
The Life Cycle

of an Eigenvalue Problem

From Data to Numerics

Mark Embree

Department of Mathematics
Virginia Tech

SIAM Annual Meeting

Boston · 2016

An eigenvalue problem

Ax = λx
algebraic eigenvalue problem

An eigenvalue problem

Ax = λBx
generalized eigenvalue problem

An eigenvalue problem

[
0 I
−K −D

] [
u
v

]
= λ

[
I 0
0 M

] [
u
v

]

generalized eigenvalue problem

with structure from a damped mechanical system

An eigenvalue problem

[
0 I
−K −D

] [
u
v

]
= λ

[
I 0
0 M

] [
u
v

]

λ2Mu + λDu + Ku = 0

quadratic eigenvalue problem

Mu′′(t) + Du′(t) + Ku(t) = 0

An eigenvalue problem

[
0 I
−K −D

] [
u
v

]
= λ

[
I 0
0 M

] [
u
v

]

λ2Mu + λDu + Ku = 0

quadratic eigenvalue problem

Mu′′(t) + Du′(t) + Ku(t) = 0

An eigenvalue problem

λ2m(x)u(x) + λd(x)u(x)− u′′(x) = 0

quadratic eigenvalue problem

m(x)utt(x , t) + d(x)ut(x , t)− uxx(x , t) = 0

model of a vibrating string with viscous damping

(ρA)(s)rtt(s, t) =

(
N̂(‖rs(s, t)‖, s) rs(s,t)

‖rs(s,t)‖

)

s

+ f(s, t)

general nonlinear model of a perfectly flexible string

An eigenvalue problem

λ2m(x)u(x) + λd(x)u(x)− u′′(x) = 0

quadratic eigenvalue problem

m(x)utt(x , t) + d(x)ut(x , t)− uxx(x , t) = 0

model of a vibrating string with viscous damping

(ρA)(s)rtt(s, t) =

(
N̂(‖rs(s, t)‖, s) rs(s,t)

‖rs(s,t)‖

)

s

+ f(s, t)

general nonlinear model of a perfectly flexible string

An eigenvalue problem

λ2m(x)u(x) + λd(x)u(x)− u′′(x) = 0

quadratic eigenvalue problem

m(x)utt(x , t) + d(x)ut(x , t)− uxx(x , t) = 0

model of a vibrating string with viscous damping

(ρA)(s)rtt(s, t) =

(
N̂(‖rs(s, t)‖, s) rs(s,t)

‖rs(s,t)‖

)

s

+ f(s, t)

general nonlinear model of a perfectly flexible string

An eigenvalue problem

Ax = (λI + eλsB)x

nonlinear eigenvalue problem

(eigenvalue nonlinearity)

u′(t) = Au(t − s)− Bu(t)

linear delay differential equation

An eigenvalue problem

Du(x , y) + |u(x , y)|2u(x , y) = λu(x , y)

nonlinear eigenvalue problem

(eigenvector nonlinearity)

Gross–Pitaevskii eigenvalue problem for Bose–Einstein condensates
[Jarlebring, Kvall, Michiels, 2014]

See also Kohn–Sham eigenvalue problem in Density Functional Theory

Eigenvalues, eigenvectors, and dynamics

We most often care about eigenvalues because they give insight into dynamics.

Consider the diagonalizable matrix

A = VΛV−1 =
n∑

j=1

λjvj v̂
∗
j =

n∑

j=1

λjPj .

Eigenvalues, eigenvectors, and dynamics

We most often care about eigenvalues because they give insight into dynamics.

Consider the diagonalizable matrix

A = VΛV−1 =
n∑

j=1

λjvj v̂
∗
j =

n∑

j=1

λjPj .

Spectral Mapping Theorem:
The eigenvalues of f (A) are f (λj) (for f analytic on the eigenvalues):

f (A) = Vf (Λ)V−1 =
n∑

j=1

f (λj)vj v̂
∗
j =

n∑

j=1

f (λj)Pj .

Eigenvalues, eigenvectors, and dynamics

We most often care about eigenvalues because they give insight into dynamics.

Consider the diagonalizable matrix

A = VΛV−1 =
n∑

j=1

λjvj v̂
∗
j =

n∑

j=1

λjPj .

The discrete-time dynamical system

xk+1 = Axk
is solved by

xk = Ak x0 =
n∑

j=1

(v̂∗j x0)λ
k
j vj .

�

influence of
initial conditions

J
JJ]

eigenvalues
dictate dynamics

�

eigenvectors give
coordinate directions

Eigenvalues, eigenvectors, and dynamics

We most often care about eigenvalues because they give insight into dynamics.

Consider the diagonalizable matrix

A = VΛV−1 =
n∑

j=1

λjvj v̂
∗
j =

n∑

j=1

λjPj .

The discrete-time dynamical system

xk+1 = Axk
is solved by

xk = Ak x0 =
n∑

j=1

(v̂∗j x0)λ
k
j vj .

�

influence of
initial conditions

J
JJ]

eigenvalues
dictate dynamics

�

eigenvectors give
coordinate directions

Eigenvalues, eigenvectors, and dynamics

We most often care about eigenvalues because they give insight into dynamics.

Consider the diagonalizable matrix

A = VΛV−1 =
n∑

j=1

λjvj v̂
∗
j =

n∑

j=1

λjPj .

The continuous-time dynamical system

x′(t) = Ax(t)

is solved by

x(t) = etAx0 =
n∑

j=1

(v̂∗j x0)e
tλj vj .

�

influence of
initial conditions

J
JJ]

eigenvalues

dictate dynamics

�

eigenvectors give
coordinate directions

Eigenvalues, eigenvectors, and dynamics

We most often care about eigenvalues because they give insight into dynamics.

Consider the diagonalizable matrix

A = VΛV−1 =
n∑

j=1

λjvj v̂
∗
j =

n∑

j=1

λjPj .

The continuous-time dynamical system

x′(t) = Ax(t)

is solved by

x(t) = etAx0 =
n∑

j=1

(v̂∗j x0)e
tλj vj .

�

influence of
initial conditions

J
JJ]

eigenvalues

dictate dynamics

�

eigenvectors give
coordinate directions

The Life Cycle of an Eigenvalue Problem

Premise of this talk:

I “Solving an eigenvalue problem” is a broad endeavor that starts
with data and ends with numerics.

I Typically we focus on one only single aspect of this endeavor.

I We gain – at least perspective, sometimes more – by thinking across
multiple steps of this “life cycle”.

Here we can only illustrate these steps with a few scattered vignettes.

Other related perspectives: [Collatz, 1963], [Weinberger, 1974], [Chatelin, 1983],
[Babuška & Osborn, 1991], [Plum, 1997], [Liesen & Strakoš, 2013],. . . .

The Life Cycle of an Eigenvalue Problem

Premise of this talk:

I “Solving an eigenvalue problem” is a broad endeavor that starts
with data and ends with numerics.

I Typically we focus on one only single aspect of this endeavor.

I We gain – at least perspective, sometimes more – by thinking across
multiple steps of this “life cycle”.

Here we can only illustrate these steps with a few scattered vignettes.

Other related perspectives: [Collatz, 1963], [Weinberger, 1974], [Chatelin, 1983],
[Babuška & Osborn, 1991], [Plum, 1997], [Liesen & Strakoš, 2013],. . . .

The Life Cycle of an Eigenvalue Problem

Five steps in the life cycle:

1. Physical problem / data → Nonlinear eigenvalue problem

2. Nonlinear eigenvalue problem → Linear eigenvalue problem

3. Linear eigenvalue problem → Large discretization matrix

4. Large discretization matrix → Small projected matrix

5. Small projected matrix → Numerical eigenvalues

Introduction

Five fundamental steps in the life-cycle of an eigenvalue problem:

1. DATA / MODEL

2. LINEARIZE

3. DISCRETIZE

4. PROJECT

5. COMPUTE

FIRST HALF OF THE TALK
SECOND HALF OF THE TALK

Introduction

Five fundamental steps in the life-cycle of an eigenvalue problem:

1. DATA / MODEL

2. LINEARIZE

3. DISCRETIZE

4. PROJECT

5. COMPUTE

FIRST HALF OF THE TALK
SECOND HALF OF THE TALK

From Physical Problem and Data

to Nonlinear Eigenvalue Problem

Eigenvalues from Data: Case Study of a Vibrating String

As a prototype of this move from physical system to mathematical model,
we study one of the earliest eigenvalue problems: vibrating strings.

Though often seen as a trivial example, we want to emphasize the modeling
challenges that arise and how they affect the resulting eigenvalue problem.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

162 STEVEN J. COX, MARK EMBREE, AND JEFFREY M. HOKANSON

force
transducer

!

collet and vise

!

photodetector

!

collet and vise

"
"
"#

tensioner

!

Fig. 2 The monochord loaded with beads.

dle until the string achieves a desired tension, then tightens the collet vises to fix the
string at both ends (enforcing y0 = yn+1 = 0).

A photodetector measures the displacement ηk at a single point along the string
(not at a bead) at times tk = kh for some fixed time-step h. (The model only de-
scribes the motion of the beads, but the string itself must vibrate in concert: since
we assume the string is perfectly elastic and the detector is placed between the fixed
end and the first bead, these measurements are proportional to the first bead’s dis-
placement.) Consider a string loaded with five beads, as specified in Figure 3. We
measure displacements for 10 sec. with h = 1/50000 sec., producing the samples {ηk}
shown on the left of Figure 4. (The magnitude of the displacements decay over the
course of this ten second sample, reflecting some mild damping not captured by our
simple physical model.) By analogy with the model (2.1), we expect that

ηk =

n∑

j=1

cj cos(tk
√

λj) + noise(3.1)

for some constants c1, . . . , cn that depend on the initial pluck. The “noise” term
captures errors both in our mathematical description of physical reality and in our
ability to accurately measure that reality, as discussed in more detail in section 10.

