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What is localization?
Data Model

Time

St
at

e

Data assimilationModel: 

Observations: 

Posterior distribution: 

x

k = M(xk�1)

p(xk|yk) / p0(x
k)pl(y

k|xk)

• Monte Carlo version of Kalman filter 
• Uses ensemble to represent posterior distribution

y

k = h(xk) + ⌘

k
, ⌘

k ⇠ N (0, R), iid

EnKF:
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What is localization?

K = P fHT (HP fHT +R)�1

Forecast step:

Kalman gain:

Analysis 
ensemble:

E
nK

F

P

f = cov(xf
i )

Pa = cov(xk
i )

x

f
i = M(xk�1

i )

Dimensions 
• Typical number of vars.: 650 million 
• Typical number of obs.: 2–10 million 
• Typical ensemble size: 50–100

Why should ensemble 
mean or covariance have 

any accuracy?

(Part of the) solution: Localization 
• Small ensemble size leads to spurious long-range 

correlations in forecast covariance 
• Simple idea: set (small) elements in forecast 

covariance equal to zero.

Localization is 
required to make 

EnKF work.
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Localization of inverse problems
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p0(x) = N (µ,C)

Inverse problem

p(x|y) / p0(x)pl(y|x)

Prior:

⌘ ⇠ N (0, R)

pl(y|x) = N (Hx,R)Likelihood:

Observations:

Posterior:

y = Hx+ ⌘

C ! C
loc

H ! H
loc

Localized inverse problem
p

0,loc(x) = N (µ,C
loc

)

pl,loc(y|x) = N (H
loc

x,R)

p

loc

(x|y) / p

0,loc(x)pl,loc(y|x)

y = H
loc

x+ ⌘

⌘ ⇠ N (0, R)
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Localization of inverse problems

p0(x) = N (µ,C)

Inverse problem

p(x|y) / p0(x)pl(y|x)

Prior:

⌘ ⇠ N (0, R)

pl(y|x) = N (Hx,R)Likelihood:

Observations:

Posterior:

y = Hx+ ⌘

• If prior covariance matrix is “nearly” banded  
If each element of Hx depends significantly only on a few elements of x 
Then: localized posterior mean/covariance are small perturbations of 
posterior mean/covariance 

C ! C
loc

H ! H
loc

Localized inverse problem
p

0,loc(x) = N (µ,C
loc

)

pl,loc(y|x) = N (H
loc

x,R)

p

loc

(x|y) / p

0,loc(x)pl,loc(y|x)

y = H
loc

x+ ⌘

⌘ ⇠ N (0, R)

• Same results hold when prior precision matrix is localized 
• Localization is easy to apply in nonlinear problems (see NWP)



Agenda
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1. What is localization? 

2. Why should we localize? 

3. Numerical illustrations 
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High-dimensional local problems

High-dimensional local problems 
1. State dimension, n, and number of observations, k, is large (k = O(n)) 
2. Prior covariance matrix and prior precision matrix are “nearly” banded 
3. Each element of h(x) depends significantly only on a few elements of x  
4. R is diagonal

* Bickel et al., 2008, Bengtsson et al. 2008, Snyder et al. 2008,  
   Snyder 2011, Snyder et al. 2015.

Easy but popular example*: isotropic Gaussian

p(x) = N (0, I)

• Extreme example of a local problem 
• Has been used to study importance sampling (particle filters) for high-

dimensional problems 
• How does MCMC do when we sample an isotropic Gaussian and we 

increase its dimension?
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What type of MCMC is good for high-dimensional local problems?
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• Should be trivial (no dependence on dimension).  
• Gibbs sampler naturally makes use of local structure and produces 

independent samples, independently of dimension.  
• Can Gibbs sampler “works well”  in less trivial local problems?
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IACT
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Gibbs sampler for linear problems with banded structure

EkC�1/2(xk � z)k2  �

k
n(1 + kC�1/2(x0 � µ)k2),

LOCALIZATION FOR MCMC 5

Figure 2.1. Sparsity pattern of a 4-block-tridiagonal matrix with bandwidth l = 4. The red color indicates
nonzero entries and the blue color indicates zero entries. The black squares define the q = 4 blocks Ci,j .

Note that the upper bound for the rate of convergence � depends only on the condition number
of the covariance matrix but is independent of the dimension. However, the upper bound itself
is linear in n and involves a norm of the initial condition which may also scale linearly in n.
However, this scaling does not cause practical di�culties. The dimension independent scaling
of the convergence rate implies that the number of iterations required to reach a given error
level scales logarithmically in n, which is essentially a constant in practice (even when n is
large). For example, suppose one wants that the l2 error EkC�1/2(xk � z)k2 be bounded by
a threshold ". To reach this goal, the Gibbs sampler must perform k iterations, where

�kn(1 + kC�1/2(x0 �m)k2)  ✏ ) k � log n� log ✏+ log(1 + kC�1/2(x0 �m)k2)
� log �

.

