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→ Abbreviated and updated version of the 
archived “SIAM Presents” plenary

https://www.pathlms.com/siam/courses/4150/sections/5818	

from SIAM CSE, 28 Feb 2017:

“Algorithmic	Adaptations	to	Extreme	Scale”



Two decades of evolution in hardware

ASCI Red at Sandia 
1.3 TF/s, 850 KW

1997

Cavium ThunderX2 (ARM)
~ 1.1 TF/s, ~ 0.2 KW

2017

3.5	orders	of	
magnitude



Supercomputer in a node
System Peak DP 

TFlop/s

Peak Power

KW

Power 
Efficiency

GFlop/s/Watt
ASCI Red 1.3 850 0.0015

ThunderX2
Cavium (ARM) 

1.1 0.20 5.5

Knights Landing
Intel

3.5 0.26 14

P100 Pascal 
NVIDIA 

5.3 0.30 18

Taihu Light 
(2016)

125,000 15,000 8.3

Exascale System 
(~2021)

1,000,000 20,000 50



Supercomputer in a node
System Peak DP 

TFlop/s

Peak Power

KW

Power 
Efficiency

GFlop/s/Watt
ASCI Red 1.3 850 0.0015

ThunderX2
Cavium (ARM)

1.1 0.20 5.5*

Knights Landing
Intel

3.5 0.26 14

P100 Pascal 
NVIDIA 

5.3 0.30 18

Taihu Light
CAS

125,000 15,000 8.3

Exascale System 
(~2021)

1,000,000 20,000 50

* 8 memory channels in Cavium ARM vs. 6 for Intel KNL



Architectural trends
● Clock rates cease to increase while arithmetic 

capability continues to increase through 
concurrency (flooding of cores)

● Memory storage capacity increases, but fails to 
keep up with arithmetic capability per core

● Transmission capability – memory BW and 
network BW – increases, but fails to keep up 
with arithmetic capability per core



Well established resource trade-offs
n Communication-avoiding algorithms

◆ exploit extra memory to achieve theoretical 
lower bound on communication volume

n Synchronization-avoiding algorithms 
◆ perform extra flops between global reductions 

or exchanges to require fewer global operations
n High-order discretizations

◆ perform more flops per degree of freedom 
(DOF) to store and manipulate fewer DOFs



→ Billions of 

$ € £ ¥ 

of scientific software worldwide hangs in the 
balance, until our algorithmic infrastructure 
evolves to span the architecture-applications 
gap
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Uptake from IESP meetings
n While obtaining the next order of magnitude of performance, 

we need another order of performance efficiency
◆ target: 50 Gigaflop/s/W, today typically ~ 5 Gigaflop/s/W

n Required reduction in power per flop and per byte may make 
computing and moving data less reliable
◆ circuit elements will be smaller and subject to greater physical 

noise per signal, with less space redundancy and/or time 
redundancy for resilience in the hardware

n Power may be cycled off and on, or clocks slowed and speeded 
◆ may be scheduled, based on phases with different power 

requirements, or may be dynamic from thermal monitoring

n Performance rates less reliable



Node-based “weak scaling” is routine;
thread-based “strong scaling” is the game
n An exascale configuration: 1 million 1000-way 1GHz 

nodes
n Expanding the number of nodes (processor-memory 

units)  beyond 106 would not be a serious threat to 
algorithms that lend themselves to well-amortized 
precise load balancing 
◆ provided that the nodes are performance reliable

n Real challenge is usefully expanding the number of cores 
sharing memory on a node to 103

◆ must be done while memory and memory bandwidth per node 
expand by (at best) ten-fold less (basically “strong” scaling)



→ Don’t need to wait for full exascale systems to 
experiment in this regime…

The contest is being waged on individual shared-
memory nodes today



The familiar

Blue	Waters

Sequoia K

ShaheenTaihu	Light



ARMv8
QualComm
Centric	2400

Intel
Knights	Landing

NVIDIA	
P100

IBM	
Power8

The challenge



How are most scientific simulations 
implemented at the petascale today?

n Iterative methods based on data decomposition and 
message-passing
◆ data structures are distributed
◆ each individual processor works on a subdomain of the original
◆ exchanges information with other processors that own data with 

which it interacts causally, to evolve in time or to establish 
equilibrium

◆ computation and neighbor communication are both fully 
parallelized and their ratio remains constant in weak scaling

n The programming model is BSP/SPMD/CSP
◆ Bulk Synchronous Programming 
◆ Single Program, Multiple Data
◆ Communicating Sequential Processes

