Input-Output Analysis of Channel Flows
and Implications for Flow Control

Bassam Bamieh

MECHANICAL ENGINEERING
UNIVERSITY OF CALIFORNIA AT SANTA BARBARA

B. Bamieh (UCSB) SIAM DS, May 2015 1/25




I
Transition & Turbulence as Natural Phenomena

All fluid flows transition (as 0 S ~0) from laminar to turbulent flows

@ Bluff bodies dominant phenomenon: separation

@ Streamlined bodies dominant phenomenon: friction with walls
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wall-bounded shear flows
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Boundary Layer Turbulence
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boundary layer turbulence side view top view

@ Transition & Turbulence in Boundary Layer and Channel Flows
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Boundary Layer Turbulence

boundary layer turbulence side view top view
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Turbulent Boundary Lavyer

skin-friction drag: laminar vs. turbulent

@ Transition & Turbulence in Boundary Layer and Channel Flows
@ Technologically Important:  Skin-Friction Drag

B. Bamieh (UCSB) SIAM DS, May 2015 3/25




e
Control of Boundary Layer Turbulence

active control with
sensor/actuator arrays

“passive” control

corrugated skin compliant skin
@ Other “open loop” schemes:

» Oscillating walls
» Body force traveling waves

Caveat: Plant’s dynamics are not well understood
chnlnls not only device technology l
also: dynamical modeling and control design
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Mathematical Modeling of Transition: Hydrodynamic Stability

The Navier-Stokes (NS) equations: .

—Vyu —grad p + zAu —
div u

BA
0

@ Hydrodynamic Stability: view NS as a dynamical system

@ /aminar flow uy := a stationary solution of the NS equations (an equilibrium)
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Mathematical Modeling of Transition: Hydrodynamic Stability
The Navier-Stokes (NS) equations: -

du = —Vyu—gradp+ zAu E—
0 = divu =
\;_
@ Hydrodynamic Stability: view NS as a dynamical system

@ /aminar flow ur := a stationary solution of the NS equations (an equilibrium)

_ N I.c. u(0) # ug,
laminar flow up stable — s S
u(z) — ug
typically done with dynamics linearized about ug

various methods to track further “non-linear behavior” |
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Mathematical Modeling of Transition: Hydrodynamic Stability
The Navier-Stokes (NS) equations:

du = —Vyu—gradp+ zAu ——
0 = divu =
S_?—
@ Hydrodynamic Stability: view NS as a dynamical system

@ A very successful (phenomenologically predictive) approach for many decades
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Mathematical Modeling of Transition: Hydrodynamic Stability
The Navier-Stokes (NS) equations: ——

du = —Vyu-—gradp+ zAu E—
0 = divu =
5
@ Hydrodynamic Stability: view NS as a dynamical system

@ however: problematic for wall-bounded shear flows

does not predict transition Reynolds numbers

Flow type Classical linear theory R | Experimental R |
Channel Flow 5772 ~ 1,000-2,000 |
Plane Couette oo ~ 350

Pipe Flow o0 ~ 2,200-100,000
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Mathematical Modeling of Transition: Hydrodynamic Stability

The Navier-Stokes (NS) equations: A
:Z:LX B e
du = —Vyu—gradp+ zAu E—
0 = divu =
’S

@ Hydrodynamic Stability: view NS as a dynamical system

@ however: problematic for wall-bounded shear flows
does not predict most transition flow structures

prediction: T-S waves more common: bypass transition
- — ; '_ : =
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Mathematical Modeling of Transition: Hydrodynamic Stability

The Navier-Stokes (NS) equations: P
==
du = —Vyu—gradp+ zAu —
¢ — dmau =
§
@ Hydrodynamic Stability: view NS as a dynamical system

@ however: problematic for wall-bounded shear flows

» was widely believed: this theory fails because it is linear
and “nonlinear effects” are important even for infinitesimal i.c.

» however, since 90’s: story is actually more interesting than that
Nonmodal Stability Theory, Schmid, ARFM 07
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Mathematical Modeling of Transition: Incorporating Uncertainty

@ Decompose the fields as L u + u
T L
laminar fluctuations

@ Add a time-varying exogenous disturbance field d (e.g. random body forces)

[
(=1
|

—Vau —Vau — gradp + zAa — Viu + d
div u

-
|

Input-Output view of the Linearized NS Equations
Farrell, loannou, '93 PoF

BB, Dahleh, '01 PoF

Jovanovic, BB, '05 JFM
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Mathematical Modeling of Transition: Incorporating Uncertainty

@ Decompose the fields as - = u - - u
T T
laminar fluctuations

@ Add a time-varying exogenous disturbance field d (e.g. random body forces)
ou = —Vga —Vgu —gradp + tAa— V,u + d
0 = divu

@ Neglect the feedback V..