Finally, note that we do not use the classical total variance distance to measure convergence.
We use the Wasserstein distance generated by the l

2

norm. The Wasserstein metric is more
suitable for analyzing high dimensional problems, where the total variance distance may be
too discriminative.

2.2. Gibbs sampling of distributions with banded covariance matrices. We wish to con-
sider Gaussian distributions with banded but not necessarily tridiagonal covariance matrices.
To make matters precise we define the bandwidth l of a matrix C by

l = min{r : [C]i,j = 0 if |i� j| > r},

and say that a matrix C is q-block-tridiagonal, if

Ci,j = 0 for (i, j) /2 {(i, i), (i, i+ 1), (i, i� 1), i = 1, · · · ,m}.

Here we use Ci,j to denote the (i, j)-th q ⇥ q block a matrix C. Note that a banded matrix
with bandwidth l is l-block-tridiagonal, and a q-block-tridiagonal matrix has bandwidth l 
2q. Figure 2.1 illustrates a 4-block-tridiagonal matrix with bandwidth l = 4. Theorem 2.1
generalizes naturally to the Gibbs sampler with block-size q. The proof of the following
theorem is given in Appendix A.

Theorem 2.2. Suppose the Gibbs sampler with block-size q is applied to a Gaussian target

distribution p = N (m,C) with m blocks of size q. Suppose C is q-block-tridiagonal. Then

(2.2) as in Theorem 2.1 holds, and the convergence rate � is bounded as in (2.3).

q (block-size)

p(x) = N (µ,C)
Assumptions: 
1. Target density is Gaussian 
2. C is q-block-tridiagonal, condition number is 

[C]i,j = 0 for (i, j) /2 {(i, i), (i, i+ 1), (i, i� 1), i = 1, · · · ,m}.

Result: 
Let xk be the samples of the Gibbs sampler (block-size q). 
The distribution of xk converges to p geometrically fast in all 
coordinates, and we can couple xk and a sample z ⇠ N (µ,C)

�  2(1� C�1)2C4

1 + 2(1� C�1)2C4
,

C

1. Convergence rate independent of dimension 
2. Convergence if quick if condition number is “small”
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Gibbs sampler for linear problems with banded structure

EkC�1/2(xk � z)k2  �

k
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nonzero entries and the blue color indicates zero entries. The black squares define the q = 4 blocks Ci,j .

Note that the upper bound for the rate of convergence � depends only on the condition number
of the covariance matrix but is independent of the dimension. However, the upper bound itself
is linear in n and involves a norm of the initial condition which may also scale linearly in n.
However, this scaling does not cause practical di�culties. The dimension independent scaling
of the convergence rate implies that the number of iterations required to reach a given error
level scales logarithmically in n, which is essentially a constant in practice (even when n is
large). For example, suppose one wants that the l2 error EkC�1/2(xk � z)k2 be bounded by
a threshold ". To reach this goal, the Gibbs sampler must perform k iterations, where

�kn(1 + kC�1/2(x0 �m)k2)  ✏ ) k � log n� log ✏+ log(1 + kC�1/2(x0 �m)k2)
� log �

.

Finally, note that we do not use the classical total variance distance to measure convergence.
We use the Wasserstein distance generated by the l

2

norm. The Wasserstein metric is more
suitable for analyzing high dimensional problems, where the total variance distance may be
too discriminative.

2.2. Gibbs sampling of distributions with banded covariance matrices. We wish to con-
sider Gaussian distributions with banded but not necessarily tridiagonal covariance matrices.
To make matters precise we define the bandwidth l of a matrix C by

l = min{r : [C]i,j = 0 if |i� j| > r},

and say that a matrix C is q-block-tridiagonal, if

Ci,j = 0 for (i, j) /2 {(i, i), (i, i+ 1), (i, i� 1), i = 1, · · · ,m}.

Here we use Ci,j to denote the (i, j)-th q ⇥ q block a matrix C. Note that a banded matrix
with bandwidth l is l-block-tridiagonal, and a q-block-tridiagonal matrix has bandwidth l 
2q. Figure 2.1 illustrates a 4-block-tridiagonal matrix with bandwidth l = 4. Theorem 2.1
generalizes naturally to the Gibbs sampler with block-size q. The proof of the following
theorem is given in Appendix A.

Theorem 2.2. Suppose the Gibbs sampler with block-size q is applied to a Gaussian target

distribution p = N (m,C) with m blocks of size q. Suppose C is q-block-tridiagonal. Then

(2.2) as in Theorem 2.1 holds, and the convergence rate � is bounded as in (2.3).

q (block-size)

p(x) = N (µ,C)
Assumptions: 
1. Target density is Gaussian 
2. C is q-block-tridiagonal, condition number is 

Result: 
Let xk be the samples of the Gibbs sampler (block-size q). 
The distribution of xk converges to p geometrically fast in all 
coordinates, and we can couple xk and a sample

C

p(x) = N (µ,⌦�1)

[⌦]i,j = 0 for (i, j) /2 {(i, i), (i, i+ 1), (i, i� 1), i = 1, · · · ,m}.

