

Close-contact melting in ice – Modeling and Simulation of Phase-change in the Presence of a Non-local Pressure Constraint

SIAM – GS March 13th, 2019

J. Kowalski, K. Schüller, A.G. Zimmerman, and B. Terschanski

Icy Moons and the Ocean Worlds of our Solar System

Systems that host stable, globe-girdling bodies of liquid water.

Subglacial life exists on Earth!

Lunine, Acta Astronautica 131 (2017), 123-130.

Interest in Autonomous, Robotic ice exploration technologies

- before 2012
 decentral activities
- 2012 2015 EnEx-MIDGE collaboration advancing technologies, many tests on Alpine Glaciers and subglacial sample return in Antarctica
- since 2015

 further development
 of key technologies,
 int. collaboration
 launched

Modeling challenges in the context of robotic ice exploration

Modeling melting robots – the 0D engineering approach (vs actual design)

OD Engineering model:

energy balance: input power melting velocity energy needed $V = \frac{P_m}{A\rho \left(h_m + c_p (T_m - T_{\text{ice}})\right)}$ **c**_p: specific heat capacity of the ice V: melting velocity T_m: melting temperature **P**_m: input power T_{ice}: ice temperature A: crosssection of the probe h_m: melting enthalpy of ice **p**: density of the ice

Contact force? Curve melting? Transient effects? Low gravity/temperature/pressure conditions?

Modeling melting robots – the high-fidelity (but currently not feasible) 4D advanced approach

Robot motion (concentrated)

The current state of the probe is given by its centerof-mass and its attitude:

$$\xi(t) := \begin{bmatrix} X(t) \\ Q(t) \end{bmatrix}$$

First derivative yields translational and angular velocity:

 $\frac{d}{dt}\xi(t) = \begin{bmatrix} V(t) \\ \omega(t) \end{bmatrix}$

The Euler-Newton equations allow to determine the trajectory based on applied forces:

$$\begin{split} &m\frac{d}{dt}V(t) &= F(t,u(t))\\ &\mathbf{I}\frac{d}{dt}\omega(t) &= T(t,u(t)) - \omega \times \mathbf{I}\omega \end{split}$$

The forces depend on the position of the liquid-solid interface, hence the ambient state *u*.

Cryoenvironment (distributed)

The current ambient state of the ambient is given by temperature, velocity and pressure:

It is subject to a PDE operator

$$\frac{\partial}{\partial t}u(t,x) = \mathcal{L}(u(t,x),\xi(t),\frac{d}{dt}\xi(t))$$

that depends on position and attitude of the probe, as well as ist translational and rotational velocity.

Scales of interest (based on a 25kg robot moving at 1m/h):

- melt film thickness ~ 10⁻⁶ m
- melt film time scale ~ 10⁻³ s
- heat conduction time scale $\sim 10^2$ s
- heat conduction diffusion scale ~ 10⁻² m
 - mission length scale ~ 1000 m
- mission time scale ~ 40 d

Strategy:

Decouple ,macro-scale' from ,micro-scale' processes:

Convection-coupled solid-liquid phase-change 1

Close contact melting

Multi-scale coupled approach

¹ Zimmerman, Kowalski SIAM CSE, 2019; Zimmerman, Kowalski 2018; Schüller, Berkels, Kowalski 2018; https://github.com/geo-fluid-dynamics/fempy

Modeling melting robots - processes in the microscale melt film

Modeling melting robots - processes in the microscale melt film

Temperature profile:

Melt film thickness vs velocity:

Modeling melting robots - processes in the microscale melt film

Water-ice interface conditions:

- no-slip
- inflow according to melting rate
- melting temperature
- Stefan condition

Heat source surface:

- no-slip
- no inflow
- temperature or heat flux

 Ω_{I} : Mass, momentum and energy balance:

$$\nabla \cdot \mathbf{u} = 0$$

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{1}{\rho} \nabla p + \nu \Delta \mathbf{u}$$

$$\partial_t T_l + (\mathbf{u} \cdot \nabla) T_l = \alpha_l \Delta T_l$$

Unknowns: u, T, p, V, δ

Ω_s: Heat equation in the solid ice

$$-\mathbf{V}\partial_z T_s = \alpha_s \partial_{zz} T_s$$

Model closure:

- Stefan condition at the interface
- Newton's third law

SIAM GS Houston 2019 | kowalski@aices.rwth-aachen.de

Semi-analytical model solution based on dimensional reduction

Dimensionless groups:

Dimensionless system:

$$\partial_x u + \partial_z w = 0$$

$$\epsilon Re(\epsilon \partial_t u + u \partial_x u + w \partial_z u) = -\epsilon d_x p + \epsilon^2 \partial_x^2 u + \partial_z^2 u$$

$$\epsilon^2 Re(\epsilon \partial_t w + w \partial_x u + w \partial_z w) = -d_z p + \epsilon^2 \partial_x^2 w + \partial_z^2 w$$

$$\epsilon Pe(\epsilon \partial_t T + u \partial_x T + w \partial_z T) = \epsilon^2 \partial_x^2 T + \partial_z^2 T$$

L

probe

melt

ice

Semi-analytical model solution based on dimensional reduction

Scaling:

$$\begin{array}{ll} x = L\tilde{x} & u = V/\epsilon \tilde{u} & t = L/V\tilde{t} \\ z = \delta \tilde{z} & w = V\tilde{w} & p = \frac{\mu V/\epsilon}{\delta}\tilde{p} \end{array}$$

thin film parameter: Reynolds number: Peclet number: $\epsilon = \delta/L \qquad << \qquad Re = VL/\nu \qquad < \qquad Pe = VL/\alpha$

Dimensionless system:

$$\partial_x u + \partial_z w = 0$$

$$0 = -\epsilon d_x p + \partial_z^2 u$$

$$0 = -d_z p$$

$$\epsilon Pe(u\partial_x T + w\partial_z T) = \partial_z^2 T$$

Dimensional reduction gives rise to lubrication theory coupled to a Stefan Problem!

> Close Contact Melting Theory
(More general than melting
robots!!!)

Semi-analytical model solution based on dimensional reduction

Mixed-dimensional computational model for close-contact processes

 temperature field (2D/3D):

finite differences and upwind discretization

 pressure equation (1D/2D):

finite differences

- velocity update: based on bisection
 - delta update:
 based on deviation
 between approximated
 normal heat flux at the
 interface and physically
 consistent heat flux
 (Stefan condition) +
 relaxation

Melting velocity as a function of contact force

Schüller, Kowalski, 2019, Icarus 317, 92, 1-9.

Close Contact melting – rotational melting modes

Idea:

Parametrization rotating motion

$$V(x) = V_0 \left(1 - \frac{x}{r_c} \right)$$

Additional closure: $\oint xpdx = 0$

Experiments with constant temperature

Schüller, Kowalski, 2016, Int Heat Mass Trans, 92, 884-892.

Multi-scale coupling – idea and approach

Utilize space-time FE implementation:

- in-house code at CATS, RWTH (Behr/Elgeti)
- parallelized on RWTH compute cluster and FZ Jülich JUREKA
- includes hybridized dynamic and static mesh capabilities:
 F. Key et al. (2018), Computers and Fluids 172, 352-361.

Coupling strategy:

- Macro2Micro: use ,real' heat flux in the CCM model closure
- Micro2Macro: update melting velocity (dynamic mesh velocity)

Multi-scale coupling – preliminary results – response to a power ramp-up

Conclusions

- Developed an easy to implement dimensionally reduced model for general CCM situations
- Proposed a coupling strategy that enables us to compute transient CCM processes
- convergence and plausibility checks are promising
- Model can be used for design studies extrapolation to extreme environments

Next steps

Thank you