—» LNS |f—b
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e
Input-Output Analysis of the Linearized NS Equations

o[ A7] - [U's—UAd+zAZ 0O ] [0 B2+82 —8,] |
" —ire — U8 + %A = - 0 —& !

i | 1 Oxy —0- 5
b = («:—)_;7 +e:);’) [u;? +8 0 } { J

w ():)‘ O

— == = Vv d ) u
T s——e]s —» INS > 9§ — AT + Bd

z

m— W
Surprises:
@ Even when A is stable the gain d — u can be very large
( (H? norm)? scales with R’)
@ [nput-output resonances very different from least-damped modes of A

\ / has important implications for control design!
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Spatio-temporal Impulse and Frequency Responses

Translation invariance in x & z implies

@ /Impulse Response (Green's Function) g

Wy = /G(r
a7 = /gn

G(r.x.z) :  Operator-valued impulse response

)

—7,x—& WY .z— Q) d(7.£,Y,¢) drdédy' d¢

I

—1.x—&.z2—C)d(T7.&, .,C) dTd€dC

@ Frequency Response
W(w, ke, k;) = G(w, ke k:) d(w, ky, k)

Glw.ke.k-) :  Operator-valued frequency response (Packs lots of information!)

@ Spectrum of A:

o(A) = |J o (Atkek))

ky k.
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Modal vs. Input-Output Analysis

T 4 0% = AV + Bd
}'I __-%:5; :\_‘ —;‘V‘L]'"i S —— LLNS N—.‘ [l — C \D
adh | @ IR: G(r.x,z)

@ FR: G(w. k. k.)

Modal Analysis: Look for unstable eigs of A (Uk‘_k: o (A(k.r- k:)))

Flow type Classical linear theory R. | Experimental R, || |
Channel Flow | 5772 ~ 1,000-2,000

Plane Couette | 00 ~ 350

Pipe Flow o0 ~ 2,200-100,000
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e
Modal vs. Input-Output Analysis

V | | - A\ AV¥ + Bd
yI___A%;;?__\QJ —( LNS |—» ;= W

- ‘ @ IR: G(1.x,2)
@ FR: G(w, k.. k.)

!

F4 X

Modal Analysis: Look for unstable eigs of A (Uk‘_k: o (A(k_‘.. k. )))

@ Channel Flow @ R = 2000, &, = 1, (k. = vertical dimension);

— r

AR

top view
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Modal vs. Input-Output Analysis

| g WV = AV + Bd|
,;I;§~-- E —> N — i = CU
@ IR:G(1,x.2)

@ FR: G(w,. k., k;)

Modal Analysis: Look for unstable eigs of A (Uk - ( Alky, k. )))

@ Channel Flow @ R = 6000, k, = 1, k. = 0:

Flow structure of corresponding eigenfunction:

i Tollmein-Schlichting (TS) waves

B. Bamieh (UCSB) SIAM DS, May 2015 10/ 25




Modal vs. Input-Output Analysis
oV = AV + Bd

m — €U

@ IR:G(t,x,y,.—1,2)
@ FR: G(w. k., k)

LLNS

Impulse Response Analysis: Channel Flow @ R = 2000

cf. “turbulent spots”

Jovanovic, BB. '01 ACC

SIAM DS, May 2015

maore movies and pics at

B. Bamieh (UCSB)

10/25



Modal vs. Input-Output Analysis

o | = o\ AV + Bd|
ay::%;’_? —\"J‘i . LLNS — m — C9

il @ IR:G(t,x,y,—1,2)

@ FR: G(w, k. k,)

Impulse Response Analysis: Channel Flow @ R = 2000

streamwise velocity streamwise vorticity
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Modal vs. Input-Output Analysis

: : : é_)f\I’ — A \Ij + Bd
- — !y —» INS |—» -m— €W

& X

@ IR: G(t.x.y.—1.2)
@ FR: G(w, k., k.)

Impulse Response Analysis: Channel Flow @ R = 2000

= FFF RS TEC '
\V” ‘-'7"
I.é \ l : i’l
ahih | 440

|

u in a horizontal plane u in a vertical plane
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Modal vs. Input-Output Analysis

— , O¥ = AV + Bd
y[___,,:%;:;; = _\..’:T_:u_ b SN ILNS — ﬁ C \IJ

@ IR: G(1.x,2)
e FR: G(w.k.k.)