To assess the accuracy of the model, we shall investigate whether the series of
measurements {ηk} for the five-beaded string in Figure 3 indeed oscillate at the fre-
quencies predicted by the analysis in section 2. To do so, we compute the discrete
Fourier transform (DFT) of the data. A detailed discussion of the DFT is beyond
our scope, but excellent expositions can be found in [4, 24], and the operation can be
implemented in just a few lines of MATLAB:

freq = 2*pi*[0:N-1]/N*sample_rate; % set up vector of frequencies

semilogy(freq,abs(fft(eta))) % plot magnitude of Fourier coefs

xlim([0 700]) % set axis to relevant frequencies

These operations produce a plot that shows the component of the signal over a range
of frequencies as shown on the right in Figure 4. A signal behaving like t !→ cos(ωt)
should produce a peak in the DFT at ω sec−1. By (3.1), we expect our signal to
be dominated by combinations of cos(t

√
λj) terms, and so we should find peaks

precisely at
√

λj , where λj is an eigenvalue of (K,M). As the beads are not point
masses, their finite diameters restrict the string’s ability to vibrate freely; this could
effectively shorten the total length of the string. In Figure 4 we predict a range for
each eigenvalue, with the lower end determined by the actual length of the string, and
upper end derived from the shorter string with the bead diameters removed.

Gómez et al. [14] provide complementary experimental work for continuous strings
with one or two beads, including mode visualizations.

We will compare theoretical eigenvalues to those measured in our laboratory.

Work with Steve Cox and Jeffrey Hokanson.

Monochord built by Sean Hardesty, Jeffrey Hokanson, and Jeffrey Bridge.

Imposing Dirichlet Boundary Conditions

How do real strings behave?

Photodetector measurements of string displacement at one point x̂ ∈ [0, L]
(undersampled).

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1
x 10

5

time, sec

am
pl

itu
de

, n
m

Eigenvalues from Data: Case Study of a Vibrating String

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

162 STEVEN J. COX, MARK EMBREE, AND JEFFREY M. HOKANSON

force
transducer

!

collet and vise

!

photodetector

!

collet and vise

"
"
"#

tensioner

!

Fig. 2 The monochord loaded with beads.

dle until the string achieves a desired tension, then tightens the collet vises to fix the
string at both ends (enforcing y0 = yn+1 = 0).

A photodetector measures the displacement ηk at a single point along the string
(not at a bead) at times tk = kh for some fixed time-step h. (The model only de-
scribes the motion of the beads, but the string itself must vibrate in concert: since
we assume the string is perfectly elastic and the detector is placed between the fixed
end and the first bead, these measurements are proportional to the first bead’s dis-
placement.) Consider a string loaded with five beads, as specified in Figure 3. We
measure displacements for 10 sec. with h = 1/50000 sec., producing the samples {ηk}
shown on the left of Figure 4. (The magnitude of the displacements decay over the
course of this ten second sample, reflecting some mild damping not captured by our
simple physical model.) By analogy with the model (2.1), we expect that

ηk =

n∑

j=1

cj cos(tk
√

λj) + noise(3.1)

for some constants c1, . . . , cn that depend on the initial pluck. The “noise” term
captures errors both in our mathematical description of physical reality and in our
ability to accurately measure that reality, as discussed in more detail in section 10.

To assess the accuracy of the model, we shall investigate whether the series of
measurements {ηk} for the five-beaded string in Figure 3 indeed oscillate at the fre-
quencies predicted by the analysis in section 2. To do so, we compute the discrete
Fourier transform (DFT) of the data. A detailed discussion of the DFT is beyond
our scope, but excellent expositions can be found in [4, 24], and the operation can be
implemented in just a few lines of MATLAB:

freq = 2*pi*[0:N-1]/N*sample_rate; % set up vector of frequencies

semilogy(freq,abs(fft(eta))) % plot magnitude of Fourier coefs

xlim([0 700]) % set axis to relevant frequencies

These operations produce a plot that shows the component of the signal over a range
of frequencies as shown on the right in Figure 4. A signal behaving like t !→ cos(ωt)
should produce a peak in the DFT at ω sec−1. By (3.1), we expect our signal to
be dominated by combinations of cos(t

√
λj) terms, and so we should find peaks

precisely at
√

λj , where λj is an eigenvalue of (K,M). As the beads are not point
masses, their finite diameters restrict the string’s ability to vibrate freely; this could
effectively shorten the total length of the string. In Figure 4 we predict a range for
each eigenvalue, with the lower end determined by the actual length of the string, and
upper end derived from the shorter string with the bead diameters removed.

Gómez et al. [14] provide complementary experimental work for continuous strings
with one or two beads, including mode visualizations.

The original mathematical model was devised by Euler and Lagrange
(with key contributions from D. Bernoulli and d’Alembert) in the mid-1700s
[Truesdell, 1960; Antman, 2005].

The correct derivation is simple because Euler made it so.
Modern authors should be faulted not merely for doing poorly
what Euler did well, but also for failing to copy from the master.

— Stuart S. Antman

Nonlinear Problems of Elasticity, p. 12

Eigenvalues from Data: Case Study of a Vibrating String

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

162 STEVEN J. COX, MARK EMBREE, AND JEFFREY M. HOKANSON

force
transducer

!

collet and vise

!

photodetector

!

collet and vise

"
"
"#

tensioner

!

Fig. 2 The monochord loaded with beads.

dle until the string achieves a desired tension, then tightens the collet vises to fix the
string at both ends (enforcing y0 = yn+1 = 0).

A photodetector measures the displacement ηk at a single point along the string
(not at a bead) at times tk = kh for some fixed time-step h. (The model only de-
scribes the motion of the beads, but the string itself must vibrate in concert: since
we assume the string is perfectly elastic and the detector is placed between the fixed
end and the first bead, these measurements are proportional to the first bead’s dis-
placement.) Consider a string loaded with five beads, as specified in Figure 3. We
measure displacements for 10 sec. with h = 1/50000 sec., producing the samples {ηk}
shown on the left of Figure 4. (The magnitude of the displacements decay over the
course of this ten second sample, reflecting some mild damping not captured by our
simple physical model.) By analogy with the model (2.1), we expect that

ηk =

n∑

j=1

cj cos(tk
√

λj) + noise(3.1)

for some constants c1, . . . , cn that depend on the initial pluck. The “noise” term
captures errors both in our mathematical description of physical reality and in our
ability to accurately measure that reality, as discussed in more detail in section 10.

To assess the accuracy of the model, we shall investigate whether the series of
measurements {ηk} for the five-beaded string in Figure 3 indeed oscillate at the fre-
quencies predicted by the analysis in section 2. To do so, we compute the discrete
Fourier transform (DFT) of the data. A detailed discussion of the DFT is beyond
our scope, but excellent expositions can be found in [4, 24], and the operation can be
implemented in just a few lines of MATLAB:

freq = 2*pi*[0:N-1]/N*sample_rate; % set up vector of frequencies

semilogy(freq,abs(fft(eta))) % plot magnitude of Fourier coefs

xlim([0 700]) % set axis to relevant frequencies

These operations produce a plot that shows the component of the signal over a range
of frequencies as shown on the right in Figure 4. A signal behaving like t !→ cos(ωt)
should produce a peak in the DFT at ω sec−1. By (3.1), we expect our signal to
be dominated by combinations of cos(t

√
λj) terms, and so we should find peaks

precisely at
√

λj , where λj is an eigenvalue of (K,M). As the beads are not point
masses, their finite diameters restrict the string’s ability to vibrate freely; this could
effectively shorten the total length of the string. In Figure 4 we predict a range for
each eigenvalue, with the lower end determined by the actual length of the string, and
upper end derived from the shorter string with the bead diameters removed.

Gómez et al. [14] provide complementary experimental work for continuous strings
with one or two beads, including mode visualizations.

The original mathematical model was devised by Euler and Lagrange
(with key contributions from D. Bernoulli and d’Alembert) in the mid-1700s
[Truesdell, 1960; Antman, 2005].

The correct derivation is simple because Euler made it so.
Modern authors should be faulted not merely for doing poorly
what Euler did well, but also for failing to copy from the master.

— Stuart S. Antman

Nonlinear Problems of Elasticity, p. 12

Mathematical Model of a Vibrating String

Summarizing Antman:
A string is an elastic, perfectly flexible one-dimensional body drawn taut at
length L with fixed ends, displaced by r(s, t) ∈ R3 at s ∈ [0, 1] and time t ≥ 0.

The boundary conditions give

r(0, t) =

 0
0
0

 , r(1, t) =

 0
0
L

 .

I ρA(s) = the string’s mass-density-per-length

I N̂(‖rs(s, t)‖, s) = tension at (s, t)

I (s, t) = body force per unit length (e.g., damping)

Then the displacement r(s, t) obeys the nonlinear partial differential equation

(ρA)(s)rtt(s, t) =

(
N̂(‖rs(s, t)‖, s)

rs(s, t)

‖rs(s, t)‖

)
s

+ f(s, t).

Mathematical Model of a Vibrating String

Summarizing Antman:
A string is an elastic, perfectly flexible one-dimensional body drawn taut at
length L with fixed ends, displaced by r(s, t) ∈ R3 at s ∈ [0, 1] and time t ≥ 0.

The boundary conditions give

r(0, t) =

 0
0
0

 , r(1, t) =

 0
0
L

 .
I ρA(s) = the string’s mass-density-per-length

I N̂(‖rs(s, t)‖, s) = tension at (s, t)

I (s, t) = body force per unit length (e.g., damping)

Then the displacement r(s, t) obeys the nonlinear partial differential equation

(ρA)(s)rtt(s, t) =

(
N̂(‖rs(s, t)‖, s)

rs(s, t)

‖rs(s, t)‖

)
s

+ f(s, t).

Mathematical model of a vibrating string

(ρA)(s)rtt(s, t) =

(
N̂(‖rs(s, t)‖, s)

rs(s, t)

‖rs(s, t)‖

)
s

+ f(s, t)

Linearize this equation about the rest state

r(s, t) =

 0
0
sL

 , rt(s, t) =

 0
0
0

 .
Under appropriate assumptions, we get three scalar PDEs of the familiar form

utt(x , t) = c2uxx(x , t), u(0, t) = u(L, t) = 0

(two describe transverse vibrations, the other describes longitudinal vibrations),
which reduce via separation of variables to the eigenvalue problem

c2u′′(x) = λ2u(x), u(0) = u(L) = 0.

Eigenvalue problem for a vibrating string

Pose the eigenvalue problem

u′′(x) = λ2u(x), u(0) = u(L) = 0.

in the form AU = λU:
[

0 I
d2/dx2 0

] [
u
v

]
= λ

[
u
v

]

with Dom(A) = (H1
0 (0, 1) ∩ H2(0, 1))× H1

0 (0, 1).

For this model of an undamped string:

I The eigenvalues are purely imaginary: λ±k = ±kπ i for k = 1, 2, . . .;

I The eigenvectors are V±k =

[
sin(kπx)

±kπ i sin(kπx)

]
.

