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Nonlinearities in recommender systems

Low-rank matrix models predict Roummel’s rating as a weighted
sum of other users’ ratings.

Nonlinear models can yield more accurate predictions of human
preferences
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General setup with missing data
I We have s points in Rn:

X =
[
x1 . . . xs

]
∈ Rn×s

I We only observe m of the n entries in each xi; let Ω indicate
the locations of the observed entries and PΩ(·) be the
projection onto this set.

I The incomplete version of X (with missing entries) is X0

I With low-rank matrix completion, we might set

X̂ =argmin
X

rank(X) subject to PΩ(X) = PΩ(X0)

X̂ =argmin
X

‖X‖∗ subject to PΩ(X) = PΩ(X0)

or

(Û , V̂ ) = argmin
U∈Rn×r:‖U‖F≤1,

V ∈Rs×r

‖X0 − PΩ(UV >)‖2F
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Nonlinear representations of images

4 / 39



Nonlinearities abound

Computer Vision Genomics

Network Topology Inference
5 / 39



Can we extend the successes of low-rank matrix
completion to non-linear structures?

We currently lack a unified, systematic framework for learning
nonlinear models with missing data

How much missing data can be tolerated?
Efficient optimization algorithms?

Today: Three nonlinear models

Single Index Models Unions of
Subspaces

Algebraic Varieties
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Matrix
completion via
single index
models

Ravi Ganti Laura Balzano
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Single index models1

Z ∈ Rn×s is a latent low-rank matrix

X = g(Z) ∈ Rn×s is a monotonic nonlinear transformation

Xi,j = g(Zi,j) of each element of Z

(ĝ, Ẑ) = argmin
(g monotonic,
Z rank−r)

‖PΩ(X0 − g(Z))‖2F

1
[Ichimura, 1993, Horowitz and Härdle, 1996, Kalai and Sastry, 2009, Kakade et al., 2011, Ganti et al., 2015]
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Monotonic matrix completion in action (synthetic data)
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n = 30, s = 20, r = 5, g(z) = (1 + e−z)−1
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Monotonic matrix completion in action (real data)

Dataset Dimensions Effective rank Low-
rank
matrix
comple-
tion

Mono-
tonic
matrix
comple-
tion

PaperReco 3426× 50 47 0.4026 0.2965

Jester-3 24938× 100 66 6.8728 5.2348

ML-100k 1682× 943 391 3.3101 1.1533

Cameraman 1536× 512 393 0.0754 0.06885

RMSE of different methods on real datasets.
Roughly 10% of the entries were observed in each case.
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Monotonic matrix completion theory2

Lemma 1: We can bound the MSE of the output of the

MMC algorithm (Ẑ, ĝ) as a function of

I how much data is missing,

I the data dimension,

I the number of samples, and

I the underlying subspace rank

as long as
‖X −Z‖ �

√
n

i.e., as long as the true g is not “too nonlinear”.

Challenge: need more flexibility than single index models
provide

2
[Ganti et al., 2015]
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Matrix
completion for

unions of
subspaces

Daniel
Pimentel

Roummel
Marcia

Laura Balzano Robert Nowak
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Unions of subspaces

complete complete complete

high-rank matrix

subspace
clustering
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Clustering followed by low-rank matrix completion 3

I Sparse subspace clustering (SSC):

ci = argmin
c:〈c,ei〉=0

‖c‖1 + λ‖PΩi(xi −X0,\ic)‖22

ci’s

=⇒

sorted ci’s

I spectral clustering on the ci’s
I low-rank matrix completion on each cluster

Does not allow improved clustering based on completed
estimate

3
[Elhamifar and Vidal, 2013, Yang et al., 2015]
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Group sparse matrix factorization4

T

(Û , V̂ ) = argmin
U :‖U‖F≤1,V

‖X0 − PΩ(UV T )‖2F + λ

s∑
i=1

K∑
k=1

‖vi,k‖2

Lemma 2: Accumulation point exists and is a critical point of
the objective function.