@ Frequency Response

w(w, ke, k) = G(w, ke, k) d(w,kx, k;)

G(w, kx, k) Operator-valued frequency response (Packs lots of information!)
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Spatio-temporal Frequency Response

Glw. k.. k.) is a LARGE object!

one visualization: sup_ o—nm( W

’ I

(1]

‘
_I
A.

B. Bamieh (UCSB)

—

(very “data rich”! )

(max over

temporal frequency

& wall-normal dimension

)

Jovanovic, BB, '05 JFM
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Spatio-temporal Frequency Response
Glw.k..k.) is a LARGE object! (very “data rich”! )

- : : y - temporal frequency
one visualization: SUP,, Omax | & (w. K, K> ) max over ) .
= & wall-normal dimension

flow structure corresponding to peak:

ﬁ. S—-—— — s
NE = - _—- XXX
% _ = Vs s cw < —_ -——
- : T - — —_ . OO0 e
3 o -_ - . A . A .
streamwise velocity isosurfaces streamwise vorticity isosurfaces
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e
Spatio-temporal Frequency Response
Glw. k.. k.) is a LARGE object! (very “data rich”! )

’ ’ " ) o) _ temporal frequency
one vusuallzatlon. SUP_ . Omax GUlw. /(1_-. /\'; ; max over ) ,
= & wall-normal dimension

flow structure corresponding to peak:

similar to observed near-wall structures
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Underdamped Modes vs. Large IO Resonances

channel flow with 2¢ = 2000:

TS waves

0

10
10™
10°
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streamwise wavenumber

K
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10° 10~ 107

streamwise

streaks

10'

spanwise wavenumber

@ highly underdamped TS modes barely register in the IO response
@ large peaks of IO response do not correspond to any particular pure mode
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Internal Modes vs. External Resonances
A Detour
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e
Internal Modes vs. External Resonances

Does this correspondence hold for large-scale systems?
1= f - -
_______________ L S . i
i s é% ; i i W
- B #-I-g 3L | £ *H-é 2L
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T

Internal Modes vs. External Resonances

Does this correspondence hold for large-scale systems?

‘ "t | P A A A A A
_— . ‘\\
T 1 ' | Ta
- — W

However: this may not hold in general

even in linear systems!
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e
Modal vs. Input-Output Response

Typically: underdamped poles «— frequency response peaks

cf. The “rubber sheet analogy”:

ODE (state space model) Transfer Function
(1) A (1) + Bd(r)
u(r) C (1)

H(s) = C(sl —A)"'B

@ eigs(A) = poles(H(s))

B. Bamieh (UCSB) SIAM DS, May 2015




e
Modal vs. Input-Output Response

However: Pole Locations <  Frequency Response Peaks

Theorem: Given any desired pole locations
Zls - oeqy T EC— (EEP) Pl

and any stable frequency response H(jw), arbitrarily close
approximation is achievable with

H( ) NZI (83 ¥ n ‘ N Xp i
) — P e ekl T ——
(s—z1) ' (5 — zp)" l

< €

— i—=1

'H:

by choosing any of the N ’s large enough

Remarks:
@ No necessary relation between pole locations and system resonances
@ (e > 0= Ny = 0), l.e. this is a large-scale systems phenomenon
@ Large-scale systems: |0 behavior not always predictable from modal behavior
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Modal vs. Input-Output Response

However: Pole Locations <+ Frequency Response Peaks
MIMO case: H(s) = (s —A)™! )

@ /fA is normal (has orthogonal eigenvectors), then | W i

. = 1 | L et
O max ((jwl —A) ) — R W\

distance (jw, nearest pole )

@ /fA is non-normal : no clear relation between
singular value plot TN eigs(A)
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Implications for Turbulence Modeling
AV¥ + Bd|

For large-scale systems: |0 behavior not predictable from modal behavior
()f@ —_
CWw

,,,L S LNS e u
@ IR: G(r.x.2)
@ FR: G(w.ky. k)

——

7 é;._;_rrt
,i- T = =
Z X

17/25

SIAM DS, May 2015

B. Bamieh (UCSB)




.
Implications for Turbulence Modeling
AV + Bd|

For large-scale systems: |0 behavior not predictable from modal behavior
oA
Cw

-~

LNS f—a u
@ IR: G(r.x.2)

@ FR: G(w,ky, k.)

@ “modal behavior”: Stability due to initial condition uncertainty
@ “lO behavior’: behavior in the presence of ambient uncertainty

» forcing terms from wall roughness and/or vibrations
» Free-stream disturbances in boundary layers

» Thermal (Langevin) forces

» uncertain dynamics
17/25
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