Eigenvalue problem for a vibrating string

Pose the eigenvalue problem

u′′(x) = λ2u(x), u(0) = u(L) = 0.

in the form AU = λU:
[

0 I
d2/dx2 0

] [
u
v

]
= λ

[
u
v

]

with Dom(A) = (H1
0 (0, 1) ∩ H2(0, 1))× H1

0 (0, 1).

For this model of an undamped string:

I The eigenvalues are purely imaginary: λ±k = ±kπ i for k = 1, 2, . . .;

I The eigenvectors are V±k =

[
sin(kπx)

±kπ i sin(kπx)

]
.

Eigenvalue problem for a vibrating string

The system evolves in time according to Ut = AU:

∂

∂t

[
u(x , t)
v(x , t)

]
=

[
0 I

d2/dx2 0

] [
u(x , t)
v(x , t)

]
.

I eigenvalues of A are purely imaginary: λ±k = ±kπ i for k = 1, 2, . . .;

I eigenvectors of A are V±k =

[
sin(kπx)

±kπ i sin(kπx)

]
.

Given initial conditions u(x , 0) = u0(x), v(x , 0) = 0, the solution is

U(x , t) =
∞∑

k=−∞
k 6=0

〈U0,Vk〉 etλkVk(x).

�
��

rapidly decaying in |k|

���

= cos(kπt)± i sin(kπt) =⇒ oscillation

Eigenvalue problem for a vibrating string

The system evolves in time according to Ut = AU:

∂

∂t

[
u(x , t)
v(x , t)

]
=

[
0 I

d2/dx2 0

] [
u(x , t)
v(x , t)

]
.

I eigenvalues of A are purely imaginary: λ±k = ±kπ i for k = 1, 2, . . .;

I eigenvectors of A are V±k =

[
sin(kπx)

±kπ i sin(kπx)

]
.

Given initial conditions u(x , 0) = u0(x), v(x , 0) = 0, the solution is

U(x , t) =
∞∑

k=−∞
k 6=0

〈U0,Vk〉 etλkVk(x).

�
��

rapidly decaying in |k|

���

= cos(kπt)± i sin(kπt) =⇒ oscillation

How does a real string behave?

To expose the imaginary parts of the eigenvalues of a real string

(“λ±k ≈ ±kπi”), take the FFT of the displacement:

0 5000 10000 15000

10
−2

10
0

10
2

10
4

Hertz

am
pl

itu
de

89th mode

A
A
AU

Each peak corresponds to a conjugate pair of eigenvalues.

How does a real string behave?

To expose the imaginary parts of the eigenvalues of a real string

(“λ±k ≈ ±kπi”), take the FFT of the displacement:

0 5000 10000 15000

10
−2

10
0

10
2

10
4

Hertz

am
pl

itu
de 89th mode

A
A
AU

Each peak corresponds to a conjugate pair of eigenvalues.

How does a real string behave?

To determine the imaginary part of λk , zoom in on the FFT. . . .

4800 4850 4900 4950 5000 5050 5100 5150
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Hertz

am
pl

itu
de

What look like strong “peaks” on the previous plot are considerably
more intricate.

Inverse Eigenvalue Problems

Given the (measured) eigenvalues of an object,
can we determine the “shape” of that object?

I What constraints make the problem well posed ?
In 1966, Mark Kac famously asked, “Can One Hear the Shape of a Drum?”

I Often symmetry is the key ingredient to determine a unique solution.

I In the 1950s, Mark Krein use the continued fractions work of Stieltjes
[1894] to show how to discover the location of n beads arranged
symmetrically on a string from the n eigenvalues.

I In [Cox, E., Hokanson 2012], we put this algorithm to the test.
Much data available at: www.caam.rice.edu/~beads

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

162 STEVEN J. COX, MARK EMBREE, AND JEFFREY M. HOKANSON

force
transducer

!

collet and vise

!

photodetector

!

collet and vise

"
"
"#

tensioner

!

Fig. 2 The monochord loaded with beads.

dle until the string achieves a desired tension, then tightens the collet vises to fix the
string at both ends (enforcing y0 = yn+1 = 0).

A photodetector measures the displacement ηk at a single point along the string
(not at a bead) at times tk = kh for some fixed time-step h. (The model only de-
scribes the motion of the beads, but the string itself must vibrate in concert: since
we assume the string is perfectly elastic and the detector is placed between the fixed
end and the first bead, these measurements are proportional to the first bead’s dis-
placement.) Consider a string loaded with five beads, as specified in Figure 3. We
measure displacements for 10 sec. with h = 1/50000 sec., producing the samples {ηk}
shown on the left of Figure 4. (The magnitude of the displacements decay over the
course of this ten second sample, reflecting some mild damping not captured by our
simple physical model.) By analogy with the model (2.1), we expect that

ηk =

n∑

j=1

cj cos(tk
√

λj) + noise(3.1)

for some constants c1, . . . , cn that depend on the initial pluck. The “noise” term
captures errors both in our mathematical description of physical reality and in our
ability to accurately measure that reality, as discussed in more detail in section 10.

To assess the accuracy of the model, we shall investigate whether the series of
measurements {ηk} for the five-beaded string in Figure 3 indeed oscillate at the fre-
quencies predicted by the analysis in section 2. To do so, we compute the discrete
Fourier transform (DFT) of the data. A detailed discussion of the DFT is beyond
our scope, but excellent expositions can be found in [4, 24], and the operation can be
implemented in just a few lines of MATLAB:

freq = 2*pi*[0:N-1]/N*sample_rate; % set up vector of frequencies

semilogy(freq,abs(fft(eta))) % plot magnitude of Fourier coefs

xlim([0 700]) % set axis to relevant frequencies

These operations produce a plot that shows the component of the signal over a range
of frequencies as shown on the right in Figure 4. A signal behaving like t !→ cos(ωt)
should produce a peak in the DFT at ω sec−1. By (3.1), we expect our signal to
be dominated by combinations of cos(t

√
λj) terms, and so we should find peaks

precisely at
√

λj , where λj is an eigenvalue of (K,M). As the beads are not point
masses, their finite diameters restrict the string’s ability to vibrate freely; this could
effectively shorten the total length of the string. In Figure 4 we predict a range for
each eigenvalue, with the lower end determined by the actual length of the string, and
upper end derived from the shorter string with the bead diameters removed.

Gómez et al. [14] provide complementary experimental work for continuous strings
with one or two beads, including mode visualizations.

www.caam.rice.edu/~beads

Inverse Eigenvalue Problems

Given the (measured) eigenvalues of an object,
can we determine the “shape” of that object?

I What constraints make the problem well posed ?
In 1966, Mark Kac famously asked, “Can One Hear the Shape of a Drum?”

I Often symmetry is the key ingredient to determine a unique solution.

I In the 1950s, Mark Krein use the continued fractions work of Stieltjes
[1894] to show how to discover the location of n beads arranged
symmetrically on a string from the n eigenvalues.

I In [Cox, E., Hokanson 2012], we put this algorithm to the test.
Much data available at: www.caam.rice.edu/~beads

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

162 STEVEN J. COX, MARK EMBREE, AND JEFFREY M. HOKANSON

force
transducer

!

collet and vise

!

photodetector

!

collet and vise

"
"
"#

tensioner

!

Fig. 2 The monochord loaded with beads.

dle until the string achieves a desired tension, then tightens the collet vises to fix the
string at both ends (enforcing y0 = yn+1 = 0).

A photodetector measures the displacement ηk at a single point along the string
(not at a bead) at times tk = kh for some fixed time-step h. (The model only de-
scribes the motion of the beads, but the string itself must vibrate in concert: since
we assume the string is perfectly elastic and the detector is placed between the fixed
end and the first bead, these measurements are proportional to the first bead’s dis-
placement.) Consider a string loaded with five beads, as specified in Figure 3. We
measure displacements for 10 sec. with h = 1/50000 sec., producing the samples {ηk}
shown on the left of Figure 4. (The magnitude of the displacements decay over the
course of this ten second sample, reflecting some mild damping not captured by our
simple physical model.) By analogy with the model (2.1), we expect that

ηk =

n∑

j=1

cj cos(tk
√

λj) + noise(3.1)

for some constants c1, . . . , cn that depend on the initial pluck. The “noise” term
captures errors both in our mathematical description of physical reality and in our
ability to accurately measure that reality, as discussed in more detail in section 10.

To assess the accuracy of the model, we shall investigate whether the series of
measurements {ηk} for the five-beaded string in Figure 3 indeed oscillate at the fre-
quencies predicted by the analysis in section 2. To do so, we compute the discrete
Fourier transform (DFT) of the data. A detailed discussion of the DFT is beyond
our scope, but excellent expositions can be found in [4, 24], and the operation can be
implemented in just a few lines of MATLAB:

freq = 2*pi*[0:N-1]/N*sample_rate; % set up vector of frequencies

semilogy(freq,abs(fft(eta))) % plot magnitude of Fourier coefs

xlim([0 700]) % set axis to relevant frequencies

These operations produce a plot that shows the component of the signal over a range
of frequencies as shown on the right in Figure 4. A signal behaving like t !→ cos(ωt)
should produce a peak in the DFT at ω sec−1. By (3.1), we expect our signal to
be dominated by combinations of cos(t

√
λj) terms, and so we should find peaks

precisely at
√

λj , where λj is an eigenvalue of (K,M). As the beads are not point
masses, their finite diameters restrict the string’s ability to vibrate freely; this could
effectively shorten the total length of the string. In Figure 4 we predict a range for
each eigenvalue, with the lower end determined by the actual length of the string, and
upper end derived from the shorter string with the bead diameters removed.

Gómez et al. [14] provide complementary experimental work for continuous strings
with one or two beads, including mode visualizations.

www.caam.rice.edu/~beads

Inverse Eigenvalue Problems: “Hearing” Beads on a String

0 100 200 300 400 500 600
10

−4

10
−3

10
−2

10
−1

10
0

10
1

a
m

p
li
tu

d
e,

m
ic

ro
n

s

frequency, sec−1

experimental eigenvalues

λ1 = 98i sec−1

λ2 = 176i sec−1

λ3 = 305i sec−1

λ4 = 374i sec−1

λ5 = 399i sec−1

λ6 = 438i sec−1

recovered

measured

M1 (g) M2 (g) M3 (g) L0 (cm) L1 (cm) L2 (cm) L3 (cm)
recovered 16.6 30.4 17.1 15.3 16.3 14.9 19.3
measured 17.8 30.8 17.8 13.0 17.8 15.2 20.3

Complex eigenvalues for damped strings

U(x , t) =
∞∑

k=−∞
k 6=0

〈U0,Vk〉 etλkVk(x).

