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System: interacting quantum dipoles

Atoms or molecules held 1n an optical lattice,
interacting by exchanging or emitting photons.




Quantum Synchronization

There 1s interest in studying synchronization in the
quantum case, for example

Quantum-classical transition of correlations of two coupled cavities
Tony E. Lee and M. C. Cross, Phys. Rev. A, 2013.

Quantum synchronization of quantum van der Pol oscillators with
trapped 10ons, Tony E. Lee and H. R. Sadeghpour, Phys. Rev. Lett.,
2013.

Quantum manifestation of a synchronization transition in

optomechanical systems, Le1 Ying, Ying-Cheng Lai, and Celso
Grebogi, 2014.

Quantum signatures of chimera states, VM Bastidas, I Omelchenko,
A Zakharova, E Scholl, T Brandes, PRE, 2015.



This talk

We propose and analyze an experimentally realizable
model for spontaneous synchronization in a
macroscopic ensemble of quantum systems.

New Journal of Physics 17, 083063 (2015)
Zhu et al.



Single dipole @

A single unit 1s a quantum system with two levels,
ground level |0) , and excited level |1)

The state of the system 1s, in general, a superposition
¥) = al0) +b|1)

The normalization |a|® + |b|* = 1 allows us to
parameterize the coefficients as

1)) = sin (%) e'?|0) + cos (g) 1)



Single dipole: Bloch sphere
1

Alternative variables

1
825608(9)
R = sin(0)

= sin

Here R and s are dependent, but
1 0) are independent when considering
> an ensemble average.



Single dipole oscillator

The phase of an 1solated dipole
grows with an angular
frequency that depends on the
energy difference between the

two states:
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Dynamics of coupled dipoles

Emission of a photon é

Brings state of dipole to |0), occurs at rate T" .

Incoherent pumping

S

Brings state of dipole to|1), occurs at rate W.

Exchange of a photon é‘- —nm ’é

Promotes anti-synchronization, occurs at rate g(Xnm )

Cooperative emission of a photon é #

Promotes synchronization, occurs at rate f(r,,,,)




N dipoles

Solving the system numerically or analytically for
large N 1s currently impossible since the
dimension of the Hilbert space scales as 4N

v

Study very small systems (N < 19) exactly.

What to do?

Study small systems with special symmetries and/or
approximations (€.g., global coupling).

Study the “mean-field approximation”.
This talk




Mean field approximation

By neglecting quantum correlations, one obtains a system
of 3N coupled nonlinear ordinary differential equations
for the ensemble averages of

Rna STZ? ¢n



Mean-field description

ds, :
% =-I'R, ﬂ;Rm[fnm coS(Pm — Pn) — Gnm SIN(Pm — @p)]|— T (; + Sn) +HW (; - S”) ’
dR, -
pr — —%+Rn -+ FSn mZ#an [fnm COS(¢m o ¢n) — nm Sln(¢m o gbn)]?
doy, I's, :
% = —wp + Ri Z Ry |gnm cos(dm — &) + frm sin(dm — ¢n)].
" m#n

1
92

~ Sakaguchi-Kuramoto model

| Decay:  sn— —1/2,R—0 |

‘ Pumping: Sn, — +1/2,R =0 ‘

Decay of R 1s prevented 1f
oscillators are 1n sync




Compare with exact quantum solution

In order to be able to compare with the exact
quantum solution, we focus first on the easiest case:

Global coupling, flrpm)=f
No heterogeneity, Wy, =0

Steady-state solution.



Order parameter

>

Project onto x-y plane

1 N
ZeW = — Z R, e"n
N n=1



Steady-state solution

We look for a solution of the form

b, =




Agreement with the quantum solution

Mean-field

 oyncvonsc P |
0 10 20 30 40
W /T




Potentially rich dynamics

The mean field solution
has rich dynamics



Nonstationary synchronized solutions

Separation
between dipoles
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Bistability

For the special case of frequencies with a Lorentzian
distribution (with width A) , we can use Kuramoto’s
self-consistent analysis method.
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Condition for bistability:

14+ W 4+ A) 1+ W) (1+2A +W)?

2n o
g A > (W—1)2 ’

Frequency heterogeneity (A > () and photon
exchange (g > 0) are both necessary!



Challenge: is this all real?

Mean field
approximation

Cumulant expansion
Exact solution

S—S—S—S—  h—h—h——h——A—_———— — — —— —————————————————
N =18 N

Currently working with the cumulant expansion.



Synchronization with long-range coupling

Power-law interactions, different frequencies
1

f(rpm) ~  g(rpm) =0
Thm]
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Synchronization 1s possible when interactions are long-range



Summary

A system of quantum dipoles can be studied at
the mean-field level with the techniques used
to study classical synchronization.

The steady syncronization 1s robust to oscillator
heterogeneities and long-range coupling.

The mean-field dynamics suggests there could be rich
synchronization dynamics 1n the quantum system.
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System: interacting dipoles

Atoms or molecules interacting by
exchanging or emitting photons.



System: interacting dipoles

Dipoles = atoms or molecules held 1n an optical lattice

Mattice

repumpln g W




Classical Synchronization

State of system described
by state vector x(t)

Evolution of system and
coupling described by
ODEs

dx,,

— = F(Xp; X1, ,XN)

v

Phase equations,
Kuramoto model, etc

Quantum Synchronization

State of system described
by vector in Hilbert space |)

Evolution of system and
coupling described by
Schrodinger’s equation

- dl)
1R g
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Questions

How well does the mean-tfield solution
agree with the quantum solution?

Within the mean-field description, are there
other solutions? What about stability?

Can the final synchronized state be
considered a quantum phenomenon (for
example, having entangled states)?



Stability of steady sync

A linear stability analysis of the steady
synchronized solution gives

a
. Unstable
0.15¢
| (N =103)
0.1}
005 Stable
\WY

10 20 30 40

a = 27 distance between dipoles/photon wavelength
smaller @ means larger



Is this synchronization “quantum”?

Physicists have measures of the “quantumness” of a
system. A state with non-zero “Quantum discord”
behaves non-classically: a local measurement can

disturb the whole system.

Quantum discord

0.12}(a)

Correlates with
synchronization
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This system could be realized in
experiments at JILA

Dipoles = atoms or molecules held 1n an optical lattice

...... ¢ al o
S SRy ,
g(Yab )y “Tab\ % lattice
s & /:\‘“ b | .
- & | \ . repumping W
= P w7,
— B =

An experiment that verifies the details of the model [e.g.,
expressions for f(r,.,), g(rnm)] has been conducted at JILA.



Summary

A system of quantum dipoles can be studied at the
mean-field level with the techniques devised by
Kuramoto to study classical synchronization.

The synchronization still has quantum features.

Additional comparisons of the mean-field
dynamics with quantum calculations and/or
experiments might be possible soon.















Questions

How well does the mean-field solution agree with
the quantum solution?

Within the mean-field description, are there other
solutions? What about stability?

Can the final synchronized state be considered a
quantum phenomenon (for example, having
entangled states)?



Quantum Synchronization

New Journal of Physics 17, 083063 (2015)

B. Zhu, J. Schachenmayer, M. Xu, F. Herrera, J. G. Restrepo, M. Holland, A. M. Rey









Other solutions of the mean-field equations?

We looked for traveling wave solutions

s, =8, =0 R,=R, R=0,
On = Qt 4+ 27k /N

(k=0 1s the solution we found above)

For realistic values of the couplings ¢(rnm,) and f(rnm)
these solutions are suppressed.

However, we found that the steady-state solution can
become unstable for small enough J , which in practice
occurs for a large separation between dipoles



Phase oscillator models have been adapted to study different
features of real-world systems, including time delays,
network coupling, more general coupling functions, etc...

Amplitude can be added (e.g., Stuart-Landau oscillators).

However, usually 1t 1s not possible to derive the
phase oscillator equations from first principles
because

* the existence of governing ODESs 1s only assumed
(e.g., pedestrians)

* the change of variables needed to reduce ODEs to
phase description is not explicitly calculated

We will present a system where a phase oscillator
model can be explicitly derived



Synchronization & clocks

Pendulum clock invented by C.
Huygens 1n 1656

Different clocks had frequencies differing
by about 15 seconds per day

5 Ll

Initially equal phase Different phases




Synchronization & clocks

In 1665, Huygens observed that two clocks
suspended from a common beam would oscillate
with the same frequency
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Most precise clocks are here at JILA

The Ye group’s most recent strontium lattice optical atomic clock 1s
so sensitive that its timekeeping 1s affected by gravitational changes
due to height differences of as little as 2 cm.




Classical Synchronization



Examples of synchronization

Mechanical clocks.
Cellular clocks 1n the brain.
Pedestrians on a bridge.
Electric circuits.

Pacemaker cells 1n the heart.



Coupled phase oscillators

dx

= F(x) System of ODEs that

1) Have a strongly attracting limit cycle

2) Are weakly coupled: coupling doesn’t deform the limit cycle

Such oscillators can be described by just a phase angle
(no amplitude)

= V Change of
1 variables
09 \
0.8
E /A




Coupled phase oscillators

Kuramoto derived the equations
d@
— Wn - Z H nm o )

where wpn, Hum depend on the original ODEs

Kuramoto model: simplest choice
db,,
dt = Wn T+ — Z sm

Sakaguchi-Kuramoto model




Order parameter to measure
synchronization

Ze' = average position of oscillators in complex plane



7 =~ () />0

Incoherent Synchronized



Synchronization transition




Demonstration

(Lancaster University, Physics Dept.)
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