4
[Pimentel-Alarcon et al., 2016]
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GSSC Results

SSC-EWZF GSSCLRMC + SSC

Proportion of correctly classified points as a function of s/K (number of
columns per subspace) and m (number of observed entries per column). White

represents 100% accuracy. n = 25.

Challenge: accuracy depends heavily on quality of initial
clustering
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Matrix
completion for

algebraic varieties

Greg Ongie Laura Balzano Robert Nowak
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Algebraic Varieties

An algebraic variety is the solution set of a system of polynomial
equations:

V = {x ∈ Rn : p1(x) = · · · = pK(x) = 0}

for some polynomials p1, ..., pK in variables x = (x1, ..., xn).

18 / 39
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A union of subspaces is a variety5

Example: Union of line and plane

U ={z = 0},
V ={x = 0, y = 0},

U ∪ V = {xz = 0, yz = 0}︸ ︷︷ ︸
system of quadratic eqns

yz = 0xz = 0 ⋂x = y = 0

z = 0

=

Lemma 3: If U1, ...,UK are subspaces, then

∪Kk=1Uk = {x : `1(x) · · · `K(x)︸ ︷︷ ︸
product of linear forms

= 0,

`k linear, `k vanishes on Uk}

5
Algebraic Subspace Clustering/Generalized PCA [Vidal et al., 2016]
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Matrix completion under a union of subspaces model6

complete complete complete

high-rank matrix

subspace
clustering

Clustering is difficult with missing data.

6
[Eriksson et al., 2012, Yang et al., 2015, Pimentel-Alarcón et al., 2016] 20 / 39



Matrix completion under a union of subspaces model6

high-rank matrix

variety-based matrix completionVariety formulations bypass clustering.

6
[Eriksson et al., 2012, Yang et al., 2015, Pimentel-Alarcón et al., 2016]
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Veronese mappings
Key observation: Data belonging to a variety are rank deficient
under a Veronese embedding.

I Consider matrix of points in R2 draw from a quadratic curve:

X =

(
x1,1 x1,2 · · · x1,6
x2,1 x2,2 · · · x2,6

)
∈ R2×6

with c0 + c1 x1,i + c2 x2,i + c3 x
2
1,i + c4 x1,ix2,i + c5 x

2
2,i = 0

(x1,i, x2,i)

I Map each point to all monomials with degree ≤ 2:

Y =


1 1 ··· 1
x1,1 x1,2 ··· x1,6
x2,1 x2,2 ··· x2,6
x21,1 x21,2 ··· x21,6

x1,1x2,1 x1,2x2,2 ··· x1,6x2,6
x22,1 x22,2 ··· x22,6

 ∈ R6×6

I X is full rank, but Y is rank deficient:
cTY = 0 with c = (c0, ..., c5)

T =⇒ rank(Y ) ≤ 5.
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Veronese embeddings

I For x = [x1, ..., xn]
T ∈ Rn define

φd(x) := (xα1
1 · · ·x

αn
n )|α|≤d︸ ︷︷ ︸

all degree ≤ d monomials

∈ RN

for N =
(
n+d
d

)
I For a matrix

X = [x1, . . . ,xs] ∈ Rn×s,

φd(X) := [φd(x1), ..., φd(xs)] ∈ RN×s

Lemma 4: φd(X) is rank deficient if and only if columns of X
lie on a variety generated by polynomials of degree ≤ d:

CTφd(X) = 0
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Restatement of Main Objective

Main objective:

Complete a partially observed matrix X under the assumption that
the columns of X lie on a variety?

m
Complete a partially observed matrix X under the assumption that

φd(X) is low-rank

Optimization formulation:

min
X

rankφd(X) subject to PΩ(X) = PΩ(X0)
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When could this work?
Degrees of freedom (DoF):

of a N × s rank-R matrix = R(N + s−R)
of a N × s rank-R Veronese embedding matrix = R(n+ s−R)

Lemma 5: (Predicted minimal
sampling rate)

Ms ≥ R(n+ s−R)

if

m ≥ n
(
R

N

) 1
d

, for s� R
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Phase transitions - Parametric Curves/Surfaces
Example Datasets:

-0.5

-0.5

0

0
-0.5

d = 2, R = 60

0.5

0
0.5 0.5

-1

1

0

1

d = 3, R = 150

0

1

0

-1 -1

ambient dimension n = 20
datapoints s = 300

embedding space rank R
samples per column m/n
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Unions of Subspaces

Recall that a union of subspaces is a variety.

