
David Keyes, Applied Mathematics & Computational Science
Director, Extreme Computing Research Center (ECRC)
King Abdullah University of Science and Technology
david.keyes@kaust.edu.sa

Hierarchical Computations on
Manycore Architectures:

The HiCMA Library

→ Abbreviated and updated version of the
archived “SIAM Presents” plenary

https://www.pathlms.com/siam/courses/4150/sections/5818	

from SIAM CSE, 28 Feb 2017:

“Algorithmic	Adaptations	to	Extreme	Scale”

Two decades of evolution in hardware

ASCI Red at Sandia
1.3 TF/s, 850 KW

1997

Cavium ThunderX2 (ARM)
~ 1.1 TF/s, ~ 0.2 KW

2017

3.5	orders	of	
magnitude

Supercomputer in a node
System Peak DP

TFlop/s

Peak Power

KW

Power
Efficiency

GFlop/s/Watt
ASCI Red 1.3 850 0.0015

ThunderX2
Cavium (ARM)

1.1 0.20 5.5

Knights Landing
Intel

3.5 0.26 14

P100 Pascal
NVIDIA

5.3 0.30 18

Taihu Light
(2016)

125,000 15,000 8.3

Exascale System
(~2021)

1,000,000 20,000 50

Supercomputer in a node
System Peak DP

TFlop/s

Peak Power

KW

Power
Efficiency

GFlop/s/Watt
ASCI Red 1.3 850 0.0015

ThunderX2
Cavium (ARM)

1.1 0.20 5.5*

Knights Landing
Intel

3.5 0.26 14

P100 Pascal
NVIDIA

5.3 0.30 18

Taihu Light
CAS

125,000 15,000 8.3

Exascale System
(~2021)

1,000,000 20,000 50

* 8 memory channels in Cavium ARM vs. 6 for Intel KNL

Architectural trends
● Clock rates cease to increase while arithmetic

capability continues to increase through
concurrency (flooding of cores)

● Memory storage capacity increases, but fails to
keep up with arithmetic capability per core

● Transmission capability – memory BW and
network BW – increases, but fails to keep up
with arithmetic capability per core

Well established resource trade-offs
n Communication-avoiding algorithms

◆ exploit extra memory to achieve theoretical
lower bound on communication volume

n Synchronization-avoiding algorithms
◆ perform extra flops between global reductions

or exchanges to require fewer global operations
n High-order discretizations

◆ perform more flops per degree of freedom
(DOF) to store and manipulate fewer DOFs

→ Billions of

$ € £ ¥

of scientific software worldwide hangs in the
balance, until our algorithmic infrastructure
evolves to span the architecture-applications
gap

Jack Dongarra
Pete Beckman

Terry Moore
Patrick Aerts

Giovanni Aloisio
Jean-Claude Andre

David Barkai
Jean-Yves Berthou

Taisuke Boku
Bertrand Braunschweig

Franck Cappello
Barbara Chapman

Xuebin Chi

Alok Choudhary
Sudip Dosanjh
Thom Dunning
Sandro Fiore

Al Geist
Bill Gropp

Robert Harrison
Mark Hereld

Michael Heroux
Adolfy Hoisie

Koh Hotta
Yutaka Ishikawa
Fred Johnson

Sanjay Kale
Richard Kenway

David Keyes
Bill Kramer

Jesus Labarta
Alain Lichnewsky
Thomas Lippert

Bob Lucas
Barney Maccabe
Satoshi Matsuoka

Paul Messina
Peter Michielse

Bernd Mohr

Matthias Mueller
Wolfgang Nagel

Hiroshi Nakashima
Michael E. Papka

Dan Reed
Mitsuhisa Sato

Ed Seidel
John Shalf

David Skinner
Marc Snir

Thomas Sterling
Rick Stevens
Fred Streitz

Bob Sugar
Shinji Sumimoto

William Tang
John Taylor

Rajeev Thakur
Anne Trefethen
Mateo Valero

Aad van der Steen
Jeffrey Vetter
Peg Williams

Robert Wisniewski
Kathy Yelick

SPONSORS

ROADMAP 1.0

Architectural background
www.exascale.org/iesp

The International Exascale
Software Roadmap
J. Dongarra, P. Beckman, et
al., International Journal of
High Performance Computer
Applications 25:3-60, 2011.

