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Motivation

The magnetic field exerts a force on magnetic materials such as magnetic
nanoparticles (MNPs). MNPs under the action of external magnetic field are
used in:

» medical sciences:

> as contrast agents to enhance the contrast in MRI

> as carriers for targeted drug delivery, for instance, to treat cancer
cells, tumors (< 0.1% is taken by tumor cells)

> in gene therapy

> in magnetized stem-cells

> magnetic tweezers
» lab-on-a-chip systems that include magnetic particles or fluids

» magnetofection a transfection method
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Magnetic drug targeting (MDT)

s

Experimental setup ([Shapiro et al., 2013])
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What are engineers interested in?

> Pull in or attract particles (left): there are already human trials on this.

» Key difficulty: To push or to control particles (center and right). In
region A the force is pointing outward, allowing us to push particles.

» The success of the aforementioned applications highly depend on the
accurate control of the magnetic force.

» Goal: how to approximate a desired magnetic force f by a fixed
configuration of magnetic field sources.

» Approach:

T
m};n/o ||F — f”iz(D) dt forT >0and D C ]Rd,d =2,3. P[/GEORGE
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How does magnetic field manipulate MNPs?
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Magnetic force: Magnetic field gradient is required to exert a force and
such a force is given by [Rosensweig '97]:

F=(m- V)H.

A simplification: After some simplifications (weakly diamagnetic medium,
no current sources) and using curl H = 0, the force on a single MNP

F =
2

Vin: is the volume of the particle
Ax = xp — Xm: effective susceptibility.

Fundamental difficulty: magnetic field intensity H is not parallel to the
magnetic force F.
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Minimization problem and control action

» Q CR? d=2,3 open, bounded
D; C : time dependent subdomain.

» Maxwell's equations: We consider magnetic sources outside €2 then
curlH=0, divH=0 inQ.

» Dipole approximation:

H(:D,t) :Zai(t) (d(mwl)(mml) ]I) d; :Zaz(t)Hz(ﬂf)

|z — a2

x; € R4\ Q: dipole positions
d; € R?: field direction

iy
“ » ® Xy aa
e NS
«—0
a7 dy | ), ‘ o
. /&
X‘/A X\
g dg . h £
X5 ds o g P[GEORGE
\l A € L
OctoMag. IRIS - Institute (Ziirich) umiveRsiTy

Harbir Antil 07/15/16 6



Problem 1: Fixed final time

» Minimization problem:

LT AT
min J(a), with 5/ \|V|H(a)|2ff||iz<Dt>dt+§/ |diax|*dt,
0 0

acEHqaq
with a(t) == (a1(t),...,an, (t))" in

Hog 1= {a €[HY(0, 7)) : a(0) =0 and ou. < a(t) < &, Vt € [0, T]}.

» Reformulation:

d
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Problem 2: Minimizing the final time

>

>
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Unknown f. Since the final time 7% is an unknown, thus f is not
meaningful quantity. We treat f as an unknown.

Let p € C*[0, sr] be a parameterization of C with respect to arc length.
C

0=s0 sL=er s

Assume that the barycenter ¢ (t) of D; moves along curve C at speed
6(t) > 0 with initial position &7 and final xr such that

Tp
/ O(T)dr = sr.
0
We define the map o(:) : [0,TF] — [0, sF] as
t
s=o(t)= / O(r)dr.
0

Whence ¢ (-) = poa(-). Also dizc(t) = 0(t)dip(o(t)). MASOR
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Problem 2: Minimizing the final time

min Fle,0)
(0,0)€EHad X Vad

with
Flat)= [ (29(5 > llx(s) Pux(s) = 1006 0o,
+ % + Dldsax(s) + 727|d59(5)|2> ds
and

Z/lad::{aeHl(O73p):a(0):ao and a. < a(s) <a’, Vse|0,sp]

\ﬂ,_/H/—’

Vad::{aeHl(O,sF):H(O)zeo and 0 < 0. <0(s) <0, Vs € [0, sr]
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Well-posedness of continuous problem

» Existence of solution. If f € [L2(0,7;1.2(2))] then using direct method
of calculus of variations, there exist a solution to Problem 1. Same holds

for Problem 2 if p is C*.

> First order necessary optimality conditions.

» If & € U,q solves Problem 1 then
J@(a—a)>0 Vo Haa.
> If (&,0) € Una X Vaa solves Problem 2 then
VF(&,0)(6c,50) >0 V(e 0) € Uga X Vad

where Sa =a — @&, 60 =0 — 0.
> Second order sufficient condition. Under the assumption

J"(@)(0a)” > wldalfier Voo € Ala)

where A(a) := {h € H§(0,T) : v+ Ch € Heq, ¢ > 0} there exists a

. . . Z
local unique solution to Problem 1. Same applies to Problem 2. A

EORGE
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Problem 1: Reference domain

> Reference domain. We define a reference domain DcR%and a map
X :[0,7] x D — ©, such that for all ¢t € [0, 7]

D,

X(t7') —
= X(t,2) = (t) + ¥(t)z,

8) U)\

UE [0,T] = R%, 4 : [0,T] = (0,400), and v,% € H'(0,T). Moreover,

D = Dy.

» Reference domain cost. Then, we rewrite J as
1 d T T T2 >\ T 2 1 2
J(e) = 5; ; [l Pia—fz-IILzusﬁg | ldie|]” = T () + T ()
with Py(t, &) := Pi(X(t, ) (t)¥? and fi(t, &) = vi(t, X(t, ) (t)??,
1,...

for i = ,d.
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Problem 1: Time discretization

> Let us fix N € N and let 7 := T/N be the time step. Now, for
n=1,...,N, we define t" := nr, P} = P;(t") and f]* to be

o~
f?(~):5/ £i(t,)dt, i=1,...,d,
t

which in turn allows us to incorporate a general f.
> Time discrete problem: given the initial condition cto =: &~ (0), find
& C Hgy solving

&, = argmin J-(a;),  Jr(or) = T ar) + T (),

ar€Hiy

N d N
1 . N A\ )
=7 32l @) TP —E a5y + 7Y 5o lat —
. n=1
and

Hig = {or € H'(0,T) : rlpn-1,4m EP', n=1,...,N} N Has. MASON
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Convergence of scheme

Theorem. The family of minimizers {&}
» uniformly bounded in H'(0,T).

+>0 to the discrete problem is

> it contains a subsequence that converges weakly to & in H(0, 7).
> lin’l‘r~>0 jT(dT) - j(d)

The proof is motivated by I' convergence.
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Strong convergence to local minimizers

> Auxiliary problem: For a fixed € > 0, we construct a family {a5}
upon solving the minimization problem

>0

a; = argmin J; (o),
ar€Hyy

where H7 = {(17— € Hyg: IThra — arllizor < 6}.

> Next using the second order sufficient condition we show that {a$}->0
forms a local solution to our discrete problem.

» We conclude by showing that ||a] — &|ly1,r) — 0 as 7 — 0.

This approach is inspired by Casas and Troeltzsch '02.
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Problem 2: Discretization

> We consider the following discrete problem: given an initial condition
(a0, 600) =: (ax(0),0.(0)) find a solution (cxw,0x) € ULy X Vi, to

min Fr( @, 05) = Fr(O, 0) + Fr(0) + Fo(an) + Fu(6s)
(ar,0k)EUR, XVE,

where
M K d
f;(aﬁ79'§ = Z 20 Z [[(ex TPm X = p{i(sm)agl”iz(f))
m=1 =1
M
6‘% A m m—
fg(en): Zﬁa fg(an):’izﬁklm — Oy 1|27
m= r m=1

M
=3 gl =0
» and admissible sets
Usia := {ove € H'(0,55) : tulfamr g € Py = 1,00, M} 1 Uaa

Vi, = {en € H'(0,55) : Olpgm—1.4m) EPL,m=1,.. .,M} Vet

P‘ GEORGE

» We again show the weak convergence using I'-convergence. UNIVERSITY
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Numerical examples

» Q= B(0,0) C R?, D = By (—0.75,0)
> xp41 = 1.2(cos(km/4),sin(kw/4))
> diy1 = (cos(km/4),sin(km/4)),k =0,...,7 (n, = 8)

d3l as
~ 4 X3 32
d4\X4 T /042
X2
a5 x; d;
Py e—>
ds X; o
X6 3

046/ Xs.\df;

dﬁ X7
[0%4 Ia7
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Problem 1: approximate fi(x,t) = (1,0)"

» T=1,A=10"".
> a*=(2,...,2) €R® and as, = (—2,...,—2) € R®.
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Intensities
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Dipoles on the left (dipoles 4, 5 and 6) have small intensities at initial times.
This is expected because D is close to the boundary of 2, where H is large,
thus it is difficult for dipoles 4, 5 and 6 to “push” in the f; direction.



Problem 1: approximate fi(x,t) = (1,0)"

Loading movie ... Loading movie ...
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plot_circle_r1_move_L_R_case3_1k_t50_e_comp1.mpg
Media File (video/mpeg)


plot_circle_r1_move_L_R_case3_1k_c_comp1.mpg
Media File (video/mpeg)


Problem 1: approximate f,(z,t) = (sin(r(1 — t)), — cos(m(1 — t)) T
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Problem 1: approximate f,(z,t) = (sin(x(1 —t)), — cos(x(1 — t)) T

.. 0.4 0.6
a7 Id7 time
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Problem 1: approximate f,(z,t) = (sin(r(1 — t)), — cos(m(1 — t)) T
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plot_circle_r1_1k_move_curve_kk1_r6_D2_v2.mpg
Media File (video/mpeg)


plot_circle_r1_1k_move_curve_kk1_r6_D2_b.mpg
Media File (video/mpeg)


Problem 2

>

Intensities

Let the curve C is parameterized by

(xr — 1)
s)=xr+ 57—, 5 €10,0.75
pls) =1 +s 70— 0,073
with x; = (0, —0.75) and zr = (0, 0).
(e, *,0,,0%) = (—1,1,1071°,10).
» 3=10"1, A =105 and n = 107%).
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Application: concentration transport

» MNPs. We assume a concentration of magnetic nanoparticles confined in
a domain Q C RY,d =2,3.

» Drug concentration is evolved using

% +div (~AVe+ cu+yief(H)) =0 in Q% (0,7)
c=0 ondQx(0,T) c(z,0) =co inQ
crlH=0 inQ div(H)=0 inQ
where A = 1072 is a diffusion coefficient matrix, u is a fixed velocity
vector and f is the Kelvin force.

> Goal. Move ¢y from one subdomain to another (desired location) using
the magnetic force f while minimizing the spreading.

P‘ GEORGE
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Application: concentration transport

We solve the parabolic problem with magnetic force given by Problem 1 with f;.

Loading movie ... Loading movie ...
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plot_circle_r1_20k_USFEM_b_comp.mpg
Media File (video/mpeg)


plot_circle_r1_20k_USFEM_vc_comp.mpg
Media File (video/mpeg)


Conclusions
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We have approximated a vector field by using the Kelvin force. In
particular, we study two problems:

» Fixed final time
» Unknown final time

We prove the existence of solution and using second order sufficient
conditions we show the local uniqueness.

Motivated by I'-convergence we show the H'-weak convergence of the
time-discrete problems.

In presence of second order sufficient condition, a H!-strong local
convergence result is proved for Problem 1.

As an application, we study the control of magnetic nanoparticles as those
used in magnetic drug delivery. The optimized Kelvin force is used to
transport the drug to a desired location.
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