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Interacting quantum dipoles 

Mean field description 

Challenges 

Obligatory network



System: interacting quantum dipoles
Atoms or molecules held in an optical lattice, 

interacting by exchanging or emitting photons.



Quantum Synchronization
There is interest in studying synchronization in the 

quantum case, for example

Quantum-classical transition of correlations of two coupled cavities 
Tony E. Lee and M. C. Cross, Phys. Rev. A, 2013. 

Quantum synchronization of quantum van der Pol oscillators with 
trapped ions, Tony E. Lee and H. R. Sadeghpour, Phys. Rev. Lett., 

2013. 

Quantum manifestation of a synchronization transition in 
optomechanical systems, Lei Ying, Ying-Cheng Lai, and Celso 

Grebogi, 2014. 

Quantum signatures of chimera states, VM Bastidas, I Omelchenko, 
A Zakharova, E Schöll, T Brandes, PRE, 2015.



This talk

We propose and analyze an experimentally realizable 
model for spontaneous synchronization in a 
macroscopic ensemble of quantum systems.

New Journal of Physics 17, 083063 (2015) 
Zhu et al.



Single dipole
A single unit is a quantum system with two levels, 

ground level         , and excited level |1i|0i

The state of the system is, in general, a superposition

| i = a|0i+ b|1i

The normalization                              allows us to 
parameterize the coefficients as

|a|2 + |b|2 = 1

| i = sin
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Single dipole: Bloch sphere
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Alternative variables

Here R and s are dependent, but 
are independent when considering 

an ensemble average.



Single dipole oscillator

�

|1i

|0i

d�

dt
= !

The phase of an isolated dipole 
grows with an angular 

frequency that depends on the 
energy difference between the 

two states:



Dynamics of coupled dipoles
Emission of a photon

Brings state of dipole to     , occurs at rate     .|0i �

Incoherent pumping

Brings state of dipole to     , occurs at rate W.|1i

Cooperative emission of a photon

f(rnm)Promotes synchronization, occurs at rate

Exchange of a photon
Promotes anti-synchronization, occurs at rate g(rnm)

rnm mn



N dipoles
Solving the system numerically or analytically for 

large N is currently impossible since the 
dimension of the Hilbert space scales as 4N.

Study very small systems (N < 19) exactly. 

Study small systems with special symmetries and/or 
approximations (e.g., global coupling). 

Study the “mean-field approximation”.

What to do?

This talk



Mean field approximation

By neglecting quantum correlations, one obtains a system 
of 3N coupled nonlinear ordinary differential equations 

for the ensemble averages of

Rn, sn,�n



Mean-field description
dsn
dt

= ��Rn

X

m 6=n

Rm[fnm cos(�m � �n)� gnm sin(�m � �n)]� �
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�sn
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X
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Rm[gnm cos(�m � �n) + fnm sin(�m � �n)].
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Decay: sn ! �1/2, R ! 0

Pumping: sn ! +1/2, R ! 0

~ Sakaguchi-Kuramoto model

Decay of R is prevented if 
oscillators are in sync



Compare with exact quantum solution

Global coupling, 

No heterogeneity, 

Steady-state solution.

f(rnm) = f

!n = 0

In order to be able to compare with the exact 
quantum solution, we focus first on the easiest case: 



Order parameter
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Project onto x-y plane



Steady-state solution
We look for a solution of the form

sn = s, ṡ = 0, Rn = R, Ṙ = 0, �n = ⌦t

Z = R =

p
�f(W � 1)� (W + 1)2p

2f
,

s =
W + 1

2f
,

⌦ =
g(�+ 1)

2f
.



Agreement with the quantum solution
The system can be solved exactly for N~70!                                                         

Mean-field Quantum

Order parameter = spin-spin correlations



Potentially rich dynamics

The mean field solution 
has rich dynamics



Nonstationary synchronized solutions

Rne
i✓n

WSynchroni
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B
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Separation 
between dipoles

W

Rne
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Incoherent

Steady stable

Steady unstable



Bistability

For the special case of frequencies with a Lorentzian 
distribution (with width     ) , we can use Kuramoto’s 

self-consistent analysis method.
�



Bistability
Z

g2� >
(1 +W +�)(1 +W )2(1 + 2�+W )2

(W � 1)2
,

Condition for bistability:

Frequency heterogeneity                 and photon 
exchange (          ) are both necessary!