Uptake from IESP meetings
n While obtaining the next order of magnitude of performance,

we need another order of performance efficiency
◆ target: 50 Gigaflop/s/W, today typically ~ 5 Gigaflop/s/W

n Required reduction in power per flop and per byte may make
computing and moving data less reliable
◆ circuit elements will be smaller and subject to greater physical

noise per signal, with less space redundancy and/or time
redundancy for resilience in the hardware

n Power may be cycled off and on, or clocks slowed and speeded
◆ may be scheduled, based on phases with different power

requirements, or may be dynamic from thermal monitoring

n Performance rates less reliable

Node-based “weak scaling” is routine;
thread-based “strong scaling” is the game
n An exascale configuration: 1 million 1000-way 1GHz

nodes
n Expanding the number of nodes (processor-memory

units) beyond 106 would not be a serious threat to
algorithms that lend themselves to well-amortized
precise load balancing
◆ provided that the nodes are performance reliable

n Real challenge is usefully expanding the number of cores
sharing memory on a node to 103

◆ must be done while memory and memory bandwidth per node
expand by (at best) ten-fold less (basically “strong” scaling)

→ Don’t need to wait for full exascale systems to
experiment in this regime…

The contest is being waged on individual shared-
memory nodes today

The familiar

Blue	Waters

Sequoia K

ShaheenTaihu	Light

ARMv8
QualComm
Centric	2400

Intel
Knights	Landing

NVIDIA	
P100

IBM	
Power8

The challenge

How are most scientific simulations
implemented at the petascale today?

n Iterative methods based on data decomposition and
message-passing
◆ data structures are distributed
◆ each individual processor works on a subdomain of the original
◆ exchanges information with other processors that own data with

which it interacts causally, to evolve in time or to establish
equilibrium

◆ computation and neighbor communication are both fully
parallelized and their ratio remains constant in weak scaling

n The programming model is BSP/SPMD/CSP
◆ Bulk Synchronous Programming
◆ Single Program, Multiple Data
◆ Communicating Sequential Processes

Three	decades	of	
stability	in	

programming	model

Bulk Synchronous
Parallelism

Leslie Valiant, F.R.S., N.A.S.
2010 Turing Award Winner Comm. of the ACM, 1990

BSP parallelism w/ domain decomposition

Partitioning of the grid
induces block structure on
the system matrix
(Jacobian)

W1

W2

W3

A23A21 A22
rows assigned

to proc “2”

BSP has an impressive legacy

Year

Cost	per
delivered	
Gigaflop/s

1989 $2,500,000							
1999 $6,900
2009 $8

Year

Gigaflop/s
delivered	to
applications

1988 1
1998 1,020
2008 1,350,000

By the Gordon Bell Prize, performance on real applications (e.g.,
mechanics, materials, petroleum reservoirs, etc.) has improved
more than a million times in two decades. Simulation cost per
performance has improved by nearly a million times.

Gordon Bell

Prize: Peak

Performance

Gordon Bell

Prize: Price

Performance

Riding exponentials
n Proceeded steadily for decades from giga- (1988)

to tera- (1998) to peta- (2008) with
◆ same BSP programming model
◆ same assumptions about who (hardware, systems

software, applications software, etc.) is responsible for
what (resilience, performance, processor mapping,
etc.)

◆ same classes of algorithms (cf. 25 yrs. of Gordon Bell
Prizes)

n Scientific computing now at a crossroads with
respect to extreme scale

Main challenge going forward for BSP
n Almost all “good” algorithms in linear algebra,

differential equations, integral equations, signal
analysis, etc., like to globally synchronize – and
frequently!
◆ inner products, norms, pivots, fresh residuals are “addictive”

idioms
◆ tends to hurt efficiency beyond 100,000 processors
◆ can be fragile for smaller concurrency, as well, due to

algorithmic load imbalance, hardware performance variation,
etc.

n Concurrency is heading into the billions of cores
◆ already 10 million on the most powerful system today