I Thus far we have been computing purely imaginary λk by finding peaks.

I Purely imaginary eigenvalues correspond to vibrations that never die out,

etλk = eiπk t = cos(πk t) + i sin(πk t).

I To model decay, add damping to the model, giving Re(λk) 6= 0.

viscous damping: utt = uxx − 2a(x)ut

Kelvin–Voigt: utt = uxx + (a(x)uxt)x

magnetic damping: utt = uxx − a(x)

∫ π

0

a(s)ut(s, t) ds

stiff strings: utt = c2uxx − κ2uxxxx − 2a(x)ut + 2b(x)uxxt

Complex eigenvalues for damped strings

U(x , t) =
∞∑

k=−∞
k 6=0

〈U0,Vk〉 etλkVk(x).

I Thus far we have been computing purely imaginary λk by finding peaks.

I Purely imaginary eigenvalues correspond to vibrations that never die out,

etλk = eiπk t = cos(πk t) + i sin(πk t).

I To model decay, add damping to the model, giving Re(λk) 6= 0.

viscous damping: utt = uxx − 2a(x)ut

Kelvin–Voigt: utt = uxx + (a(x)uxt)x

magnetic damping: utt = uxx − a(x)

∫ π

0

a(s)ut(s, t) ds

stiff strings: utt = c2uxx − κ2uxxxx − 2a(x)ut + 2b(x)uxxt

A model of viscous damping

utt(x , t) = uxx(x , t)− 2a(x)ut(x , t)

[
0 I

d2/dx2 −2a

] [
u
v

]
= λ

[
u
v

]

I Eigenvalues of A: λ±k = −a±
√

a2 − k2π2

For constant damping parameter a:

If 0 ≤ a ≤ π, then Re(λk) = −a for all eigenvalues.

-4 -3 -2 -1 0
Re(6k)

-40

-30

-20

-10

0

10

20

30

40

Im
(6

k
)

a = 0

-4 -3 -2 -1 0
Re(6k)

-40

-30

-20

-10

0

10

20

30

40

Im
(6

k
)

a = 1

-4 -3 -2 -1 0
Re(6k)

-40

-30

-20

-10

0

10

20

30

40

Im
(6

k
)

a = 2

-4 -3 -2 -1 0
Re(6k)

-40

-30

-20

-10

0

10

20

30

40

Im
(6

k
)

a = 3

Finding complex eigenvalues data

How do we compute complex eigenvalues from vibration measurements?

I Take measurements at uniform times, uj ≈ u(x̂ , tj) for j = 1, . . . ,m.

I Fit measurements to a sum of p exponentials:

uj ≈
p∑

k=1

ck exp(λktj).

Find linear parameters {ck} and nonlinear parameters {λk}.

A multitude of methods exist for the exponential fitting problem.

I Improvements of Prony’s method (e.g., HSVD, HTLS)
(Solve a Hankel linear system and companion matrix eigenvalue problem.)

I Nonlinear least squares methods (e.g., VARPRO)

min
c,λ∈Cp

‖u− V(λ)c‖2.

For efficiency, we compress via a specialized matrix sketching method
[Hokanson 2013, 2015]:

min
c,λ∈Cp

‖W∗(u− V(λ)c)‖2.

Finding complex eigenvalues data

How do we compute complex eigenvalues from vibration measurements?

I Take measurements at uniform times, uj ≈ u(x̂ , tj) for j = 1, . . . ,m.

I Fit measurements to a sum of p exponentials:

uj ≈
p∑

k=1

ck exp(λktj).

Find linear parameters {ck} and nonlinear parameters {λk}.

A multitude of methods exist for the exponential fitting problem.

I Improvements of Prony’s method (e.g., HSVD, HTLS)
(Solve a Hankel linear system and companion matrix eigenvalue problem.)

I Nonlinear least squares methods (e.g., VARPRO)

min
c,λ∈Cp

‖u− V(λ)c‖2.

For efficiency, we compress via a specialized matrix sketching method
[Hokanson 2013, 2015]:

min
c,λ∈Cp

‖W∗(u− V(λ)c)‖2.

Is the viscous damping model accurate ?

Jeffrey Bridge and his vacuum chamber.

Is the viscous damping model accurate ?

−0.8 −0.6 −0.4 −0.2 0
0

1

2

3
·104

decay parameter Re λj , sec
−1

fr
eq

u
en

cy
p

ar
a

m
et

er
Im

λ
j,
se
c
−

1

0

0.2

0.4

0.6

0.8

1

Pressure (Atm)

Eigenvalues derived by Hokanson from a piano wire in the vacuum chamber.

Viscous damping model predicts that, for a given pressure,
all eigenvalues should have the same real part.

Canonical Models of Damping in Strings

For certain constant damping coefficients:

• Kelvin–Voigt damping

• stiff string

• viscous damping

• magnetic damping

Damping models are difficult to differentiate from low-frequency eigenvalues,
but these are the only ones that can be reliably estimated.

A Nonnormal Inverse Eigenvalue Problem for String Design

Can you design a guitar string that sounds the way you desire?

Can you find a viscous damping coefficient a(x) to give desired eigenvalues?

A string design problem:

I Specify eigenvalues {λk} ⊂ C that sound pleasant.
If Re(λk) ≈ 0, the tone Im(λk) will persist for a while.
If Re(λk)� 0, the tone Im(λk) will die out quickly.

I Find a damping coefficient a(x) such that

eigenvalues of

[
0 I

d2/dx2 −2a(x)

]
= {λk}

I This is an inverse eigenvalue problem for a nonnormal operator.

This area is in a primitive state, compared to 70 years of work
on inverse eigenvalue problems for self-adjoint operators.

A Nonnormal Inverse Eigenvalue Problem for String Design

Can you design a guitar string that sounds the way you desire?

Can you find a viscous damping coefficient a(x) to give desired eigenvalues?

A string design problem:

I Specify eigenvalues {λk} ⊂ C that sound pleasant.
If Re(λk) ≈ 0, the tone Im(λk) will persist for a while.
If Re(λk)� 0, the tone Im(λk) will die out quickly.

I Find a damping coefficient a(x) such that

eigenvalues of

[
0 I

d2/dx2 −2a(x)

]
= {λk}

I This is an inverse eigenvalue problem for a nonnormal operator.

This area is in a primitive state, compared to 70 years of work
on inverse eigenvalue problems for self-adjoint operators.

A Nonnormal Inverse Eigenvalue Problem for String Design

Can you design a guitar string that sounds the way you desire?

Can you find a viscous damping coefficient a(x) to give desired eigenvalues?

A string design problem:

I Specify eigenvalues {λk} ⊂ C that sound pleasant.
If Re(λk) ≈ 0, the tone Im(λk) will persist for a while.
If Re(λk)� 0, the tone Im(λk) will die out quickly.

I Find a damping coefficient a(x) such that

eigenvalues of

[
0 I

d2/dx2 −2a(x)

]
= {λk}

I This is an inverse eigenvalue problem for a nonnormal operator.

This area is in a primitive state, compared to 70 years of work
on inverse eigenvalue problems for self-adjoint operators.

A Nonnormal Inverse Eigenvalue Problem for String Design

In [Cox, E. 2011], we use spectral asymptotics to derive the simple estimate

a(x) ≈ a0 + 2
∞∑

k=1

(a0 + Reλk(a)) cos(2kπx).

This formula can lose accuracy for problems with heavily damped/unstable
low-frequency eigenvalues, but works well in many more benign circumstances.

0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2

a
(x

)

-1 -0.5 0
Re(6k)

0

5

10

15

20

25

30

35

40

Im
(6

k
)

true damping function eigenvalue data

A Nonnormal Inverse Eigenvalue Problem for String Design

In [Cox, E. 2011], we use spectral asymptotics to derive the simple estimate

a(x) ≈ a0 + 2
∞∑

k=1

(a0 + Reλk(a)) cos(2kπx).

This formula can lose accuracy for problems with heavily damped/unstable
low-frequency eigenvalues, but works well in many more benign circumstances.

A Nonnormal Inverse Eigenvalue Problem for String Design

In [Cox, E. 2011], we use spectral asymptotics to derive the simple estimate

a(x) ≈ a0 + 2
∞∑

k=1

(a0 + Reλk(a)) cos(2kπx).

This formula can lose accuracy for problems with heavily damped/unstable
low-frequency eigenvalues, but works well in many more benign circumstances.

A Nonnormal Inverse Eigenvalue Problem for String Design

In [Cox, E. 2011], we use spectral asymptotics to derive the simple estimate

a(x) ≈ a0 + 2
∞∑

k=1

(a0 + Reλk(a)) cos(2kπx).

This formula can lose accuracy for problems with heavily damped/unstable
low-frequency eigenvalues, but works well in many more benign circumstances.

Operational Modal Analysis for building vibrations

Virginia Tech opened Goodwin Hall in Fall 2015.

I The “flagship building for the College of Engineering”.
I 155,000 square feet (classrooms, research and teaching labs, offices).
I 212 accelerometers welded to the steel structure during construction;

25,600 samples/second per accelerometer.

Instrumenting a smart building

The instrumentation and analysis of Goodwin Hall has been led by
Prof. Pablo Tarazaga and his Virginia Tech Smart Infrastructure Lab
(including Prof. Mary Kasarda, Dustin Bales, Bryan Joyce, Sriram Milladi,
Austin Phoenix, Mico Woolard).

3-axis accelerometers deployed in Goodwin Hall:

Eigenvectors of Goodwin Hall

Can we use vibration data to perform modal analysis of Goodwin Hall?

First eigenmode of Goodwin Hall:

Mode estimate from accelerometer data using Aretemis software.
Computed by Pablo Tarazaga and the VT Smart Infrastructure Laboratory.

Eigenvectors of Goodwin Hall

Can we use vibration data to perform modal analysis of Goodwin Hall?

Second eigenmode of Goodwin Hall:

Mode estimate from accelerometer data using Aretemis software.
Computed by Pablo Tarazaga and the VT Smart Infrastructure Laboratory.

Networks of strings: Spider Webs

Future work: modal analysis for spider webs.

Biological background: Fritz Vollrath, Oxford Silk Group,

PDEs on linked networks: [Schmidt 1992], [Lagnese, Leugering, Schmidt 1994],
. . . , [Arioli, Benzi 2015].