⌦

�  C(1� C�1)2

1 + C(1� C�1)2
,�  2(1� C�1)2C4

1 + 2(1� C�1)2C4
,

1. Convergence rate independent of dimension 
2. Convergence if quick if condition number is “small”

z ⇠ N (µ,⌦�1)
z ⇠ N (µ,C)
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Summary: Gibbs sampler

Convergence rate is independent of dimension if: 
1. Target density is Gaussian 
2. Covariance matrix is q-block-tridiagonal, condition number is small 

or 
3. Precision matrix is q-block-tridiagonal, condition number is small

Theorem by Bickel & Lindner (2012)

Gibbs sampler useful for high-dimensional 
Gaussians with local statistical interactions 

(correlation & conditional dependence)
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Metropolis-within-Gibbs sampler for nonlinear local problems

1. Propose local move using block-
Gibbs sampler for prior

x

0
j ⇠ p(xj |xk+1

1 , . . . x

k+1
j�1 , x

k
j+1, . . . , x

k
n)

2. Accept local move with probability

• Acceptance high because 
change is local  

• Acceptance rate independent of 
dimension?

a = min

(
1,

exp

�
�0.5||R�1/2

(y � h(x

0
))||2

�

exp

�
�0.5||R�1/2

(y � h(x))||2
�
)

• If precision matrix is given and 
banded: condition on 
neighbors only  

• Linear algebra for matrices of 
size of the blocks, not overall 
dimension 

• Proposal covariance 
independent of dimension.

Metropolis-within-Gibbs:
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Connections with function space MCMC/dimension independence

Function space MCMC: 
1. Discretization refines  
2. Dimension increases 
3. Number of obs. const. 
4. “Effective dimension” const. 
5. MCMC is dimension invariant

• Low-rank priors 
• Small number of obs. 
• Low-rank prior to 

posterior updates 
• Low effective dimension

• High-rank but sparse priors 
• Large number of obs. 
• High-rank prior to posterior 

updates 
• Large effective dimension

MCMC for local problems: 
1. Discretization is const. 
2. Dimension increases 
3. Number of obs. increases. 
4. “Effective dimension” increases. 
5. MCMC is dimension invariant



Agenda
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1. What is localization? 

2. Why should we localize? 

3. Numerical illustrations 



Image deblurring — Gibbs sampler
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Problem formulation 
• Gaussian prior (Laplacian as 

precision) 
• Linear problem (convolution) 
• Dimension is large ~104 
• Effective dimension huge
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Image deblurring — Gibbs sampler

• Only nearby pixels are blurred 
• H is banded 
• Prior precision is banded 
• Posterior precision is banded
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• Number of “large” eigenvalues increases 
with image size (dimension) 

• Effective dimension increases with 
image size (dimension)
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Image deblurring — Gibbs sampler

Image size 32 x 32 64 x 64 128 x 128 256 x 256
Dimension 1,024 4,096 16,348 16,536

Eff. Dimension 4.8·108 7.4 ·109 1.2 ·1011 -
IACT (Gibbs) 2.92 2.97 1.74 1.11

Blocksize (Gibbs) 16 16 32 64
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Image deblurring — Gibbs sampler

• Scales well to larger problems (106 — 107) 
• No need to assemble matrices — assemble required blocks on the fly 
• See Jesse Adam’s talk (yesterday)
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Lorenz ‘96

Goal: Estimate initial conditions of L96, given noisy observations at time T
dxi

dt
= (xi+1 � xi�2)xi�1 � xi + 8

y = HM0!T (x0) + ⌘, ⌘ ⇠ N (0, I)

Algorithms tested 
1. pCN 
2. MALA 
3. l-MwG

Problem formulation 
• Gaussian prior (“Climatology”) 
• L96 dynamics (RK4) 
• Dimension n = 40 or n = 400 
• k = n/2 observations at time T = 0.2
• Eff. dim neff = 18 or neff = 181
• Number of “large” evals increases with n
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Lorenz ’96: tuning of MALA and pCN
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Lorenz ’96: MALA, pCN and MwG

MALA pCN l-MwG-B2 l-MwG-B4 l-MwG-B8
n = 40 686 1051 55 60 266

n = 400 3,153 3,257 43 81 257

t = 0

t = 0.2

500 prior samples 500 posterior samples True state Observations
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Localization 
• NWP: delete spurious correlations and restrict influence of observations to 

a neighborhood 
• Inverse problems: enforce prior statistical interactions (correlations/

conditional dependencies) to be local and restrict influence of an 
observation to its neighborhood 

• Localization introduces small errors if the problem is “local”

MCMC for localized problems 
• Some MCMC algorithms struggle on local problems 
• MCMC based on Gibbs sampler may be promising 
• Gibbs sampler prototypical algorithm for exploring local structure 
• Notion of “high-dimension” different from function space MCMC
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Thank you.