Three	decades	of	
stability	in	

programming	model



Bulk Synchronous
Parallelism

Leslie Valiant, F.R.S., N.A.S. 
2010 Turing Award Winner Comm. of the ACM, 1990



BSP parallelism w/ domain decomposition

Partitioning of the grid 
induces block structure on 
the system matrix 
(Jacobian)

W1

W2

W3

A23A21 A22
rows assigned 

to proc “2”



BSP has an impressive legacy

Year

Cost	per
delivered	
Gigaflop/s

1989 $2,500,000							
1999 $6,900
2009 $8

Year

Gigaflop/s
delivered	to
applications

1988 1
1998 1,020
2008 1,350,000

By the Gordon Bell Prize, performance on real applications (e.g., 
mechanics, materials, petroleum reservoirs, etc.) has improved 
more than a million times in two decades.  Simulation cost per 
performance has improved by nearly a million times. 

Gordon Bell 

Prize: Peak 

Performance

Gordon Bell 

Prize: Price 

Performance



Riding exponentials
n Proceeded steadily for decades from giga- (1988) 

to tera- (1998) to peta- (2008) with 
◆ same BSP programming model
◆ same assumptions about who (hardware, systems 

software, applications software, etc.) is responsible for 
what (resilience, performance, processor mapping, 
etc.)

◆ same classes of algorithms (cf. 25 yrs. of Gordon Bell 
Prizes)

n Scientific computing now at a crossroads with 
respect to extreme scale



Main challenge going forward for BSP
n Almost all “good” algorithms in linear algebra, 

differential equations, integral equations, signal 
analysis, etc., like to globally synchronize – and 
frequently!
◆ inner products, norms, pivots, fresh residuals are “addictive” 

idioms
◆ tends to hurt efficiency beyond 100,000 processors
◆ can be fragile for smaller concurrency, as well, due to 

algorithmic load imbalance, hardware performance variation, 
etc.

n Concurrency is heading into the billions of cores
◆ already 10 million on the most powerful system today



BSP 
generation

Energy-aware
generation



Some algorithmic imperatives
n Reduce communication and synchrony

◆ in frequency and/or span
◆ see Grigori, Jolivet, Chow in this MS 7

n Reside “high” on the memory hierarchy
◆ as close as possible to the processing elements
◆ see Li, Schlatter, Dubey, Bader in this MS 7/16

n Increase SIMT/SIMD-style shared-memory 
concurrency
◆ see many of the above



Widely applicable strategies
1) Employ dynamic runtime systems based on 

directed acyclic task graphs (DAGs)
◆ e.g., Charm++, Quark, StarPU, Legion, OmpSs, HPX, 

ADLB, Argo

2) Exploit data sparsity of hierarchically low-
rank type
◆meet the “curse of dimensionality” with the “blessing of 

low rank”  

3) Code to the architecture, but present an 
abstract API



1) Taskification based on DAGs
n Advantages

◆ remove artifactual synchronizations in the form 
of subroutine boundaries

◆ remove artifactual orderings in the form of pre-
scheduled loops

◆ expose more concurrency
n Disadvantages

◆ pay overhead of managing task graph
◆ potentially lose some memory locality



2) Hierarchically low-rank operators
n Advantages

◆ shrink memory footprints to live higher on the 
memory hierarchy
■ higher means quick access (↑ arithmetic intensity)

◆ reduce operation counts
◆ tune work to accuracy requirements

■ e.g., preconditioner versus solver

n Disadvantages
◆ pay cost of compression
◆ not all operators compress well



3) Code to the architecture
n Advantages

◆ tiling and recursive subdivision create large 
numbers of small problems suitable for batched 
operations on GPUs and MICs
■ reduce call overheads
■ polyalgorithmic approach based on block size

◆ non-temporal stores, coalesced memory accesses, 
double-buffering, etc. reduce sensitivity to memory

n Disadvantages
◆ code is more complex
◆ code is architecture-specific at the bottom



Reducing over-ordering and synchronization 
through DAGs, ex.: generalized eigensolver



Loop nests and subroutine calls, with their 
over-orderings, can be replaced with DAGs

● Diagram shows a 
dataflow ordering of the 
steps of a 4×4 symmetric 
generalized eigensolver

● Nodes are tasks, color-
coded by type, and edges 
are data dependencies

● Time is vertically 
downward

● Wide is good; short is 
good
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Zooming-in…

Loops can be 
overlapped 
in time
Green, blue and magenta 
symbols represent tasks in 
separate loop bodies with 
dependences from an 
adaptive optics 
computation

c/o H. Ltaief (KAUST) & D. Gratadour (OdP)



Tasks from 3 loops of optical 
“reconstructor” pipeline are 

executed together

DAG-based safe out-of-order execution

c/o H. Ltaief (KAUST) & D. Gratadour (OdP)