Lemma 6: If the columns of X ∈ Rn×s belong to a
union of K subspaces, each with dimension at most r, then

R = rankφd(X) ≤ K
(
r+d
d

)
.

Then the minimal number of observed entries per column
is

m ≥ n
(
R
N

) 1
d ≈ K1/dr

I To perform low-rank matrix completion in X, we’d need
m ≈ Kr

I Bigger d isn’t always better, as we need s = O(Krd)

26 / 39



Phase transitions - Union of Subspaces

Predicted sampling rate: m/n = O(K1/dr)

Randomly generate UoS data:
ambient dimension n = 15

subspace dimension r = 3
number of subspaces K = 1, ..., 20
samples per column m/n

27 / 39



Schatten-p quasi-norm minimization

I Relaxed formulation:

min
X
‖φd(X)‖pSp subject to PΩ(X) = PΩ(X0)

where ‖ · ‖Sp is the Schatten-p quasi-norm defined as

‖Y ‖Sp :=

(∑
i

σi(Y )p

) 1
p

, 0 < p ≤ 1

with σi(Y ) denoting the ith singular value of Y .

I For p = 1 we recover the nuclear norm; for p < 1 penalty is
non-convex.

I We call this optimization formulation variety-based matrix
completion (VMC).
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Iterative Reweighted Least Squares (IRLS) Algorithm7

I Example: Low-rank matrix completion via nuclear norm
minimization

min
Y
‖Y ‖∗ subject to PΩ(Y ) = PΩ(Y0),

I Basic IRLS approach

‖Y ‖∗ = tr (Y TY )
1
2 = tr (Y TY ) (Y TY )−

1
2︸ ︷︷ ︸

W

while not converged do
W ← (Y TY )−

1
2

Y ← argminY tr (Y TY )W subject to PΩ(Y ) = PΩ(Y0)
end while

7
[Fornasier et al., 2011, Mohan and Fazel, 2012]
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IRLS for Variety Completion

IRLS for low-rank matrix completion

while not converged do
W ← (Y TY )

p
2
−1

Y ← argminY tr (Y TY )W subject to PΩ(Y ) = PΩ(Y0)
end while

IRLS for variety-based matrix completion

while not converged do
W ← (φd(X)Tφd(X))

p
2
−1

X ← argminX tr φd(X)Tφd(X)W subject to PΩ(X) =
PΩ(X0)

end while

Challenge: embedding space dimension N =
(
n+d
d

)
= O(nd) is large.
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The Kernel Trick8

Efficiently compute inner-products with polynomial kernel:

kd(x,y) := 〈φd(x), φd(y)〉 = (xTy + 1)d.

For matrices X,Y :

kd(X,Y ) := φd(X)Tφd(Y ) = (XTY + 1)�d

where 1 ∈ Rs×s is the matrix of all ones and (·)�d denotes the
entrywise d-th power of a matrix.

Substantially reduces working dimension:
kd(X,Y ) ∈ Rs×s vs. X ∈ RN×s.

8
[Muller et al., 2001]
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IRLS for variety-based matrix completion

while not converged do
W ← (φd(X)Tφd(X))

p
2
−1

X ← argminX tr φd(X)Tφd(X)W subject to PΩ(X) =
PΩ(X0)

end while

Lemma 7: Every limit point of the iterates generated by
the kernelized IRLS algorithm is a stationary point of the ε-
smoothed Schatten-p norm objective function

min
X

tr(kd(X,X) + εI)
p
2 s. t. PΩ(X) = PΩ(X0)
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Subspace clustering with missing data
Bootstrap into a subspace clustering algorithm with missing data
(VMC+SSC)

1. Fill in missing data with VMC

2. Sparse Subspace Clustering (SSC)9
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Motion segmentation on Hopkins 155 dataset

9
[Elhamifar and Vidal, 2009]
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Nonlinear models for matrix completion

I Nonlinearities appear throughout in real-world data but are
ignored by low-rank matrix completion – SAD!