(� > 0)

2

we need to solve the equations self-consistently. Using z =

P
n Rne

i✓n and taking real and imaginary parts we find

z =

NX

n=1

Rn cos(✓n), (13)

0 =

NX

n=1

Rn sin(✓n) (14)

Using Eqs. (10)-(12), we get

z =

1

N

NX
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z(w � 1)(f(w + 1) + 2g(� + ⌦))
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z(g(w + 1)� 2f(� + ⌦))

(w + 1) (4�2 + 8�⌦+ 2f2z2 + 2g2z2 + w2
+ 2w + 4⌦

2
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. (16)

We now have two equations for the two unknown variables z and ⌦. To make further progress, we assume N � 1 and move
to a continuum description by replacing the sums by integrals over the distribution H(�) of shifts. After cancelling the solution
z = 0 (which shows that the incoherent state is always a solution of the system, although possibly unstable), we find

z =

Z 1

�1

z(w � 1)(f(w + 1) + 2g(� + ⌦))

(w + 1) (4�2 + 8�⌦+ 2f2z2 + 2g2z2 + w2
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H(�)d�, (17)

0 =

Z 1

�1

z(g(w + 1)� 2f(� + ⌦))

(w + 1) (4�2 + 8�⌦+ 2f2z2 + 2g2z2 + w2
+ 2w + 4⌦

2
+ 1)
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Using a Lorenzian

H(�) =
�

⇡(�2
+ �2)

,

one can evaluate the integrals to find that the order parameter z satisfies the nonlinear equation

z =

f(w � 1)z
p
2f2z2 + 2g2z2 + w2

+ 2w + 1
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and the rotation frequency ⌦ is given by

⌦ =

g(w + 1)

⇣
2�+

p
2f2z2 + 2g2z2 + w2

+ 2w + 1

⌘

2f
p
2f2z2 + 2g2z2 + w2
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. (20)

From Eq. (19) one can see that z = 0 is always a solution. Fig. 1 shows z as a function of W for three cases: � = 0.1 (left), 7.5
(middle), and 15 (right), with f = 20, g = 100. Canceling the 0 solution from Eq. (19) and setting z = 0 we can find the value
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FIG. 1: Order parameter z as a function of W for four cases: from left to right, � = 1, 5, 7, 8, with f = 30, g = 100.
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N
Exact solution

Mean field 
approximation

Cumulant expansion

Challenge: is this all real?

N = 18

Currently working with the cumulant expansion.



Synchronization with long-range coupling

f(rnm) / 1

|rnm|↵

Power-law interactions, different frequencies

57

along the whole array, and thus synchronization is still global; and for ↵ = 2 (light blue symbols)

the majority of dipoles are not entrained. These observations of relative precession frequencies

between pairs of oscillators are consistent with the regimes obtained from the order parameter

plotted in Fig. 5.4(a).

Figure 5.4: (a) Spin-spin correlations, Zd
Q, in linear clusters containing d dipoles at optimal

repumping W for power-law couplings f(rab) = �
4

⇣

a
r
ab

⌘↵
with lattice spacing a. We set �a =

g(rab) = 0 and consider N = 900 dipoles arranged in both linear (D = 1) and square lattice (D = 2)
geometries. For ↵ . D global synchronization is observed and the order parameter is independent
on cluster size d. For D . ↵ the order parameter starts to clearly decay with increasing d. The
magenta line (Zd

Q = 0.14) provides an indicative scale of the boundary between global and local
synchronization. The white contour lines provide an indication of the decrease of the synchronized
domains with increasing ↵. (b) Pair wise two-time correlation functions in the steady-state are
parametrized by Za,b(⌧) = A cos(⌫⌧) exp(��⌧) where a is chosen as the central dipole of a linear
chain of N = 200 dipoles. The dipoles are assigned random detunings �a distributed uniformly in
[��/2, �/2]. The dark blue, red, and light blue symbols correspond to ↵ = 0, 0.65 and 2 respectively.
The histogram of frequencies ⌫ exhibits similar synchronization regimes than those seen in (a).

5.6 Synchronization of dipoles with elastic interactions

We now treat the full problem of radiating quantum dipoles incorporating elastic interactions

g(rab) and the intricate competition of spatially-dependent and anisotropic couplings [both g(rab)

and f(rab) have terms with power law dependence ↵ = 1, 2, 3 on distance] (Fig. 2.1). We solve the

full master equation without any approximation [40] for systems of up to twenty dipoles in a chain

using the actual spatial dependence of both f(rab) and g(rab), and set �a = 0. We observe a robust

g(rnm) = 0

Synchronization is possible when interactions are long-range

N = 900                       N = 200  



Summary

A system of quantum dipoles can be studied at 
the mean-field level with the techniques used 

to study classical synchronization.

The mean-field dynamics suggests there could be rich 
synchronization dynamics in the quantum system.

The steady syncronization is robust to oscillator 
heterogeneities and long-range coupling.













Steady-state solution

W

Z

Theory

Numerics

(N = 100)



System: interacting dipoles
Atoms or molecules interacting by 
exchanging or emitting photons.