Reducing memory footprint and 
operation complexity with low rank

• When dense blocks arise in matrix operations, 
replace them with hierarchical representations

• Use high accuracy (high rank, but typically less 
than full) to build “exact” solvers

• Use low accuracy (low rank) to build 
preconditioners

• Block structure and rank provide useful tuning 
parameters for migration onto variety of 
hardware configurations



Key tool: hierarchical matrices
• [Hackbusch, 1999] : off-diagonal blocks of typical 

differential and integral operators have low effective rank
• By exploiting low rank, k , memory requirements and 

operation counts approach optimal in matrix dimension n:
– polynomial in k
– lin-log in n
– constants carry the day

• Such hierarchical representations navigate a compromise
– fewer blocks of larger rank (“weak admissibility”) or 
– more blocks of smaller rank (“strong admissibility”)



Example: 1D Laplacian



Recursive construction of an H-matrix

c/o W. Boukaram & G. Turkiyyah (KAUST)



“Standard (strong)” vs. “weak” admissibility

weak admissibilitystrong admissibility

After Hackbusch, et al., 2003 



Some solvers 
that leverage 
data sparsity

c/o G. Chavez (KAUST)

Please notify if you have 

released one that is not 

here:

gustavo.chavez

@kaust.edu.sa



“Hourglass” model for algorithms
(borrowed from internet protocols)

applications

architectures

algorithmic	
infrastructure



Hierarchical Computations on 
Manycore Architectures: HiCMA*

* “Hikmah” is the Arabic word for wisdom

QDWH-
SVD

GEMV,	
TRSM,	...

Batched
RanSVD

ACR
(precond)

TLR

FMM
(precond)

H	
compress



QDWH*-EVD/SVD
² DAG-based dataflow tile algorithms for 

(eigen- and) singular value decomposition
² Reduces synchrony
² Increases SIMT-style concurrency through 

recursion
² Employs Chameleon tile library and StarPU 

dynamic runtime system
*QR-based	Dynamically	Weighted	Halley	iteration	from	

Stable	and	Efficient	Spectral	Divide	and	Conquer	Algorithms	for	the	Symmetric	
Eigenvalue	Decomposition	and	the	SVD,
Y.	Nakatsukasa	& N.	Higham,	SISC	(2013)

Asynchronous	Task-Based	Polar	Decomposition	on	Massively	Parallel	Systems,	
D.	Sukkari,	H.	Ltaief,	M.	Faverge	&	D.	Keyes,	IEEE	TPDS	(2017)



QDWH-SVD
n Obtain SVD from a polar decomposition:

A = Up H              H = V Σ V*

è A = UpV Σ V* = U Σ V*

n QDWH iteration is a recursive divide-and-conquer 
method, backward stable

n Based on vendor-optimized kernels, i.e., Cholesky/QR 
factorizations and GEMM

n Complexity:
(10+2/3) n3 for well-conditioned system, 43n3 for ill

polar sym	eigen



QDWH-SVD

c/o D. Sukkari & H. Ltaief (KAUST)
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Sukkari et al., Best papers, Europar’16
available:	https://github.com/ecrc/qdwh.git

1152 nodes of 32-core Intel Haswell (cache/quadrant mode)

Is	being	integrated	into	Cray’s	LibSci	w/A.	Esposito	(Cray)
Extensions	underway	to	Zolotarev’s	method	w/Y.	Nakatsukasa	(Oxford)

x4



QDWH-SVD, taskified

c/o D. Sukkari, H. Ltaief (KAUST) & M. Faverge (INRIA)

1st QR iteration
2nd QR iteration
3rd QR iteration

Three QR iterations

1st Cholesky iteration
2nd Cholesky iteration
3rd Cholesky iteration

Three Cholesky iterations

Sukkari et al., IEEE TDPS’17



QDWH-SVD, taskified 
on hybrid architecture

c/o D. Sukkari, H. Ltaief (KAUST) & M. Faverge (INRIA)
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QDWH-SVD, taskified 
on various architectures

c/o D. Sukkari, H. Ltaief (KAUST) & M. Faverge (INRIA)
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Tile Low-rank Cholesky
² A low-rank, but flat (not hierarchical) first step 

towards expanding capability for large dense 
symmetric problems, e.g., covariance matrices

² Reduces synchrony
² Increases SIMT-style concurrency
² Employs OpenMP taskification pragmas and 

HLibPro on individual tiles

ExaGeoStat:	A	High	Performance	Unified	Framework	for	
Geostatistics	on	Manycore	Systems

S.	Abdulah,	H.	Ltaief,	Y.	Sun,	M.	Genton &	D.	Keyes
TDPS	(2017,	submitted)



Large dense symmetric systems arise as 
covariance matrices in spatial statistics