Work with Cox, Chan, LiKamWa, Morrell, Tarazaga.

Networks of strings: Spider Webs

First nine modes of a model web

From Nonlinear Eigenvalue Problem

to Linear Eigenvalue Problem

Linearization of Nonlinear Eigenvalue Problems

By linearization, we mean converting some kind of nonlinear eigenvalue
problem into a generalized eigenvalue problem (perhaps approximating).

I Polynomial Eigenvalue Problems
– Generalized eigenvalue problems
– Quadratic eigenvalue problems in damped systems

I eigenvalue nonlinearities
– Exponential eigenvalue problems from delay differential equations
– Nonlinearities induced by boundary conditions, e.g. in fiber optics

I eigenvector nonlinearities
– Kohn–Sham eigenvalue problem in Density Functional Theory

A robust spectral theory exists for polynomial eigenvalue problems
[Gohberg, Lancaster, Rodman, 1982], [Tisseur and Meerbergen, 2001].

General nonlinear problems pose greater challenges (finite dimensional problems
can have infinitely many eigenvalues; definition of spectrum, . . .);
seven distinct definitions of spectrum in [Appell, De Pascale, Vignoli, 2004].

Linearization of a Quadratic Eigenvalue Problem

The wave operator with viscous damping considered previously corresponds to
the quadratic eigenvalue problem

u′′(x) + 2λa(x)u′(x) = λ2u(x),

which is discretized in the form(
K + λD + λ2M

)
u = 0.

This equation can be “linearized” by introducing v = λu:[
0 I
−K −D

] [
u
v

]
= λ

[
I 0
0 M

] [
u
v

]
.

However, other choices are available, e.g., if M = LL∗, then[
0 I

−L−1KL−∗ −L−1DL−∗

] [
u
v

]
= λ

[
u
v

]
.[

0 M−1

−K DM−1

] [
u
v

]
= λ

[
u
v

]
.

The linearization can significantly influence eigenvalue computations
[Mackey, Mackey, Mehl, Mehrmann, 2007], [Higham, Mackey, Tisseur, Garvey, 2008].

Linearization of a Quadratic Eigenvalue Problem

The wave operator with viscous damping considered previously corresponds to
the quadratic eigenvalue problem

u′′(x) + 2λa(x)u′(x) = λ2u(x),

which is discretized in the form(
K + λD + λ2M

)
u = 0.

This equation can be “linearized” by introducing v = λu:[
0 I
−K −D

] [
u
v

]
= λ

[
I 0
0 M

] [
u
v

]
.

However, other choices are available, e.g., if M = LL∗, then[
0 I

−L−1KL−∗ −L−1DL−∗

] [
u
v

]
= λ

[
u
v

]
.[

0 M−1

−K DM−1

] [
u
v

]
= λ

[
u
v

]
.

The linearization can significantly influence eigenvalue computations
[Mackey, Mackey, Mehl, Mehrmann, 2007], [Higham, Mackey, Tisseur, Garvey, 2008].

Linearization of a Quadratic Eigenvalue Problem

A beam with pointwise damping, from [Higham, Mackey, Tisseur, Garvey, 2008]

[
−D −K

I 0

]
,

[
M 0
0 I

]

Linearization of a Quadratic Eigenvalue Problem

A beam with pointwise damping, from [Higham, Mackey, Tisseur, Garvey, 2008]

[
−D −K
−K 0

]
,

[
M 0
0 −K

]

Linearization of a Quadratic Eigenvalue Problem

A beam with pointwise damping, from [Higham,Mackey,Tisseur, Garvey, 2008]

[
−M 0

0 −K

]
,

[
0 M
M D

]

Linearization of a Quadratic Eigenvalue Problem

A beam with pointwise damping, from [Higham, Mackey, Tisseur, Garvey, 2008]

Higham et al. show that the instability can be cured by applying a clever
coefficient scaling of [Fan, Lin, Van Dooren 2004].

[
−M 0

0 −K

]
,

[
0 M
M D

]

Linearization of a Quadratic Eigenvalue Problem

A beam with pointwise damping, from [Higham, Mackey, Tisseur, Garvey, 2008]

Another perspective: Transform coordinates so that the 2-norm of the
linearization represents the energy norm of the original quadratic problem.

[
0 M−1

−K −DM−1

] [
u
v

]
= λ

[
u
v

]

Eigenvalue conditioning of discretization now matches that of the operator.

From Linear Operator Eigenvalue Problem

to Large Discretization Matrix

Convergence Theory for Discretized Operators

Approximate the linear operator A with an N × N discretization matrix AN .

How fast do eigenvalues of AN converge to those of A?

Many results toward this end were obtained in the 1960s–1980s, with
antecedents in the Weinstein/Aronszajn theory of intermediate problems for
self-adjoint operators.

I Compact integral operators [Anselone, 1965], [Atkinson, 1975], [Osborn, 1975]

Convergence tracks the accuracy of the discretizing quadrature rule

I Differential operators in variational form [Osborn, 1976, . . .]

Convergence tracks quality of eigenfunction approximation in FE space

I Abstract theory based on operator convergence, AN → A.

Surveys include [Chatelin, 1983]; [Babuška and Osborn, 1971], [Ahues, Largillier,

Limaye, 2001]; [Boffi, 2010].

Key improvements include mesh refinement for troublesome eigenfunctions;
multiple/defective eigenvalues; a posteriori error adaptivity, hp refinement, etc.

Standard Convergence Behavior for a Self-Adjoint Operator

Dirichlet Laplacian: Au = −u′′ on L2[0, 1] with u(0) = u(1) = 0.

Eigenvalues: λk = k2π2. Eigenfunctions: uk(x) = sin(kπx).

Finite elements give a generalized eigenvalue problem: Ku = λMu.
For piecewise linear elements:

λ8

λ2

λ1

2

1

Standard Convergence Behavior for a Self-Adjoint Operator

Dirichlet Laplacian: Au = −u′′ on L2[0, 1] with u(0) = u(1) = 0.

Eigenvalues: λk = k2π2. Eigenfunctions: uk(x) = sin(kπx).

Finite elements give a generalized eigenvalue problem: Ku = λMu.
For piecewise cubic Hermite elements:

λ8

λ1

6

1

Standard Convergence Behavior for a Non-Self-Adjoint Operator

Convection–Diffusion: Au = −u′′ + γu′ on L2[0, 1] with u(0) = u(1) = 0.

Eigenvalues: λk = k2π2 + γ2/4. Eigenfunctions: uk(x) = eγx/2 sin(kπx).

Norms of spectral projectors: ‖Pj‖ =

√
eγ + e−γ − 2

γ + γ3/(4k2π2)
.

Finite elements again give Ku = λMu, but now K is nonsymmetric.
For piecewise linear elements:

2

1γ = 25

‖P1‖ = 637.7

Standard Convergence Behavior for a Non-Self-Adjoint Operator

Convection–Diffusion: Au = −u′′ + γu′ on L2[0, 1] with u(0) = u(1) = 0.

Eigenvalues: λk = k2π2 + γ2/4. Eigenfunctions: uk(x) = eγx/2 sin(kπx).

Norms of spectral projectors: ‖Pj‖ =

√
eγ + e−γ − 2

γ + γ3/(4k2π2)
.

Finite elements again give Ku = λMu, but now K is nonsymmetric.
For piecewise linear elements:

2

1

γ = 50

‖P1‖ = 2.235× 107

Standard Convergence Behavior for a Non-Self-Adjoint Operator

Convection–Diffusion: Au = −u′′ + γu′ on L2[0, 1] with u(0) = u(1) = 0.

Eigenvalues: λk = k2π2 + γ2/4. Eigenfunctions: uk(x) = eγx/2 sin(kπx).

Norms of spectral projectors: ‖Pj‖ =

√
eγ + e−γ − 2

γ + γ3/(4k2π2)
.

Finite elements again give Ku = λMu, but now K is nonsymmetric.
For piecewise linear elements:

2

1

γ = 75

‖P1‖ = 1.795× 1012

Standard Convergence Behavior for a Non-Self-Adjoint Operator

Convection–Diffusion: Au = −u′′ + γu′ on L2[0, 1] with u(0) = u(1) = 0.

Eigenvalues: λk = k2π2 + γ2/4. Eigenfunctions: uk(x) = eγx/2 sin(kπx).

Norms of spectral projectors: ‖Pj‖ =

√
eγ + e−γ − 2

γ + γ3/(4k2π2)
.

Finite elements again give Ku = λMu, but now K is nonsymmetric.
For piecewise cubic Hermite elements:

6

1

γ = 75

‖P1‖ = 1.795× 1012

Three Influences of Nonnormality

ut(t) = uxx (x , t)− γux (x , t) + cu(x , t)

6

1

�
�
�
��

transient growth
in dynamical systems

�
�
��

delayed convergence
of eigenvalues

� numerical
errors due
to poor
conditioning

Discretization for Bulk Spectral Properties

Sometimes one needs more than just a few eigenvalues;
one seeks bulk spectral properties, e.g., density of states, fractal dimension.

Example: The Fibonacci Hamiltonian, a one-dimensional quasicrystal model
[Kohmoto, Kadanoff, Tang 1983; Ostlund et al. 1983], . . .

Hλ =



. . .
. . .

. . .
1 0 1

1 λ 1
1 λ 1

1 0 1
1 λ 1

1 0 1
1 λ 1

1 λ 1

. . .
. . .

. . .


Key: The potential (diagonal) is quasiperiodic.

How does the ‘coupling constant’ λ affect the spectrum?

Discretization for Bulk Spectral Properties

Sometimes one needs more than just a few eigenvalues;
one seeks bulk spectral properties, e.g., density of states, fractal dimension.

Example: The Fibonacci Hamiltonian, a one-dimensional quasicrystal model
[Kohmoto, Kadanoff, Tang 1983; Ostlund et al. 1983], . . .

Hλ =



. . .
. . .

. . .
1 0 1

1 λ 1
1 λ 1

1 0 1
1 λ 1

1 0 1
1 λ 1

1 λ 1

. . .
. . .

. . .


Key: The potential (diagonal) is quasiperiodic.

How does the ‘coupling constant’ λ affect the spectrum?

Discretization for Bulk Spectral Properties

Eigenvalues of an N × N section of Hλ: λ = 1 and N = 100,000.

Discretization for Bulk Spectral Properties

Eigenvalues of an N × N section of Hλ: λ = 1 and N = 100,000.

