HDMI is fully parametrized with

θ = {πk , µk ,Qk , akj , dk , σ; k = 1 . . .K , j = 1 . . . dk}.
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The HDMI model
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Figure: Graphical representation of the HDMI model.
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Denoising with the HDMI model

The HDMI model being known, each patch is denoised with the
conditional-expectation

x̂i = E[X |Y = yi ],

which can be computed as follow:

Proposition.

E[X |Y = yi ] =
K∑

k=1

ψk(yi )tik ,

with tik the posterior probability for the patch yi to belong in the kth
group and

ψk(yi ) = µk + Q̃k(Ip − σ2∆−1
k )Q̃T

k (yi − µk),

with Q̃k = [Uk , 0p,p−dk ].
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Model inference

EM algorithm: maximize w.r.t. θ the conditional expectation of the
complete log-likelihood:

Ψ(θ, θ∗)
def
=

K∑
k=1

n∑
i=1

tik log (πkg (yi ; θk)) ,

where tik = E [z = k |yi , θ∗] and θ∗ a given set of parameters.

� E-step estimation of tik knowing the current parameters
� M-step compute maximum likelihood estimators (MLE) for parameters:

π̂k =
nk
n
, µ̂k =

1
nk

∑
i

tikyi , Ŝk =
1
nk

∑
i

tik(yi − µk)(yi − µk)T ,

with nk =
∑

i tik . Then Q̂k is formed by the dk first eigenvectors of Ŝk
and âkj is the jth eigenvalue of Ŝk .
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Model inference
The hyper-parameters

The hyper-parameters K and d1, . . . , dK cannot be determined by
maximizing the log-likelihood since they control the model complexity.

We propose to set K at a given value (in the experiments we use K = 40
and K = 90) and to choose the intrinsic dimensions dk :

� using an heuristic that links the dk with the noise variance σ when
known;

� using a model selection tool in order to select the best σ when unknown.
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Estimation of intrinsic dimensions
when σ is known

With dk begin fixed, the MLE for the noise variance in the kth group is

σ̂2
|k =

1
p − dk

p∑
j=dk+1

âkj .

When the noise variance σ is known, this gives us the following heuristic:

Heuristic. Given a value of σ2 and for k = 1, ...,K , we estimate the
dimension dk by

d̂k = argmind

∣∣∣∣∣∣ 1
p − d

p∑
j=d+1

âkj − σ2

∣∣∣∣∣∣ .
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Estimation of intrinsic dimensions
when σ is unknown

Each value of σ yields a different model, we propose to select the one with
the better BIC (Bayesian Information Criterion)

BIC(M) = `(θ̂)− ξ(M)

2
log(n),

where ξ(M) is the complexity of the model.

why BIC is well-adapted for the selection of σ?

� if σ is too small, the likelihood is good but the complexity explodes;
� if σ is too high, the complexity is low but the likelihood is bad.
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Experiment: selection of σ with BIC
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Numerical experiments
Visualization of the intrinsic dimensions

We display for each pixel the dimension of the most probable group of the
patch around it.

clean noisy clustering dimensions map

Si
m
ps
on

14 / 24



Numerical experiments
Visualization of the intrinsic dimensions
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Numerical experiments
What kind of structure is encoded by the model?

group of dimension 13 group of dimension 61

group of dimension 0 group of dimension 13
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Numerical experiments
Results - clean images
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Numerical experiments
Results - noisy images σ = 30
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Numerical experiments
Results - denoised with NL-bayes
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Numerical experiments
Results - denoised with HDMIsup K = 90
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Numerical experiments
Results - denoised with S-PLE
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Benchmark results

Supervised denoising Unsupervised denoising
Image σ NLBayes S-PLE HDMIsup HDMIunsup

original no flat K = 40 K = 90 K = 40 K = 90

Lena
10 35.79 35.51 35.50 35.78 35.83 35.59 35.23
20 32.86 32.33 32.58 32.82 32.90 32.75 32.87
30 31.19 30.42 30.75 30.99 31.04 30.94 30.93

Barbara
10 34.91 34.77 34.21 34.77 35.01 34.71 34.67
20 31.51 31.25 30.67 31.32 31.61 31.11 31.31
30 29.62 29.15 28.47 29.31 29.49 29.10 28.92

Simpson
10 38.67 37.49 38.37 38.80 38.98 38.89 39.07
20 34.65 33.42 34.21 34.74 34.91 34.81 34.79
30 32.21 30.59 31.44 32.33 32.50 32.19 32.40

Alley
10 32.45 32.37 32.14 32.40 32.47 31.95 31.94
20 28.90 28.73 28.57 29.03 29.07 28.89 28.96
30 26.89 26.65 26.61 27.31 27.39 27.19 27.17

Man
10 34.07 33.97 33.76 33.85 33.91 33.59 33.49
20 30.63 30.44 30.31 30.44 30.47 30.32 30.23
30 28.81 28.56 28.47 28.65 28.71 28.58 28.56
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Conclusion and further work

We presented the HDMI model for image denoising

� which models the full process of the generation of the noisy patches;
� can be used in a “blind” way with the unsup version
� reaches state-of-the-art performances in both cases (sup and unsup)

Some issues and further work

� high computation time: about 12min on a 512× 512 image → learn the
model on a subsample of the patches

� in the case of high σ some miss-classification can yield artifacts →
explore other initializations?

� slight low-frequency noise in flat areas → explore aggregation methods
(weighted, EPLL)?

Preprint available at: up5.fr/HDMI
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Thank you for your attention!

Any question?

Preprint available at: up5.fr/HDMI
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