• Climate and weather applications have many 
measurements located regularly or irregularly in a 
region; prediction is needed at other locations

• Modeled as realization of Gaussian or Matérn spatial 
random field, with parameters to be fit

• Leads to evaluating the log-likelihood function 
involving a large dense (but data sparse) covariance



Synthetic and practical examples

Global temperature 
data on sphere

362 measured points and 
38 target points irregularly 
distributed in unit square



LAPACK DPOTRF

• Classical algorithm (1990s) involves BLAS L2 panel 
updates and BLAS L3 trailing matrix updates



PLASMA/CHAMELEON DPOTRF
• Tile algorithm (PLASMA, FLAME, 2010s) involves 

mostly BLAS L3 operations within tiles scheduled 
with a DAG



Tile operations for TLR version of Cholesky



Data-sparse operations for Cholesky variants



(block low-rank without hierarchy)

Compressibility of four typical blocks, for 
Frobenius accuracy of 10-9

Covariance Matrix of 
dimension 16384 in 16�16 
blocks of 1024�1024 each

Even “brute force” tilings pay off

c/o H. Ltaief & K. Akbudak (KAUST)



Tile low-rank Cholesky, time per backsolve

On 2-socket 18-core Intel Haswell @ 2.3GHz
OpenMP pragmas for taskification and accuracy of 10-9

c/o H. Ltaief & K. Akbudak (KAUST)

>	order	of	
magnitude



Distributed memory TLR Cholesky –
preliminary

On 16 nodes of 2-socket 16-core Intel Haswell @ 2.3GHz

c/o H. Ltaief & K. Akbudak (KAUST)

6X	
improvement	
over	
ScaLAPACK



KBLAS
² Subset of L2/L3 BLAS targeting GPU and Intel 

MIC
² GEMV, SYMV, TRSM, TRMM

² Reduces communication and increases concurrency 
in these memory BW bound operations

² Batched BLAS for small sizes on GPUs
² TRSM, TRMM, SYRK, POTRF, POTRS, POSV, 

TRTRI, LAUUM, POTRI, POTI
² Recursive formulation
² Employs vendor-optimized L3 BLAS underneath 

ACM	TOMS	(2016),	CCPE	(2016,	2017)



Recursively defined 
KBLAS operations 

for symmetric systems

c/o A. Charara & H. Ltaief (KAUST)



KBLAS DTRMM

Charara et al., Best papers, Europar’16
available:	https://github.com/ecrc/kblas

c/o A. Charara & H. Ltaief (KAUST)
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KBLAS DTRSM
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KBLAS now in cuBLAS 8;
will be in cuBLAS 9

c/o A. Abdelfattah (ICL, KAUST’15), A. Charara & H. Ltaief (KAUST)



Extending KBLAS
to batched execution

n Batched BLAS workshop:
◆ http://bit.ly/Batch-BLAS-2017

n Problem:
◆ L2 BLAS individually of low arithmetic intensity
◆ memory latency overheads

n Redesign the legacy BLAS API
◆ launch thousands of small BLAS kernels simultaneously
◆ increase device occupancy
◆ remove API/kernel launch overheads
◆ extend the recursive formulation

n Driven by scientific data-sparse applications
◆ computational statistics and astronomy
◆ Schur complement in sparse direct solvers and BDDC 

preconditioning



Batched operations

c/o	Jacob	Kurzak	(ICL,	U	Tennessee)



KBLAS 
Example: Batched POTRF

Recursive	
Batch	POTRF

n Nested recursion
n Convert into batch of large GEMMs
n Minimize data transfer
n Enhance data locality
n Increase arithmetic intensity

Recursive	
Batch	TRSM

Recursive	
Batch	SYRK

Recursive	
Batch	POTRF

c/o A. Charara & H. Ltaief (KAUST)



Batched KBLAS
performance comparisons
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Batched KBLAS
performance comparisons
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Conclusions
nPlenty of ideas exist to adapt or substitute for 

favorite solvers with methods that have:
◆ reduced synchrony (in frequency and/or span)
◆ higher residence on the memory hierarchy
◆ greater SIMT/SIMD-style shared-memory concurrency

nProgramming models and runtimes may have 
to be stretched to accommodate

nEverything should be on the table for trades, 
beyond disciplinary thresholds è “co-design”
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* appearing incrementally at  https://github.com/ecrc

QDWH-
SVD

GEMV,	
TRSM,	...

Batched
RanSVD

ACR
(precond)

TLR

FMM
(precond)

H	
compress



Thanks to:

CENTER OF EXCELLENCE



Thank you!
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