Discretization for Bulk Spectral Properties

Eigenvalues of an N × N section of Hλ: λ = 1 and N = 100,000.

Discretization for Bulk Spectral Properties

Eigenvalues of an N × N section of Hλ: λ = 1 and N = 100,000.

Discretization for Bulk Spectral Properties

Hλ =



.
.
.

.
.
.

.
.
.

1 0 1
1 λ 1

1 λ 1
1 0 1

1 λ 1
1 0 1

1 λ 1
1 λ 1

.
.
.

.
.
.

.
.
.



I For any λ > 0, the spectrum is a Cantor set Sütő [1987, 1989].

I If the potential (diagonal) had period p, one could compute the spectrum
by solving two p × p matrix eigenvalue problems (Floquet theory).

I Sütő [1987] proved the spectra of successive period-k approximations Hk,λ

cover the spectrum of Hλ,

σ(Hλ) ⊂ Σk,λ := σ(Hk,λ) ∪ σ(Hk+1,λ),

and converge to it.

I Thus we infer bulk spectral properties from finite dimensional problems.

Upper Bounds on the Spectrum

Sütő’s upper bound Σλ,k as a function of λ.

k = 1

Upper Bounds on the Spectrum

Sütő’s upper bound Σλ,k as a function of λ.

k = 2

Upper Bounds on the Spectrum

Sütő’s upper bound Σλ,k as a function of λ.

k = 3

Upper Bounds on the Spectrum

Sütő’s upper bound Σλ,k as a function of λ.

k = 4

Upper Bounds on the Spectrum

Sütő’s upper bound Σλ,k as a function of λ.

k = 5

Upper Bounds on the Spectrum

Sütő’s upper bound Σλ,k as a function of λ.

k = 6

Upper Bounds on the Spectrum

Sütő’s upper bound Σλ,k as a function of λ.

k = 7

Upper Bounds on the Spectrum

Sütő’s upper bound Σλ,k as a function of λ.

k = 8

Upper Bounds on the Spectrum

Sütő’s upper bound Σλ,k as a function of λ.

k = 9

Upper Bounds on the Spectrum

Sütő’s upper bound Σλ,k as a function of λ.

k = 10

From Large Discretization Matrix

to Small Projected Matrix

Projection to a Small Matrix

The size of the matrix problem will thus be much larger than the
number of eigenvalues we are attempting to calculate. The matrix
eigenvalue solver, a crucial component of the complete computational
procedure, should therefore be designed to effectively find the low
eigenvalues of large sparse, generalized matrix problems. . . . Because
the extraction of the eigenvalues is very expensive, various “tricks”
are used in engineering practice to reduce the sizes of the matrices
under consideration.

— Babuška and Osborn, 1991

In the common situation where we seek only some subset of well-converged
eigenvalues and eigenvectors, we wish to automatically compress AN onto a
subspace Vk that captures those eigenvectors:

Hk := V∗k ANVk ∈ Ck×k

for k � n, where the columns of Vk for an orthonormal basis for the
approximation. Hk is a generalized Rayleigh quotient.

Krylov Subspace Projection

The most fruitful automatic choices for Vk derive from Krylov subspaces,

Kk(A, v) = span{v,Av, . . . ,Ak−1v};

the basis comprises iterates of the power method [Lanczos, 1950], [Arnoldi, 1951].

Since Krylov subspaces are shift invariant,

Kk(A− µI, v) = Kk(A, v),

we expect Kk(A, v) to be rich in eigenvectors corresponding to any eigenvalues
that can be made largest in magnitude by some choice of shift µ.

Suppose we seek the eigenpair (λ, u) of A, and λ has multiplicity 1.
One can show the convergence obeys

sin∠(u,Kk(A, v)) ≤ 1

‖Pv‖ min
ψ∈Pk−1
ψ(λ)=1

‖(I− P)ψ(A)‖,

where P is the spectral projector associated with (λ, u)
[Saad, 1980]; cf. subspace bounds in [Beattie, E., Rossi, 2004].

Krylov Subspace Projection

The most fruitful automatic choices for Vk derive from Krylov subspaces,

Kk(A, v) = span{v,Av, . . . ,Ak−1v};

the basis comprises iterates of the power method [Lanczos, 1950], [Arnoldi, 1951].

Since Krylov subspaces are shift invariant,

Kk(A− µI, v) = Kk(A, v),

we expect Kk(A, v) to be rich in eigenvectors corresponding to any eigenvalues
that can be made largest in magnitude by some choice of shift µ.

Suppose we seek the eigenpair (λ, u) of A, and λ has multiplicity 1.
One can show the convergence obeys

sin∠(u,Kk(A, v)) ≤ 1

‖Pv‖ min
ψ∈Pk−1
ψ(λ)=1

‖(I− P)ψ(A)‖,

where P is the spectral projector associated with (λ, u)
[Saad, 1980]; cf. subspace bounds in [Beattie, E., Rossi, 2004].

Krylov Subspace Projection

The most fruitful automatic choices for Vk derive from Krylov subspaces,

Kk(A, v) = span{v,Av, . . . ,Ak−1v};

the basis comprises iterates of the power method [Lanczos, 1950], [Arnoldi, 1951].

Since Krylov subspaces are shift invariant,

Kk(A− µI, v) = Kk(A, v),

we expect Kk(A, v) to be rich in eigenvectors corresponding to any eigenvalues
that can be made largest in magnitude by some choice of shift µ.

Suppose we seek the eigenpair (λ, u) of A, and λ has multiplicity 1.
One can show the convergence obeys

sin∠(u,Kk(A, v)) ≤ 1

‖Pv‖ min
ψ∈Pk−1
ψ(λ)=1

‖(I− P)ψ(A)‖,

where P is the spectral projector associated with (λ, u)
[Saad, 1980]; cf. subspace bounds in [Beattie, E., Rossi, 2004].

Convergence of Krylov Subspace Projection

sin∠(u,Kk(A, v)) ≤ 1

‖Pv‖ min
ψ∈Pk−1
ψ(λ)=1

‖(I− P)ψ(A)‖,

Suppose A is Hermitian and we seek leftmost eigenvalue λ1, where

λ1 < λ2 ≤ · · · ≤ λN .

The error bound suggests the progress made at each iteration is like

γ :=

√
κ− 1√
κ+ 1

, where κ :=
λN − λ1

λ2 − λ1
.

When A discretizes an unbounded operator, we expect λN = ‖A‖ → ∞ as
N →∞. Hence, the convergence rate goes to zero as N →∞.

This illustrates why Krylov subspace methods applied to A perform poorly for
many PDE eigenvalue problems.

Convergence of Krylov Subspace Projection

sin∠(u,Kk(A, v)) ≤ 1

‖Pv‖ min
ψ∈Pk−1
ψ(λ)=1

‖(I− P)ψ(A)‖,

Suppose A is Hermitian and we seek leftmost eigenvalue λ1, where

λ1 < λ2 ≤ · · · ≤ λN .

The error bound suggests the progress made at each iteration is like

γ :=

√
κ− 1√
κ+ 1

, where κ :=
λN − λ1

λ2 − λ1
.

When A discretizes an unbounded operator, we expect λN = ‖A‖ → ∞ as
N →∞. Hence, the convergence rate goes to zero as N →∞.

This illustrates why Krylov subspace methods applied to A perform poorly for
many PDE eigenvalue problems.

Convergence of Krylov Subspace Projection

We see this effect for the simple 1d Laplacian considered earlier.

N = 4096
N = 2048
N = 1024

N = 512

N = 256

Convergence of Krylov Subspace Projection

The problem becomes immediately apparent if we attempt to run Krylov
subspace projection on the operator itself,

Kk(A, v) = span{v ,Av , . . . ,Ak−1v}.

For Au = −u′′ with Dirichlet boundary conditions, u(0) = u(1) = 1, we choose
a starting vector v ∈ Dom(A), i.e.,

v(0) = v(1) = 0.

However, in general Av 6∈ Dom(A), so we cannot build the next Krylov
direction A2v = A(Av). The Lanczos algorithm breaks down at the third step.

The operator setting suggests that we instead apply Lanczos to A−1:

Kk(A−1, v) = span{v ,A−1v , . . . ,A−(k−1)v}.

In this case, A−1 is a beautiful compact operator, and

(A−1v)(x) =

∫∫
v + C0 + C1x ,

where we choose C0 and C1 so that

(A−1v)(0) = (A−1v)(1) = 0.

Convergence of Krylov Subspace Projection

The problem becomes immediately apparent if we attempt to run Krylov
subspace projection on the operator itself,

Kk(A, v) = span{v ,Av , . . . ,Ak−1v}.

For Au = −u′′ with Dirichlet boundary conditions, u(0) = u(1) = 1, we choose
a starting vector v ∈ Dom(A), i.e.,

v(0) = v(1) = 0.

However, in general Av 6∈ Dom(A), so we cannot build the next Krylov
direction A2v = A(Av). The Lanczos algorithm breaks down at the third step.

The operator setting suggests that we instead apply Lanczos to A−1:

Kk(A−1, v) = span{v ,A−1v , . . . ,A−(k−1)v}.

In this case, A−1 is a beautiful compact operator, and

(A−1v)(x) =

∫∫
v + C0 + C1x ,

where we choose C0 and C1 so that

(A−1v)(0) = (A−1v)(1) = 0.

Convergence of Krylov Subspace Projection

We run the Lanczos algorithm on A−1 exactly in Mathematica.
Denote the eigenvalues of Hk as

θ
(k)
1 ≤ θ

(k)
2 ≤ · · · ≤ θ

(k)
k .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

k

10-12

10-8

10-4

100

104

j3
(k

)
j
!
6

j
j

j = 1

j = 8

Cf. [Winther, 1980], [Nevanlinna, 1993], [Moret, 1997], [Olver, 2009] for CG and
GMRES applied to operators, and [Kirby, 2010] for the Riesz map setting.

This mode of computation is preferred for discretization matrices as well:
the shift-invert Arnoldi method uses

Kk((A− µI)−1, v) = span{v, (A− µI)−1v, . . . , (A− µI)−(k−1)v}.

Convergence of Krylov Subspace Projection

We run the Lanczos algorithm on A−1 exactly in Mathematica.
Denote the eigenvalues of Hk as

θ
(k)
1 ≤ θ

(k)
2 ≤ · · · ≤ θ

(k)
k .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

k

10-12

10-8

10-4

100

104

j3
(k

)
j
!
6

j
j

j = 1

j = 8

Cf. [Winther, 1980], [Nevanlinna, 1993], [Moret, 1997], [Olver, 2009] for CG and
GMRES applied to operators, and [Kirby, 2010] for the Riesz map setting.

