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Outline and References

I Gromov-Hausdorff distance.
I Facundo Mémoli. On the use of Gromov-Hausdorff Distances

for Shape Comparison.

I SDP relaxation of Gromov-Hausdorff distance.
I Ongoing work with Afonso Bandeira, Andrew Blumberg and

Rachel Ward.

I Numerical performance on real data.
I Boyer, Lipman, Daubechies, et al. Algorithms to automatically

quantify the geometric similarity of anatomical surfaces.
I Yang, Sun and Toh. SDPNAL+: a majorized semismooth

Newton-CG augmented Lagrangian method for semidefinite
programming with nonnegative constraints.

I Future work.
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The Hausdorff distance

Let X ,Y compact sets of a metric space. Define

d(x ,Y ) = inf{d(x , y) : y ∈ Y }
d(X ,Y ) = sup{d(x ,Y ) : x ∈ X}

dH(X ,Y ) = max{d(X ,Y ), d(Y ,X )}
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The Gromov-Hausdorff distance

Let X ,Y compact metric spaces. Define

dGH(X ,Y ) = inf
Z ,f ,g

dH(f (X ), g(Y ))

where f : X → Z , g : Y → Z are isometric embeddings.

Fact: dGH(X ,Y ) = 0 if and only if X ,Y are isometric
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Gromov-Hausdorff distance in point clouds

Motivations

I Shape comparison of geometric objects (like surfaces).

I Applications to spaces where geometry is less apparent (like
tree spaces, dna sequences, etc).
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Quadratic assignment formulation (Mémoli 2007)

Let X = {x1, . . . , xn}, Y = {y1, . . . , ym}.

Let R ⊂ X × Y and δij =

{
1 if (xi , yj) ∈ R
0 otherwise

Let Γik,jl = |dX (xi , xk)− dY (yj , yl)|

dGH(X ,Y ) =
1

2
minR max

ik,jl
Γik,jlδijδkl

subject to δij ∈ {0, 1},
m∑
j=1

δij ≥ 1,
n∑

i=1

δij ≥ 1

Fact: Computing GH distance is NP-hard and also, to approximate
it better than a factor of 3 is NP-hard (Agarwal et al 2015).
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Gromov-Wasserstein distance (Mémoli 2007)

DGW ,p(X ,Y ) =
1

2

inf
δ

∑
i ,j

∑
k,l

Γp
ik,jlδijδkl

1/p ∑
i

δij = 1,
∑
j

δij = 1

I In this formulation δ’s are thought as probability measures on
the set of points (δ′s do not come from a map).

I The max is changed for a sum.

I Mémoli considers a spectral relaxation of the
Gromov-Wasserstein distance using heat kernels.
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An SDP relaxation of the Gromov-Hausdorff distance
Focus on case |X | = |Y |.

d̃(X ,Y ) = minZ

∑
i,j,k,l

Γik,jlZij,kl

subject to
∑
i=1

Xij,ij = 1 for all j∑
j=1

Zij,ij = 1 for all i

Zij,il = 0, for all i , j , l with l 6= j ,

Zij,kj = 0, for all i , j , k with i 6= k,

Zij,kl ≥ 0, Z � 0∑
i

Zij,N2+1 = 1 for all j ,∑
j

Zij,N2+1 = 1 for all i ,

ZN2+1,N2+1 = 1
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Some properties of d̃

I d̃(X ,Y ) is a lower bound for a distance between metric
spaces.

I d̃(X ,Y ) ≤ d̃(X ,W ) + d̃(W ,Y )

I d̃(X ,Y ) = 0 if X and Y are isometric, and the SDP finds the
isometry.

I Numerically we observe stability with respect to noise.

I d̃(X ,Y ) may be 0 for non isometric X and Y .
I Graph isomorphism problem can be posed as deciding whether

GH distance between graphs is zero.
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Numerical considerations

Computing d̃ involves solving a big SDP!

I Improving SDP solvers is an active research area.

I Work around with sampling, good initializations, etc.

I SDP’s and dual certificates can be used to obtain fast
algorithms (see Dustin’s talk tomorrow).
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Real data application

Boyer, Lipman, Daubechies, et al. Algorithms to automatically
quantify the geometric similarity of anatomical surfaces.
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Real data application

Objective: teeth classification.
Two methods:

1. Lipman and Daubechies map the teeth surfaces to the
hyperbolic disk and consider a Wesserstein distance that is
invariant under conformal transformations.

2. Boyer labels 18 landmarks on each teeth. Then they find the
best rigid transformation to match the labeled landmarks.

Assessment: They consider 116 teeth. For each teeth find the
closest teeth according to each distance, and see whether they are
in the same category.
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Real data application

Our experiments

I Consider Xi = {pi1, . . . pi18} i = 1 . . . 116.

I Find d̃(Xi ,Xj)

I Use their classification scheme
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Future work

I Understand topological properties of this SDP-induced
distance on the set of finite metric spaces.

I Convergence
I Compactness

I Applications to datasets that are not surfaces.

I Understand how the distance behaves with respect to
sampling under geometric assumptions.

I Compare with other lower bounds available in the literature.
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Questions?

Tomorrow:
MS22: Convex Signal Recovery from Pairwise Measurements

10:30-10:55. Dustin Mixon. Probably Certifiably Correct K-Means
Clustering.

11:00-11:25. Soledad Villar. Efficient Global Solutions to K-Means
Clustering Via Semidefinite Relaxation