BSP
generation

Energy-aware
generation

Some algorithmic imperatives
n Reduce communication and synchrony

◆ in frequency and/or span
◆ see Grigori, Jolivet, Chow in this MS 7

n Reside “high” on the memory hierarchy
◆ as close as possible to the processing elements
◆ see Li, Schlatter, Dubey, Bader in this MS 7/16

n Increase SIMT/SIMD-style shared-memory
concurrency
◆ see many of the above

Widely applicable strategies
1) Employ dynamic runtime systems based on

directed acyclic task graphs (DAGs)
◆ e.g., Charm++, Quark, StarPU, Legion, OmpSs, HPX,

ADLB, Argo

2) Exploit data sparsity of hierarchically low-
rank type
◆meet the “curse of dimensionality” with the “blessing of

low rank”

3) Code to the architecture, but present an
abstract API

1) Taskification based on DAGs
n Advantages

◆ remove artifactual synchronizations in the form
of subroutine boundaries

◆ remove artifactual orderings in the form of pre-
scheduled loops

◆ expose more concurrency
n Disadvantages

◆ pay overhead of managing task graph
◆ potentially lose some memory locality

2) Hierarchically low-rank operators
n Advantages

◆ shrink memory footprints to live higher on the
memory hierarchy
■ higher means quick access (↑ arithmetic intensity)

◆ reduce operation counts
◆ tune work to accuracy requirements

■ e.g., preconditioner versus solver

n Disadvantages
◆ pay cost of compression
◆ not all operators compress well

3) Code to the architecture
n Advantages

◆ tiling and recursive subdivision create large
numbers of small problems suitable for batched
operations on GPUs and MICs
■ reduce call overheads
■ polyalgorithmic approach based on block size

◆ non-temporal stores, coalesced memory accesses,
double-buffering, etc. reduce sensitivity to memory

n Disadvantages
◆ code is more complex
◆ code is architecture-specific at the bottom

Reducing over-ordering and synchronization
through DAGs, ex.: generalized eigensolver

Loop nests and subroutine calls, with their
over-orderings, can be replaced with DAGs

● Diagram shows a
dataflow ordering of the
steps of a 4×4 symmetric
generalized eigensolver

● Nodes are tasks, color-
coded by type, and edges
are data dependencies

● Time is vertically
downward

● Wide is good; short is
good

1:1

 2:4

3:9

4:4

5:11

6:8

 7:6

8:5

9:7

10:4

11:4

12:2

13:2

14:3

15:3

16:1

 17:2

18:1

19:1

20:1

21:1

22:1

23:1

24:1

Zooming-in…

Loops can be
overlapped
in time
Green, blue and magenta
symbols represent tasks in
separate loop bodies with
dependences from an
adaptive optics
computation

c/o H. Ltaief (KAUST) & D. Gratadour (OdP)

Tasks from 3 loops of optical
“reconstructor” pipeline are

executed together

DAG-based safe out-of-order execution

c/o H. Ltaief (KAUST) & D. Gratadour (OdP)

Reducing memory footprint and
operation complexity with low rank

• When dense blocks arise in matrix operations,
replace them with hierarchical representations

• Use high accuracy (high rank, but typically less
than full) to build “exact” solvers

• Use low accuracy (low rank) to build
preconditioners

• Block structure and rank provide useful tuning
parameters for migration onto variety of
hardware configurations

Key tool: hierarchical matrices
• [Hackbusch, 1999] : off-diagonal blocks of typical

differential and integral operators have low effective rank
• By exploiting low rank, k , memory requirements and

operation counts approach optimal in matrix dimension n:
– polynomial in k
– lin-log in n
– constants carry the day

• Such hierarchical representations navigate a compromise
– fewer blocks of larger rank (“weak admissibility”) or
– more blocks of smaller rank (“strong admissibility”)

Example: 1D Laplacian

Recursive construction of an H-matrix

c/o W. Boukaram & G. Turkiyyah (KAUST)

“Standard (strong)” vs. “weak” admissibility

weak admissibilitystrong admissibility

After Hackbusch, et al., 2003

Some solvers
that leverage
data sparsity

c/o G. Chavez (KAUST)

Please notify if you have

released one that is not

here:

gustavo.chavez

@kaust.edu.sa

“Hourglass” model for algorithms
(borrowed from internet protocols)

applications

architectures

algorithmic	
infrastructure

Hierarchical Computations on
Manycore Architectures: HiCMA*

* “Hikmah” is the Arabic word for wisdom

QDWH-
SVD

GEMV,	
TRSM,	...

Batched
RanSVD

ACR
(precond)

TLR

FMM
(precond)

H	
compress

QDWH*-EVD/SVD
² DAG-based dataflow tile algorithms for

(eigen- and) singular value decomposition
² Reduces synchrony
² Increases SIMT-style concurrency through

recursion
² Employs Chameleon tile library and StarPU

dynamic runtime system
*QR-based	Dynamically	Weighted	Halley	iteration	from	

Stable	and	Efficient	Spectral	Divide	and	Conquer	Algorithms	for	the	Symmetric	
Eigenvalue	Decomposition	and	the	SVD,
Y.	Nakatsukasa	& N.	Higham,	SISC	(2013)

Asynchronous	Task-Based	Polar	Decomposition	on	Massively	Parallel	Systems,	
D.	Sukkari,	H.	Ltaief,	M.	Faverge	&	D.	Keyes,	IEEE	TPDS	(2017)

QDWH-SVD
n Obtain SVD from a polar decomposition:

A = Up H H = V Σ V*

è A = UpV Σ V* = U Σ V*

n QDWH iteration is a recursive divide-and-conquer
method, backward stable

n Based on vendor-optimized kernels, i.e., Cholesky/QR
factorizations and GEMM

n Complexity:
(10+2/3) n3 for well-conditioned system, 43n3 for ill

polar sym	eigen

QDWH-SVD

c/o D. Sukkari & H. Ltaief (KAUST)

 1

 10

 100

 1000

 10000

 8
19

20

 9
21

60

 1
02

40
0

 1
12

64
0

 1
22

88
0

T
im

e
 (

s)

Matrix size

ScaLAPACK PDGESVD, Ill conditioned matrix
ScaLAPACK QDWH + ScaLAPACK EIG DC, Ill conditioned matrix

ScaLAPACK QDWH + ELPA EIG DC, Ill conditioned matrix
ScaLAPACK QDWH + ScaLAPACK EIG DC, Well conditioned matrix

ScaLAPACK PDGESVD, Well conditioned matrix
ScaLAPACK QDWH + ELPA EIG DC, Well conditioned matrix

x8

x4

Sukkari et al., Best papers, Europar’16
available:	https://github.com/ecrc/qdwh.git

576 nodes of 64-core Intel KNL (cache/quadrant mode)

fastest	dense	SVD

 1

 10

 100

 1000

 10000

 8
19

20

 9
21

60

 1
02

40
0

 1
12

64
0

 1
22

88
0

T
im

e
 (

s)

Matrix size

ScaLAPACK PDGESVD, Ill conditioned matrix
ScaLAPACK QDWH + ScaLAPACK EIG DC, Ill conditioned matrix

ScaLAPACK QDWH + ELPA EIG DC, Ill conditioned matrix
ScaLAPACK QDWH + ScaLAPACK EIG DC, Well conditioned matrix

ScaLAPACK PDGESVD, Well conditioned matrix
ScaLAPACK QDWH + ELPA EIG DC, Well conditioned matrix

QDWH-SVD

c/o D. Sukkari & H. Ltaief (KAUST)

x2

Sukkari et al., Best papers, Europar’16
available:	https://github.com/ecrc/qdwh.git

1152 nodes of 32-core Intel Haswell (cache/quadrant mode)

Is	being	integrated	into	Cray’s	LibSci	w/A.	Esposito	(Cray)
Extensions	underway	to	Zolotarev’s	method	w/Y.	Nakatsukasa	(Oxford)

x4

QDWH-SVD, taskified

c/o D. Sukkari, H. Ltaief (KAUST) & M. Faverge (INRIA)

1st QR iteration
2nd QR iteration
3rd QR iteration

Three QR iterations

1st Cholesky iteration
2nd Cholesky iteration
3rd Cholesky iteration

Three Cholesky iterations

Sukkari et al., IEEE TDPS’17

QDWH-SVD, taskified
on hybrid architecture

c/o D. Sukkari, H. Ltaief (KAUST) & M. Faverge (INRIA)