This mode of computation is preferred for discretization matrices as well:
the shift-invert Arnoldi method uses

Kk((A− µI)−1, v) = span{v, (A− µI)−1v, . . . , (A− µI)−(k−1)v}.

From Small Projected Matrix

to Computed Eigenvalues

Computation of Eigenvalues for Small Matrices

Robust software exists for the solution of the symmetric and nonsymmetric
eigenvalue problem. LAPACK software provides gold-standard implementations
of the best algorithms.

Aside from a few lingering issues (e.g., superb orthogonality of eigenvectors for
symmetric matrices; accelerating convergence via aggressive deflation), the
dense eigenvalue problem is mainly regarded as a solved problem.

However, the main outstanding challenge is critical to many applications:
the high relative accuracy of small eigenvalues.

There is a broad literature on this subject, e.g., [Demmel, Veselić, Drmač,

Slapničar, . . .] In the context of differential operators, see [Qiang Ye, 2009. . .].

Standard Eigensolvers and Relative Accuracy

Discretize Au = −u′′ on [0, 1] with u(0) = u(1) = 0 using second order finite
differences with mesh size h = 1/(N + 1):

AN =
1

h2


2 −1

−1 2
. . .

. . . 2 −1

−1 2

 .

The eigenvalues of this matrix are well-known:

λk,N = 2h−2
(

1− cos
(
kπh

))
, k = 1, . . . ,N.

For small k,

λk,N = k2π2 + O(h2),

approximating to O(h2) the true eigenvalue λk = k2π2 of A.

Do numerical computations recover this expected error?

Standard Eigensolvers and Relative Accuracy

Discretize Au = −u′′ on [0, 1] with u(0) = u(1) = 0 using second order finite
differences with mesh size h = 1/(N + 1):

AN =
1

h2


2 −1

−1 2
. . .

. . . 2 −1

−1 2

 .
The eigenvalues of this matrix are well-known:

λk,N = 2h−2
(

1− cos
(
kπh

))
, k = 1, . . . ,N.

For small k,

λk,N = k2π2 + O(h2),

approximating to O(h2) the true eigenvalue λk = k2π2 of A.

Do numerical computations recover this expected error?

Standard Eigensolvers and Relative Accuracy

Discretize Au = −u′′ on [0, 1] with u(0) = u(1) = 0 using second order finite
differences with mesh size h = 1/(N + 1):

AN =
1

h2


2 −1

−1 2
. . .

. . . 2 −1

−1 2

 .
The eigenvalues of this matrix are well-known:

λk,N = 2h−2
(

1− cos
(
kπh

))
, k = 1, . . . ,N.

For small k,

λk,N = k2π2 + O(h2),

approximating to O(h2) the true eigenvalue λk = k2π2 of A.

Do numerical computations recover this expected error?

Standard Eigensolvers and Relative Accuracy

Use ARPACK (via eigs in MATLAB) to compute the smallest eigenvalue

λ1,N =
2

h2
(1− cos(πh)) = π2 + O(h2).

Denote the eigenvalue eigs computes as λ̂1,N .

Standard Eigensolvers and Relative Accuracy

Use ARPACK (via eigs in MATLAB) to compute the smallest eigenvalue

λ1,N =
2

h2
(1− cos(πh)) = π2 + O(h2).

Denote the eigenvalue eigs computes as λ̂1,N .

Standard Eigensolvers and Relative Accuracy

Use ARPACK (via eigs in MATLAB) to compute the smallest eigenvalue

λ1,N =
2

h2
(1− cos(πh)) = π2 + O(h2).

Denote the eigenvalue eigs computes as λ̂1,N .

Standard Eigensolvers and Relative Accuracy

Use ARPACK (via eigs in MATLAB) to compute the smallest eigenvalue

λ1,N =
2

h2
(1− cos(πh)) = π2 + O(h2).

Denote the eigenvalue eigs computes as λ̂1,N .

Standard Eigensolvers and Relative Accuracy

Use ARPACK (via eigs in MATLAB) to compute the smallest eigenvalue

λ1,N =
2

h2
(1− cos(πh)) = π2 + O(h2).

Denote the eigenvalue eigs computes as λ̂1,N .

Standard Eigensolvers and Relative Accuracy

Use ARPACK (via eigs in MATLAB) to compute the smallest eigenvalue

λ1,N =
2

h2
(1− cos(πh)) = π2 + O(h2).

Denote the eigenvalue eigs computes as λ̂1,N .

Standard Eigensolvers and Relative Accuracy

Use ARPACK (via eigs in MATLAB) to compute the smallest eigenvalue

λ1,N =
2

h2
(1− cos(πh)) = π2 + O(h2).

Denote the eigenvalue eigs computes as λ̂1,N .

Standard Eigensolvers and Relative Accuracy

Use ARPACK (via eigs in MATLAB) to compute the smallest eigenvalue

λ1,N =
2

h2
(1− cos(πh)) = π2 + O(h2).

Denote the eigenvalue eigs computes as λ̂1,N .

Standard Eigensolvers and Relative Accuracy

Use ARPACK (via eigs in MATLAB) to compute the smallest eigenvalue

λ1,N =
2

h2
(1− cos(πh)) = π2 + O(h2).

Denote the eigenvalue eigs computes as λ̂1,N .

Standard Eigensolvers and Relative Accuracy

Use ARPACK (via eigs in MATLAB) to compute the smallest eigenvalue

λ1,N =
2

h2
(1− cos(πh)) = π2 + O(h2).

Denote the eigenvalue eigs computes as λ̂1,N .

Standard Eigensolvers and Relative Accuracy

Use ARPACK (via eigs in MATLAB) to compute the smallest eigenvalue

λ1,N =
2

h2
(1− cos(πh)) = π2 + O(h2).

Denote the eigenvalue eigs computes as λ̂1,N .

Standard Eigensolvers and Relative Accuracy

Use ARPACK (via eigs in MATLAB) to compute the smallest eigenvalue

λ1,N =
2

h2
(1− cos(πh)) = π2 + O(h2).

Denote the eigenvalue eigs computes as λ̂1,N .

Standard Eigensolvers and Relative Accuracy

Use ARPACK (via eigs in MATLAB) to compute the smallest eigenvalue

λ1,N =
2

h2
(1− cos(πh)) = π2 + O(h2).

Denote the eigenvalue eigs computes as λ̂1,N .

Standard Eigensolvers and Relative Accuracy

Use ARPACK (via eigs in MATLAB) to compute the smallest eigenvalue

λ1,N =
2

h2
(1− cos(πh)) = π2 + O(h2).

Denote the eigenvalue eigs computes as λ̂1,N .

Standard Eigensolvers and Relative Accuracy

Use ARPACK (via eigs in MATLAB) to compute the smallest eigenvalue

λ1,N =
2

h2
(1− cos(πh)) = π2 + O(h2).

Denote the eigenvalue eigs computes as λ̂1,N .

Standard Eigensolvers and Relative Accuracy

Use ARPACK (via eigs in MATLAB) to compute the smallest eigenvalue

λ1,N =
2

h2
(1− cos(πh)) = π2 + O(h2).

Denote the eigenvalue eigs computes as λ̂1,N .

Standard Eigensolvers and Relative Accuracy

Use ARPACK (via eigs in MATLAB) to compute the smallest eigenvalue

λ1,N =
2

h2
(1− cos(πh)) = π2 + O(h2).

Denote the eigenvalue eigs computes as λ̂1,N .

Standard Eigensolvers and Relative Accuracy

Use ARPACK (via eigs in MATLAB) to compute the smallest eigenvalue

λ1,N =
2

h2
(1− cos(πh)) = π2 + O(h2).

Denote the eigenvalue eigs computes as λ̂1,N .

Standard Eigensolvers and Relative Accuracy

Repeat the same experiment, using eig (a dense eigensolver from LAPACK) to
compute the smallest magnitude eigenvalue

λ1,N =
2

h2
(1− cos(πh)) = π2 + O(h2).

Now denote this computed eigenvalue as λ̂1,N .

Standard Eigensolvers and Relative Accuracy

Where do these errors come from? Standard (sparse and dense) eigensolvers
only compute eigenvalues to a high absolute accuracy. We have no guarantee
that the eigenvalues have high relative accuracy.

More precisely, standard dense symmetric eigensolvers yield approximations
λ̂1,N to λ1,N that obey

|λ1,N − λ̂1,N | ≤ cN εmach‖AN‖,

where εmach is machine epsilon (2.2× 10−16 for double precision),
and cN is a modest N-dependent constant.

For our problem,

‖AN‖ = λN,N =
4

h2
− π2 + O(h2).

(We are, after all, approximating an unbounded differential operator.)

Meanwhile, the convergence theory for the discretization gives

|λ1 − λ1,N | =
1

12
π4h2 + O(h4).

Standard Eigensolvers and Relative Accuracy

Where do these errors come from? Standard (sparse and dense) eigensolvers
only compute eigenvalues to a high absolute accuracy. We have no guarantee
that the eigenvalues have high relative accuracy.

More precisely, standard dense symmetric eigensolvers yield approximations
λ̂1,N to λ1,N that obey

|λ1,N − λ̂1,N | ≤ cN εmach‖AN‖,

where εmach is machine epsilon (2.2× 10−16 for double precision),
and cN is a modest N-dependent constant. For our problem,

‖AN‖ = λN,N =
4

h2
− π2 + O(h2).

(We are, after all, approximating an unbounded differential operator.)

Meanwhile, the convergence theory for the discretization gives

|λ1 − λ1,N | =
1

12
π4h2 + O(h4).

Standard Eigensolvers and Relative Accuracy

Where do these errors come from? Standard (sparse and dense) eigensolvers
only compute eigenvalues to a high absolute accuracy. We have no guarantee
that the eigenvalues have high relative accuracy.

More precisely, standard dense symmetric eigensolvers yield approximations
λ̂1,N to λ1,N that obey

|λ1,N − λ̂1,N | ≤ cN εmach‖AN‖,

where εmach is machine epsilon (2.2× 10−16 for double precision),
and cN is a modest N-dependent constant. For our problem,

‖AN‖ = λN,N =
4

h2
− π2 + O(h2).

(We are, after all, approximating an unbounded differential operator.)