I Leveraging nonlinear models improves missing data inference
– TERRIFIC!

I Variety-based models offer TREMENDOUS flexibility without
clustering

I Open questions: Are convex formulations possible? Or
stronger guarantees for non-convex formulations? Will
Roummel like Wonder Woman?
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Thank you

More details:
https://arxiv.org/abs/1703.09631

https://arxiv.org/abs/1512.08787

http://ieeexplore.ieee.org/document/7551734/

35 / 39

https://arxiv.org/abs/1703.09631
https://arxiv.org/abs/1512.08787
http://ieeexplore.ieee.org/document/7551734/


References I

Elhamifar, E. and Vidal, R. (2009).
Sparse subspace clustering.
In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, pages 2790–2797. IEEE.

Elhamifar, E. and Vidal, R. (2013).
Sparse subspace clustering: Algorithm, theory, and applications.
IEEE transactions on pattern analysis and machine intelligence,
35(11):2765–2781.

Eriksson, B., Balzano, L., and Nowak, R. D. (2012).
High-rank matrix completion.
In AISTATS, pages 373–381.

Fornasier, M., Rauhut, H., and Ward, R. (2011).
Low-rank matrix recovery via iteratively reweighted least squares
minimization.
SIAM Journal on Optimization, 21(4):1614–1640.

36 / 39



References II

Ganti, R. S., Balzano, L., and Willett, R. (2015).
Matrix completion under monotonic single index models.
In Advances in Neural Information Processing Systems, pages 1873–1881.

Horowitz, J. L. and Härdle, W. (1996).
Direct semiparametric estimation of single-index models with discrete
covariates.
Journal of the American Statistical Association, 91(436):1632–1640.

Ichimura, H. (1993).
Semiparametric least squares (sls) and weighted sls estimation of
single-index models.
Journal of Econometrics, 58(1-2):71–120.

Kakade, S. M., Kanade, V., Shamir, O., and Kalai, A. (2011).
Efficient learning of generalized linear and single index models with
isotonic regression.
In Advances in Neural Information Processing Systems, pages 927–935.

37 / 39



References III

Kalai, A. T. and Sastry, R. (2009).
The isotron algorithm: High-dimensional isotonic regression.
In COLT.

Mohan, K. and Fazel, M. (2012).
Iterative reweighted algorithms for matrix rank minimization.
The Journal of Machine Learning Research, 13(1):3441–3473.

Muller, K.-R., Mika, S., Ratsch, G., Tsuda, K., and Scholkopf, B. (2001).
An introduction to kernel-based learning algorithms.
IEEE Transactions on Neural Networks, 12(2):181–201.

Pimentel-Alarcon, D., Balzano, L., Marcia, R., Nowak, R., and Willett, R.
(2016).
Group-sparse subspace clustering with missing data.
In IEEE Statistical Signal Processing Workshop.

38 / 39



References IV

Pimentel-Alarcón, D., Balzano, L., Marcia, R., Nowak, R., and Willett, R.
(2016).
Group-sparse subspace clustering with missing data.
In Statistical Signal Processing Workshop (SSP), 2016 IEEE, pages 1–5.
IEEE.

Vidal, R., Ma, Y., and Sastry, S. (2016).
Generalized Principal Component Analysis.
Springer New York.

Yang, C., Robinson, D., and Vidal, R. (2015).
Sparse subspace clustering with missing entries.
In Proceedings of The 32nd International Conference on Machine
Learning, pages 2463–2472.

39 / 39


	Single Index Models
	Unions of Subspaces
	Algebraic Varieties