 0.1

 1

 10

 100

 1000

 10000

 10
24

 20
48

 30
72

 40
96

 51
20

 61
44

 71
68

 81
92

 92
16

 10
24

0

 11
26

4

 12
28

8

 13
31

2

 14
33

6

 15
36

0

 16
38

4

 17
40

8

 18
43

2

 19
45

6

 20
48

0

 21
50

4

 22
52

8

 23
55

2

 24
57

6

 25
60

0

 26
62

4

Ti
m

e
(s

)

Matrix Size

MKL-QDWH
Elemental-SVD+GEMM

Elemental-QDWH
MKL-SVD+GEMM

Chameleon-QDWH
Chameleon-QDWH-8xK80

x10

32-cores Intel Intel Haswell + 8 NVIDIA K80s

QDWH-SVD, taskified
on various architectures

c/o D. Sukkari, H. Ltaief (KAUST) & M. Faverge (INRIA)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 10
24

 20
48

 30
72

 40
96

 51
20

 61
44

 71
68

 81
92

 92
16

 10
24

0

 11
26

4

 12
28

8

 13
31

2

 14
33

6

 15
36

0

 16
38

4

 17
40

8

 18
43

2

 19
45

6

 20
48

0

 21
50

4

 22
52

8

 23
55

2

 24
57

6

G
flo

p/
s

Matrix Size

NVIDIA 4xP100
NVIDIA 8xK80

Intel KNL
Intel Haswell

Intel Broadwell
IBM Power8

Tile Low-rank Cholesky
² A low-rank, but flat (not hierarchical) first step

towards expanding capability for large dense
symmetric problems, e.g., covariance matrices

² Reduces synchrony
² Increases SIMT-style concurrency
² Employs OpenMP taskification pragmas and

HLibPro on individual tiles

ExaGeoStat:	A	High	Performance	Unified	Framework	for	
Geostatistics	on	Manycore	Systems

S.	Abdulah,	H.	Ltaief,	Y.	Sun,	M.	Genton &	D.	Keyes
TDPS	(2017,	submitted)

Large dense symmetric systems arise as
covariance matrices in spatial statistics

• Climate and weather applications have many
measurements located regularly or irregularly in a
region; prediction is needed at other locations

• Modeled as realization of Gaussian or Matérn spatial
random field, with parameters to be fit

• Leads to evaluating the log-likelihood function
involving a large dense (but data sparse) covariance

Synthetic and practical examples

Global temperature
data on sphere

362 measured points and
38 target points irregularly
distributed in unit square

LAPACK DPOTRF

• Classical algorithm (1990s) involves BLAS L2 panel
updates and BLAS L3 trailing matrix updates

PLASMA/CHAMELEON DPOTRF
• Tile algorithm (PLASMA, FLAME, 2010s) involves

mostly BLAS L3 operations within tiles scheduled
with a DAG

Tile operations for TLR version of Cholesky

Data-sparse operations for Cholesky variants

(block low-rank without hierarchy)

Compressibility of four typical blocks, for
Frobenius accuracy of 10-9

Covariance Matrix of
dimension 16384 in 16�16
blocks of 1024�1024 each

Even “brute force” tilings pay off

c/o H. Ltaief & K. Akbudak (KAUST)

Tile low-rank Cholesky, time per backsolve

On 2-socket 18-core Intel Haswell @ 2.3GHz
OpenMP pragmas for taskification and accuracy of 10-9

c/o H. Ltaief & K. Akbudak (KAUST)

>	order	of	
magnitude

Distributed memory TLR Cholesky –
preliminary

On 16 nodes of 2-socket 16-core Intel Haswell @ 2.3GHz

c/o H. Ltaief & K. Akbudak (KAUST)

6X	
improvement	
over	
ScaLAPACK

KBLAS
² Subset of L2/L3 BLAS targeting GPU and Intel

MIC
² GEMV, SYMV, TRSM, TRMM

² Reduces communication and increases concurrency
in these memory BW bound operations

² Batched BLAS for small sizes on GPUs
² TRSM, TRMM, SYRK, POTRF, POTRS, POSV,

TRTRI, LAUUM, POTRI, POTI
² Recursive formulation
² Employs vendor-optimized L3 BLAS underneath

ACM	TOMS	(2016),	CCPE	(2016,	2017)

Recursively defined
KBLAS operations

for symmetric systems

c/o A. Charara & H. Ltaief (KAUST)

KBLAS DTRMM

Charara et al., Best papers, Europar’16
available:	https://github.com/ecrc/kblas

c/o A. Charara & H. Ltaief (KAUST)

0!
100!
200!
300!
400!
500!
600!
700!
800!
900!