Meanwhile, the convergence theory for the discretization gives

|λ1 − λ1,N | =
1

12
π4h2 + O(h4).

Standard Eigensolvers and Relative Accuracy

Collecting these observations

|λ1,N − λ̂1,N | ≤ cN εmach‖AN‖

‖AN‖ = λN,N =
2

h2
(1− cos(πNh)) =

4

h2
− π2 + O(h2)

|λ1 − λ1,N | =
1

12
π4h2 + O(h4)

we find an explanation for the poor convergence.

The error between the computed λ̂1,N and the desired λ1 is bounded by:

|λ1 − λ̂1,N | ≤ |λ1 − λ1,N |+ |λ1,N − λ̂1,N |

Standard Eigensolvers and Relative Accuracy

Collecting these observations

|λ1,N − λ̂1,N | ≤ cN εmach‖AN‖

‖AN‖ = λN,N =
2

h2
(1− cos(πNh)) =

4

h2
− π2 + O(h2)

|λ1 − λ1,N | =
1

12
π4h2 + O(h4)

we find an explanation for the poor convergence.

The error between the computed λ̂1,N and the desired λ1 is bounded by:

|λ1 − λ̂1,N | ≤ |λ1 − λ1,N |+ |λ1,N − λ̂1,N |

≤
(1

12
π4h2 + O(h4)

)
+ cN εmach

(4

h2
− π2 + O(h2)

)

Standard Eigensolvers and Relative Accuracy

Collecting these observations

|λ1,N − λ̂1,N | ≤ cN εmach‖AN‖

‖AN‖ = λN,N =
2

h2
(1− cos(πNh)) =

4

h2
− π2 + O(h2)

|λ1 − λ1,N | =
1

12
π4h2 + O(h4)

we find an explanation for the poor convergence.

The error between the computed λ̂1,N and the desired λ1 is bounded by:

|λ1 − λ̂1,N | ≤ |λ1 − λ1,N |+ |λ1,N − λ̂1,N |

≤
(1

12
π4h2 + O(h4)

)
+ cN εmach

(4

h2
− π2 + O(h2)

)
decreasing
as N →∞

increasing
as N →∞

Standard Eigensolvers and Relative Accuracy

The problem becomes even more acute for higher order problems. Use finite
differences to discretize Au = u′′′′ on [0, 1] with hinged boundary conditions
u(0) = u(1) = u′′(0) = u′′(1) = 0, giving smallest eigenvalue λ1 = π4.

Error in eigenvalue using eigs:

Standard Eigensolvers and Relative Accuracy

The problem becomes even more acute for higher order problems. Use finite
differences to discretize Au = u′′′′ on [0, 1] with hinged boundary conditions
u(0) = u(1) = u′′(0) = u′′(1) = 0, giving smallest eigenvalue λ1 = π4.

Error in eigenvalue using eig:

Standard Eigensolvers and Relative Accuracy

Can we work around this problem?

I What about working with A−1
N instead?

The error from applying A−1
N scales like κ(AN) = ‖AN‖‖A−1

N ‖.

I Better algorithms exist when an accurate factorization of A is available.
See, e.g., the survey by Drmač [2013] of eigenvalue algorithms for high
relative accuracy.

I Sometimes alternative discretizations can yield better accuracy.

Standard Eigensolvers and Relative Accuracy

For example, for these simple problems we can apply Chebyshev pseudospectral
collocation methods (see [Trefethen, 2000]) to obtain approximate eigenvalues
that are “spectrally accurate,” i.e., where |λ1 − λ1,N | = O(hp) for all powers p
as N →∞. The desired eigenvalue converges faster before ‖AN‖ overwhelms.

For Au = −u′′ (with eigs):

Standard Eigensolvers and Relative Accuracy

For example, for these simple problems we can apply Chebyshev pseudospectral
collocation methods (see [Trefethen, 2000]) to obtain approximate eigenvalues
that are “spectrally accurate,” i.e., where |λ1 − λ1,N | = O(hp) for all powers p
as N →∞. The desired eigenvalue converges faster before ‖AN‖ overwhelms.

For Au = u′′′′ (with eigs):

Conclusions

1. DATA / MODEL

2. LINEARIZE

3. DISCRETIZE

4. PROJECT

5. COMPUTE

We have illustrated some of the challenges the follow
from each of the steps in this transition from physical
problem to numerically computed eigenvalue problems.

Even then, this survey has skimmed many important
and interesting topics, such as Rayleigh–Ritz eigenvalue
approximation, challenges of spectral approximation for
non-self-adjoint problems, improved algorithms for high
relative accuracy, interval arithmetic, inner products,

We hope this long view the approximation process can better inform the choices
made at each step, so as to alleviate difficulties further down the chain.

Similarly, by better understanding the challenges that arise at the model and op-
erator level, the numerical linear algebra community might focus energy toward
problems that emerge before construction of A ∈ Rn×n.

Thank you

Steve Cox Jeffrey Hokanson

The Strings Lab, especially Jeffrey Bridge and Sean Hardesty.

The Eigenvalue Clinic, especially Russell Carden, Josef Sifuentes,
Cosmin Ionitia, Sanda Lefteriu, and Charles Puelz.

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	0.45:
	0.46:
	0.47:
	0.48:
	0.49:
	0.50:
	0.51:
	0.52:
	0.53:
	0.54:
	0.55:
	0.56:
	0.57:
	0.58:
	0.59:
	0.60:
	0.61:
	0.62:
	0.63:
	0.64:
	0.65:
	0.66:
	0.67:
	0.68:
	0.69:
	0.70:
	0.71:
	0.72:
	0.73:
	0.74:
	0.75:
	0.76:
	0.77:
	0.78:
	0.79:
	0.80:
	0.81:
	0.82:
	0.83:
	0.84:
	0.85:
	0.86:
	0.87:
	0.88:
	0.89:
	0.90:
	0.91:
	0.92:
	0.93:
	0.94:
	0.95:
	0.96:
	0.97:
	0.98:
	0.99:
	0.100:
	0.101:
	0.102:
	0.103:
	0.104:
	0.105:
	0.106:
	0.107:
	0.108:
	0.109:
	0.110:
	0.111:
	0.112:
	0.113:
	0.114:
	0.115:
	0.116:
	0.117:
	0.118:
	0.119:
	0.120:
	0.121:
	0.122:
	0.123:
	0.124:
	0.125:
	0.126:
	0.127:
	0.128:
	0.129:
	0.130:
	0.131:
	0.132:
	0.133:
	0.134:
	0.135:
	0.136:
	0.137:
	0.138:
	0.139:
	0.140:
	0.141:
	0.142:
	0.143:
	0.144:
	0.145:
	0.146:
	0.147:
	0.148:
	0.149:
	0.150:
	0.151:
	0.152:
	0.153:
	0.154:
	0.155:
	0.156:
	0.157:
	0.158:
	0.159:
	0.160:
	0.161:
	0.162:
	0.163:
	0.164:
	0.165:
	0.166:
	0.167:
	0.168:
	0.169:
	0.170:
	0.171:
	0.172:
	0.173:
	0.174:
	0.175:
	0.176:
	0.177:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	1.30:
	1.31:
	1.32:
	1.33:
	1.34:
	1.35:
	1.36:
	1.37:
	1.38:
	1.39:
	1.40:
	1.41:
	1.42:
	1.43:
	1.44:
	1.45:
	1.46:
	1.47:
	1.48:
	1.49:
	1.50:
	1.51:
	1.52:
	1.53:
	1.54:
	1.55:
	1.56:
	1.57:
	1.58:
	1.59:
	1.60:
	1.61:
	1.62:
	1.63:
	1.64:
	1.65:
	1.66:
	1.67:
	1.68:
	1.69:
	1.70:
	1.71:
	1.72:
	1.73:
	1.74:
	1.75:
	1.76:
	1.77:
	1.78:
	1.79:
	1.80:
	1.81:
	1.82:
	1.83:
	1.84:
	1.85:
	1.86:
	1.87:
	1.88:
	1.89:
	1.90:
	1.91:
	1.92:
	1.93:
	1.94:
	1.95:
	1.96:
	1.97:
	1.98:
	1.99:
	1.100:
	1.101:
	1.102:
	1.103:
	1.104:
	1.105:
	1.106:
	1.107:
	1.108:
	1.109:
	1.110:
	1.111:
	1.112:
	1.113:
	1.114:
	1.115:
	1.116:
	1.117:
	1.118:
	1.119:
	1.120:
	1.121:
	1.122:
	1.123:
	1.124:
	1.125:
	1.126:
	1.127:
	1.128:
	1.129:
	1.130:
	1.131:
	1.132:
	1.133:
	1.134:
	1.135:
	1.136:
	1.137:
	1.138:
	1.139:
	1.140:
	1.141:
	1.142:
	1.143:
	1.144:
	1.145:
	1.146:
	1.147:
	1.148:
	1.149:
	anm1:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	2.10:
	2.11:
	2.12:
	2.13:
	2.14:
	2.15:
	2.16:
	2.17:
	2.18:
	2.19:
	2.20:
	2.21:
	2.22:
	2.23:
	2.24:
	2.25:
	2.26:
	2.27:
	2.28:
	2.29:
	2.30:
	2.31:
	2.32:
	2.33:
	2.34:
	2.35:
	2.36:
	2.37:
	2.38:
	2.39:
	2.40:
	2.41:
	2.42:
	2.43:
	2.44:
	2.45:
	2.46:
	2.47:
	2.48:
	2.49:
	2.50:
	2.51:
	2.52:
	2.53:
	2.54:
	2.55:
	2.56:
	2.57:
	2.58:
	2.59:
	2.60:
	2.61:
	2.62:
	2.63:
	2.64:
	2.65:
	2.66:
	2.67:
	2.68:
	2.69:
	2.70:
	2.71:
	2.72:
	2.73:
	2.74:
	2.75:
	2.76:
	2.77:
	2.78:
	2.79:
	2.80:
	2.81:
	2.82:
	2.83:
	2.84:
	2.85:
	2.86:
	2.87:
	2.88:
	2.89:
	2.90:
	2.91:
	2.92:
	2.93:
	2.94:
	2.95:
	2.96:
	2.97:
	2.98:
	2.99:
	2.100:
	2.101:
	2.102:
	2.103:
	2.104:
	2.105:
	2.106:
	2.107:
	2.108:
	2.109:
	2.110:
	2.111:
	2.112:
	2.113:
	2.114:
	2.115:
	2.116:
	2.117:
	2.118:
	2.119:
	anm2:

