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The Hausdorff distance

Let X, Y compact sets of a metric space. Define

d(x,Y) =

= inf{d(x,y):y € Y}
d(X,Y)

= sup{d(x,Y):x € X}

sup inf d(z, 1
sup inf d(z,y)

yey e X

sup inf d(z,y)

dn(X, Y) = max{d(X, Y),d(Y,X)}
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The Gromov-Hausdorff distance

Let X, Y compact metric spaces. Define

deu(X,Y) = Z'f}f du(f(X),g(Y))
1,8

where f : X — Z, g:Y — Z are isometric embeddings.

Fact: dgy(X,Y) =0 if and only if X, Y are isometric



Gromov-Hausdorff distance in point clouds

Motivations
» Shape comparison of geometric objects (like surfaces).

» Applications to spaces where geometry is less apparent (like
tree spaces, dna sequences, etc).
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Quadratic assignment formulation (Mémoli 2007)

Let X = {x1,...,xn}, Y ={v1,---,¥Ym}
1 if(x,-,yj)ER

Let RC X x Y and §; = {0 otherwise

Let Ticji = |dx(xi, xk) — dy (¥}, v1)|

1 .
dGH(X, Y) = 5 ming r;r)(aj( F,-kd-,é,-jék,

m n
subject to ;7 € {0,1}, Zd,-j > 1, Z‘Sij >1
J=1 i=1

Fact: Computing GH distance is NP-hard and also, to approximate
it better than a factor of 3 is NP-hard (Agarwal et al 2015).



Gromov-Wasserstein distance (Mémoli 2007)

1/p

Dew p(X Y 1 mfZZ rlk’JI(SU(Sk/ 2611 =1, Zélj =1
ij i J

» In this formulation §'s are thought as probability measures on
the set of points (§’s do not come from a map).

» The max is changed for a sum.

» Mémoli considers a spectral relaxation of the
Gromov-Wasserstein distance using heat kernels.



An SDP relaxation of the Gromov-Hausdorff distance

Focus on case |[X| =|Y/|.

J(X, Y) = minz Z I',-kyj,Z,-jyk,
INN¥)
subject to ZXUU =1forallj
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An SDP relaxation of the Gromov-Hausdorff distance

Focus on case |[X| =|Y/|.
d(X,Y)=  ming
subject to
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E Xij,ij = 1 for all j
i=1

E Zjij=1 foralli
j=1

Ziji =0, forall i,j, [ with [ # j,
Zijij =0, forall i,j, k with i # k,
Ziw=>0, Z=0

> Zjneyr =1 forall j,
i
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Some properties of d

» d(X,Y) is a lower bound for a distance between metric
spaces.
» d(X,Y) < d(X,W)+d(W,Y)
» d(X,Y)=0if X and Y are isometric, and the SDP finds the
isometry.
» Numerically we observe stability with respect to noise.
» d(X,Y) may be 0 for non isometric X and Y.

» Graph isomorphism problem can be posed as deciding whether
GH distance between graphs is zero.
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Numerical considerations

Computing d involves solving a big SDP!
» Improving SDP solvers is an active research area.
» Work around with sampling, good initializations, etc.

» SDP’s and dual certificates can be used to obtain fast
algorithms (see Dustin’s talk tomorrow).



Real data application

Boyer, Lipman, Daubechies, et al. Algorithms to automatically
quantify the geometric similarity of anatomical surfaces.
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Real data application

Objective: teeth classification.
Two methods:

1. Lipman and Daubechies map the teeth surfaces to the
hyperbolic disk and consider a Wesserstein distance that is
invariant under conformal transformations.

2. Boyer labels 18 landmarks on each teeth. Then they find the
best rigid transformation to match the labeled landmarks.

Assessment: They consider 116 teeth. For each teeth find the
closest teeth according to each distance, and see whether they are
in the same category.



Real data application

Our experiments
» Consider X; = {p],...pig} i=1...116.
» Find d(X;, X;)

» Use their classification scheme
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Future

work

Understand topological properties of this SDP-induced
distance on the set of finite metric spaces.

» Convergence
» Compactness

Applications to datasets that are not surfaces.

Understand how the distance behaves with respect to
sampling under geometric assumptions.

Compare with other lower bounds available in the literature.



Questions?

Tomorrow:
MS22: Convex Signal Recovery from Pairwise Measurements

10:30-10:55. Dustin Mixon. Probably Certifiably Correct K-Means
Clustering.

11:00-11:25. Soledad Villar. Efficient Global Solutions to K-Means
Clustering Via Semidefinite Relaxation