1000!
1100!
1200!
1300!
1400!
1500!

51
2!
10
24
!
15
36
!
20
48
!
25
60
!
30
72
!
35
84
!
40
96
!
46
08
!
51
20
!
56
32
!
61
44
!
66
56
!
71
68
!
76
80
!
81
92
!
87
04
!
92
16
!
97
28
!

10
24
0!

10
75
2!

11
26
4!

11
77
6!

12
28
8!

12
80
0!

13
31
2!

13
82
4!

14
33
6!

14
84
8!

15
36
0!

Pe
rfo

rm
an

ce
 (G

Fl
op

 /
s)
!

Matrix Dimension!

 Theo-Peak!
 cuBLAS_DGEMM!
 cuBLAS (OOP)!
 KBLAS (IP)!
 cuBLAS (IP)!

5.5X

KBLAS DTRSM

0!
100!
200!
300!
400!
500!
600!
700!
800!
900!

1000!
1100!
1200!
1300!
1400!
1500!

51
2!
10

24
!
15

36
!
20

48
!
25

60
!
30

72
!
35

84
!
40

96
!
46

08
!
51

20
!
56

32
!
61

44
!
66

56
!
71

68
!
76

80
!
81

92
!
87

04
!
92

16
!
97

28
!

10
24

0!

10
75

2!

11
26

4!

11
77

6!

12
28

8!

12
80

0!

13
31

2!

13
82

4!

14
33

6!

14
84

8!

15
36

0!

Pe
rf

or
m

an
ce

 (G
Fl

op
/s

)!

Matrix Dimension!

 Theo-Peak! cuBLAS_DGEMM!
 KBLAS (Square)! cuBLAS (Square)!
 KBLAS (rows x 512)! cuBLAS (rows x 512)!

Charara et al., Best papers, Europar’16
available:	https://github.com/ecrc/kblas

c/o A. Charara & H. Ltaief (KAUST)

1.8X
for	tall	
skinny	
case

KBLAS now in cuBLAS 8;
will be in cuBLAS 9

c/o A. Abdelfattah (ICL, KAUST’15), A. Charara & H. Ltaief (KAUST)

Extending KBLAS
to batched execution

n Batched BLAS workshop:
◆ http://bit.ly/Batch-BLAS-2017

n Problem:
◆ L2 BLAS individually of low arithmetic intensity
◆ memory latency overheads

n Redesign the legacy BLAS API
◆ launch thousands of small BLAS kernels simultaneously
◆ increase device occupancy
◆ remove API/kernel launch overheads
◆ extend the recursive formulation

n Driven by scientific data-sparse applications
◆ computational statistics and astronomy
◆ Schur complement in sparse direct solvers and BDDC

preconditioning

Batched operations

c/o	Jacob	Kurzak	(ICL,	U	Tennessee)

KBLAS
Example: Batched POTRF

Recursive	
Batch	POTRF

n Nested recursion
n Convert into batch of large GEMMs
n Minimize data transfer
n Enhance data locality
n Increase arithmetic intensity

Recursive	
Batch	TRSM

Recursive	
Batch	SYRK

Recursive	
Batch	POTRF

c/o A. Charara & H. Ltaief (KAUST)

Batched KBLAS
performance comparisons

1

2

4

8

16

32

64

128

256

512

8 16 32 64 128 256

G
F
lo

p
s/

s

Matrix Size (M=N, batch=10240)

cuBLAS-DGEMM

KBLAS-DTRSM

cuBLAS-DTRSM

MAGMA-DTRSM

MKL-DTRSM

1

2

4

8

16

32

64

128

256

512

8 16 32 64 128 256

G
F
lo

p
 /

 s

Matrix size (M=N, batch=10240)

cuBLAS-DGEMM

KBLAS-DTRMM

MKL-DTRMM

MAGMA-DTRMM

1

2

4

8

16

32

64

128

256

512

1024

2048

8 16 32 64 128 256

G
F
lo

p
 /

 s

Matrix size (M=N, batch=10240)

