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Canonical Mechanical Systems

H : P — R determines the dynamics:
dQ; (Xy(z),v)=dH(z)-v forallve TP
Alternatively, one can use the Poisson bracket
{F,H} := Q(HE, Xy) forall F,H e C>(P)

and then X}, is determined by F = {F, H} for all F, H € C>=(P).
Mainly interested in (T*Q, Q¢an) = (T*Q, {-, - } can)




(P, Q.an) Dynamics near Equilibria

with respect to the canonical bracket.

Using the antihomomorphism of the Lie algebras C*>°(P) and
the Hamiltonian vector fields X'(P)

[Xe, Xgl = —Xir,gy V F,GeC™(P)

changes of coordinates for Hamiltonians are given by:

Hox,‘:=H+t{F,H}+%F{F,{F,H}}+...
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We apply iteratively changes of coordinates H — A such that
H, the k-jet of H, becomes

j¥H=H® + A 4+ AK
so that i
{H® HM} =0 Vv m=23,...k

Method: we Taylor expand H. For the term “H(™)" of degree m we
look for a homogeneous polynomial F of degree m so that

H™ 4+ {H, F} =D (as much as possible)
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Symmetries

The momentum mapis J : P — g* such that for any w € g the
Hamiltonian vector field of J,, where J,(2) := (J(2) ,w) satisfies

X, (2) =wp(2) = 5| _ exp(tw)-(2)

E.g. N—body problems in R§ : G=S80(3), g~R3, g*~R3

Jo(q,P) =) (piwxq) and J(@xp)=) G xp;
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Special solutions

Definition: a relative equilibrium is a solution that is also a
group orbit; that is, there exist w € g and z; € T*Q such that

z(t) = exp(tw)zo
is a solution.

E.g. For N-body problems, i

(q(t), p(t)) = R(t) - (o, po) where R(t) = exp(iw)

for some fixed angular velocity w € R® ~ so(3)*.
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Co-tangent Bundle Reduction with G = SO(3))

N-body systems: J(q,p) =>_qi x pi.
H invariant = for each momentum p € so(3)"

J ' (u) :={(qg,p) | J(g,p) = 1} are invariant submanifolds.
Fix o = J(q x p) € so(3)” (e-9- a rotation about Oz).

J(g x p) = po = Rzpo = J(Rzq, Rzp) VY R; = Rot. about Oz

= J~ (o) quotients by the subgroup of vertical rotations
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quotients by SO(3),., and, provided yq is ¢
the reduced space

(T*Q)y := J ™ (120)/SO(3)

is a smooth manifold.

Theorem (Meyer; Marsden-Weinstein)

There is a unique symplectic structure ,,, on (7*Q),, such
that for every G-invariant Hamiltonian H, dynamical solutions of
(T*Q, Qcan, H, G) project into dynamical solutions of

(T*Q) s Quy, h) where hom = Hy

> €« F» ¢ S
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its n to the un- space, understand the
mechanism of symmetry-breaking perturbations, etc.

Relative equilibria = equilibria in the reduced space.

For non-symmetric systems, the main method in use is the
Poincaré-Birkhoff normalization near an equilibrium.

For symmetric co-tangent bundle systems, (local) Darboux
coordinates exist for both the unreduced and the symplectic
reduced spaces. We want to embed" the reduced space
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More on reduction (with G = SO(3))
T*Q, Qcan, SO(3)) — the reduced space(( T~ Q),.,, Q).

11 (T Q) = J ™" (u0)/ (SO@3)),, — T*(Q/ (SO3)),,,)

where one uses a shift map (q,p) — (q,p) — A (q).-
Then Q,,, = wean — B, - Non-canonical, unless p = 0.

2] (T"Q)u = J ™' (0)/ (SOQ)),, ~ T* (Q/SO(3))x Oy

where Q/SO(3) := the shape space and
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(T*Q)uo = J7" (m0)/ (SOM)),,, ~ T*(Q/SO(3)) x Oy,

where
Q/SO(3) := the shape space

O, =1{Ru | R € SO(3)} = a 2-sphere of radius ||

Easiest case: Q = SO(3). In plain words, the rigid body. :

(T*SO(3)),,, = 4" (H0)/ (SO(3)) ., = O
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T*SO(3) — SO(3) x so0(3)* ~ SO(3) x R3
(Z,P) - (LI'P) = (%,p)
body coordinates

Let I4, I, I3 be the principal moments of inertia of the body.

T(py w5 p
H(Z, p) = H(u) = (H‘+H—:+H:)
I

Spatial angular momentum is conserved — E(}:p) =) ¢—2

—
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(T*SO(3)),, = J™" (10)/ (SO(3)),,, = O

1) Canonical coordinates on the sphere O,, may be defined
alright (obviously, one needs two charts).

2) If we are interested in the dynamics in the full phase space,
we can use the celestial mechanics “regularized”
Serret-Andoyer-Deprit coordinates.

Note: for symmetric systems with more general Lie
symmetries, we need a systematic approact
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Slice Theorems — a symmetry-adapted framework

' Theorem (Symplectic Slice Theorem - free action)

Consider P be a symplectic manifold, p, € P a RE with momentum
Lo, and let N a normal space transverse to G - py and py, i.€e.