System: interacting dipoles
Dipoles = atoms or molecules held in an optical lattice



Quantum SynchronizationClassical Synchronization

State of system described 
by state vector x(t)

Evolution of system and 
coupling described by 
ODEs

dxn

dt
= F (xn;x1, . . . ,xN )

Phase equations, 
Kuramoto model, etc

State of system described 
by vector in Hilbert space | i

Evolution of system and 
coupling described by 
Schrödinger’s equation

?

i~d| i
dt

= He↵| i



How well does the mean-field solution 
agree with the quantum solution? 

Within the mean-field description, are there 
other solutions? What about stability? 

Can the final synchronized state be 
considered a quantum phenomenon (for 

example, having entangled states)? 

Questions



Stability of steady sync

W

a

SynchronizedStable

Unstable

A linear stability analysis of the steady 
synchronized solution gives 

a =       distance between dipoles/photon wavelength 
smaller a means larger f

W

2⇡

(N = 103)



Is this synchronization “quantum”?
Physicists have measures of the “quantumness” of a 
system. A state with non-zero “Quantum discord” 
behaves non-classically: a local measurement can 

disturb the whole system.

Quantum discord

Correlates with 
synchronization



This system could be realized in 
experiments at JILA

Dipoles = atoms or molecules held in an optical lattice

An experiment that verifies the details of the model [e.g., 
expressions for               ,               ]  has been conducted at JILA.g(rnm)f(rnm)



Summary

A system of quantum dipoles can be studied at the 
mean-field level with the techniques devised by 

Kuramoto to study classical synchronization.

The synchronization still has quantum features.

Additional comparisons of the mean-field 
dynamics with quantum calculations and/or 

experiments might be possible soon.











How well does the mean-field solution agree with 
the quantum solution? 

Within the mean-field description, are there other 
solutions? What about stability? 

Can the final synchronized state be considered a 
quantum phenomenon (for example, having 

entangled states)? 

Questions



Quantum Synchronization

New Journal of Physics 17, 083063 (2015)
B. Zhu, J. Schachenmayer, M. Xu, F. Herrera, J. G. Restrepo, M. Holland, A. M. Rey







Other solutions of the mean-field equations?

We looked for traveling wave solutions
sn = s, ṡ = 0, Rn = R, Ṙ = 0,

�n = ⌦t+ 2⇡nk/N

(k = 0 is the solution we found above)

For realistic values of the couplings                and                
these solutions are suppressed.

g(rnm) f(rnm)

However, we found that the steady-state solution can 
become unstable for small enough    , which in practice 

occurs for a large separation between dipoles      
f



Phase oscillator models have been adapted to study different 
features of real-world systems, including time delays, 

network coupling, more general coupling functions, etc...

However, usually it is not possible to derive the 
phase oscillator equations from first principles 

because 

• the existence of governing ODEs is only assumed 
(e.g., pedestrians)  

• the change of variables needed to reduce ODEs to 
phase description is not explicitly calculated 

We will present a system where a phase oscillator 
model can be explicitly derived

Amplitude can be added (e.g., Stuart-Landau oscillators).



51

Different clocks had frequencies differing 
by about 15 seconds per day

Initially equal phase

wait

Different phases

Synchronization & clocks
Pendulum clock invented by C. 

Huygens in 1656
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In 1665, Huygens observed that two clocks 
suspended from a common beam would oscillate 

with the same frequency 

Synchronization & clocks



53

Most precise clocks are here at JILA
The Ye group’s most recent strontium lattice optical atomic clock is 
so sensitive that its timekeeping is affected by gravitational changes 

due to height differences of as little as 2 cm.



Classical Synchronization



Mechanical clocks. 
  

Cellular clocks in the brain. 

 Pedestrians on a bridge. 

 Electric circuits. 

 Pacemaker cells in the heart. 

Examples of synchronization



Coupled phase oscillators

1) Have a strongly attracting limit cycle 

0 1 20.51
1.5
0.8

0.9

1

1.1

xy

z

2) Are weakly coupled: coupling doesn’t deform the limit cycle

Such oscillators can be described by just a phase angle 
(no amplitude)

Change of 
variables θ

d✓

dt
= !

System of ODEs that
dx

dt
= F(x)



d✓n
dt

= !n +
NX

m=1

Hnm(✓m � ✓n)

d✓n
dt

= !n +
K

N

NX

m=1

sin(✓m � ✓n)

Kuramoto model: simplest choice

d✓n
dt

= !n +

K

N

NX

m=1

[f sin(✓m � ✓n) + g cos(✓m � ✓n)]

Sakaguchi-Kuramoto model

!n, Hnmwhere                     depend on the original ODEs

Kuramoto derived the equations

Coupled phase oscillators



Zei =
1

N

X
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ei✓n

Zei 

Z
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= average position of oscillators in complex plane

Order parameter to measure 
synchronization



Z ⇡ 0 Z > 0
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Incoherent Synchronized



Z
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K
Kc

Synchronization transition

d✓n
dt

= !n +
K

N

NX

m=1

sin(✓m � ✓n)
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(Lancaster	University,	Physics	Dept.)

Demonstration