 KBLAS 8-GPU

 KBLAS 4-GPU

 KBLAS 2-GPU

 KBLAS 1-GPU

 MKL-28-cores
1

2

4

8

16

32

64

128

256

512

1024

2048

8 16 32 64 128 256

G
F
lo

p
 /

 s

Matrix size (M=N, batch=10240)

 KBLAS 8-GPU

 KBLAS 4-GPU

 KBLAS 2-GPU

 KBLAS 1-GPU

 MKL-28-cores

DTRSM DTRMM

Single
K40

(MKL	on	
28-core	

Broadwell)

Multiple
K40s

(MKL	on	
28-core	

Broadwell)

Batched KBLAS
performance comparisons

1

2

4

8

16

32

64

128

256

512

8 16 32 64 128 256

G
F
lo

p
s/

s

Matrix Size (batch=10240)

cuBLAS-DGEMM

KBLAS-DPOTRF

MAGMA-DPOTRF

MKL-DPOTRF

1

2

4

8

16

32

64

128

256

512

1024

2048

8 16 32 64 128 256

G
F
lo

p
 /

 s

Matrix size (batch=10240)

 KBLAS 8-GPU

 KBLAS 4-GPU

 KBLAS 2-GPU

 KBLAS 1-GPU

 MKL-28-cores

1

2

4

8

16

32

64

128

256

512

8 16 32 64 128 256

G
F
lo

p
s/

s

Matrix Size (M=N, batch=10240)

cuBLAS-DGEMM

KBLAS-DPOSV

MKL-DPOSV

MAGMA-DPOSV

1

2

4

8

16

32

64

128

256

512

1024

2048

8 16 32 64 128 256

G
F
lo

p
 /

 s

Matrix size (M=N, batch=10240)

 KBLAS 8-GPU

 KBLAS 4-GPU

 KBLAS 2-GPU

 KBLAS 1-GPU

 MKL-28-cores

DPOTRF DPOSV

Single
K40

(MKL	on	
28-core	

Broadwell)

Multiple
K40s

(MKL	on	
28-core	

Broadwell)

1

10

100

1000

10000

0.01 0.1 1 10 100

G
F
L
O

P
 /

 s

Measured FLOPs / Byte (batch=10240)

KBLAS-DSYRK
KBLAS-TRMM
KBLAS-DTRSM
KBLAS-DPOTRF
KBLAS-DLAUUM
KBLAS-DTRTRI

1200 GFLOP/s

Batched KBLAS
performance

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

8 16 32 64 128

A
ch

ei
v
ed

 /
 S

u
st

a
in

ed
 B

a
n
d
w

id
th

 (
%

)

Matrix Size (M=N, batch=10240)

DSYRK DTRMM DLAUUM

DTRTRI DPOTRF DTRSM

Roofline	performance	model	of	KBLAS	
batched	operations	in	double	precision	and	
10240	batched	size	running	on	NVIDIA	K40	

GPU,	on	square	matrices	of	size	128.

Ratio	of	achieved	to	sustained	bandwidth
of	various	KBLAS	batched	operations	in	

double	precision	on	a	K40	GPU	with	10240	
batch	size.

c/o A. Charara & H. Ltaief (KAUST)

Conclusions
nPlenty of ideas exist to adapt or substitute for

favorite solvers with methods that have:
◆ reduced synchrony (in frequency and/or span)
◆ higher residence on the memory hierarchy
◆ greater SIMT/SIMD-style shared-memory concurrency

nProgramming models and runtimes may have
to be stretched to accommodate

nEverything should be on the table for trades,
beyond disciplinary thresholds è “co-design”

Hierarchical Computations on
Manycore Architectures: HiCMA*

* appearing incrementally at https://github.com/ecrc

QDWH-
SVD

GEMV,	
TRSM,	...

Batched
RanSVD

ACR
(precond)

TLR

FMM
(precond)

H	
compress

Thanks to:

CENTER OF EXCELLENCE

Thank you!

شكرا

david.keyes@kaust.edu.sa

https://github.com/ecrc/