TP 'E T, (Gpo) &N

There is a choice of N' and coordinates such that near G py we have
N =No@® N ~g; & (kerDJ(uo)NN)s. t. po ~(e,0,0),

p’of:c'(g,u,w)eG><g;;0 x Ni

g =gDvh(v,w) R = R Dvh(v, w)
= adB,,h(u.W)V 7 =R Duh(l/, W)
w = Jn, Dyh(v, w) w =J D, h(v, w)
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'retical ll, butth no oanstmctive
(even for free actions) except for

- abelian groups - no problems - essentially go into “rotating”
coordinates

- for compact groups at zero momentum — T. Schmah: A
cotangent bundle slice theorem, Diff. Geom. Appl. 25, 2007

- for SO(3) — T. Schmah & C.S.: Normal forms for Lie Symme
Cotangent Bundle Systems with Free and Proper Actions, in
Insntute Communications series, Vol. “Geometry Mechamcs and
Dynamics: the Legacy of Jerry Marsden”, S 2015
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T=SO(3) — SO(3) x so(3)"
(R,P) - (R

s0(3)* = (s0(3)%),,, x $0(3), ~ (50(3)*) .. X TuyOps
po e (v, (mx» My))

Look for a SO(3)-equivariant symplectic diffeomorphism

(SO(3) x 50(3)%, X TuoOpo »Ry) — (SO(3) x 50(3)", can) ,
such that (ld,0,0) — ('dal‘O)’

Cébi{b
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Theorem (A constructive symplectic tube for SO(3),
Schmah 2007)

The following is an SO(3)-equivariant symplectic local
diffeomorphism with respect to the symplectic form

QY(Fi'a v, 77) ((5131./%771)9(52,1'/2,772))
== (/1'0 - [61352]) + <V2a€1> = (l./1a€2> = (ll'oa [7719772])

in a neighbourhood of (Id,0,0):

¢ : SO(3) x so(3);, xs0(3);, — SO(3) x so(3)*,
(R, vV, 7]) — (RF(V, 77)—1a F(Va 77) (/‘0 23 Ii))

Fvm) = (o) sin(3) =
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SO(3)-symmetric systems on T*SO(3)

h:s0(3),, X TyOu, ~s0(3)" =R, h=h(v,p) = h(p)

&z = a"h|(V=Vo (1))

v=0 = v=const. =yg = h=h(n;w)
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(a) 3-d view

(e, i v0) = oo + vo) (1 s w)) (2 +73)

Pam22°f32 «CTI > «FF > «a F v « T =
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Coupled systems (e.g. N-body problems)

Applyin aslioe t_heorem | — S o 0/ shape space (or
internal space)

SO(3) x "% S0(3) x Q/SO3) ~ Q

loc.

SOB)xS'E Q= ... = T*SO@B) x T*S'E T*Q

Local coordinates ("body” coordinates)
i

(Z, u, (5,0)) € SO3) x s0°(3) x T*S~ T*SO(3) x T"S

T« > e« =
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4 0 —(no+v) O 5H e o
1_
(= ) g)

v

oH

. _4+0H . 1 ds
V=—(H1—) y B=—1UlH,
Z

oR 140 : aH

oo

If H(R,v,n,s,0) = h(v,n,s,0) =
RUle 2 he hl tslial.

Q{OQ.:D
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The general case: free and proper Lie group actions

We want a constructive method to find a G-equivariant
symplectic diffeomorphism, called the tube,

o : (Gx 8, X g;o,ﬂy) — (G x g%, Qean) ,

such that (e,0,0) — (e, uo)

Lucky to find this map in general ! SO(3) is quite special and
the calculations lead to the (regularized) Serret-Andoyer-E)eprit
celestial mechanics coordinates.
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Key relation

& (Gx o xg,{—o,szy) 5 (G x g*, ean) ,
such that (e,0,0) — (e, uo)

¢*Qean = Qy = ... = o(g,v,n) = (gF(V, 7)™, Ad"Fum) (o + V))

for some F : g;, x g — G. Moreover, F must be of the form

Fvsm) = oxp () 77 ) 1

«F > « S
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must satisfy

(uo+v, [F(v,m)™ (DF(v,m) - (51,61)) , F(,m) ™" (DF (v, m) - (52, o)
+ (v, F(vym) ™" (DF(v,m) - (1,61)))

— <l./1, F(V, 77)_1 (DF(V, 77) . (1)23 C2))> = (/‘1'0’ [C‘l ) CZD ;

i
One may compute: DF (v, 1;)|(0 - Then take the derivative of

» TF e W
" 5

¢t g v ST
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derivatives at (0, 0).

So, while it is unlikely to "guess™ a general formula for the tube

& (Gx g5 X g- ,Qy) — (G x g, Uean) ,
(ea 03 0) — (ea /“'0)
6(9,v,m) = (gF(v,m) ™", Ad" £y ) (10 + )
i
one may compute its derivatives at the (relative equilibrium)

DRee ot
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Poincaré-Birkhoff normal forms

coordinates which are applied to a truncated Taylor expansion
at the equilibrium of the Hamiltonian.

At each step H — H the k-jet of H at the equilibrium becomes
FH=H® +H® 4 +H®

so that {H® , HN} =0 Vi=2,3,...k.

Hyoe (A, v, 77) = (Ho ¢) (Za »u')

i
Knowing the derivatives at (e, 0, 0) of the tube ¢ (and these can
be calculated!) is sufficient for calculating the normal form near
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Observations and speculations

Reduced-Energy Momentum for stability of Marsden & co-workers.

[2] Conjecture: there is an explicit formula for the change of
coordinates map (the tube) for all super-integrable systems on Lie
group which accept (globalj action-angle coordinates of
super-integrable systems (e.g. Toda-lattice; see Tony Bloch’s talk
here).

[3] Conjecture: in all rotationally-invariant cotangent-bundle systems,
(non-linearly) stable relative equilibria are Nekhoroshev long term
stable. This is suggested by the results of Benettin & al. on the

€ Zi“‘f.: |
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