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Definition

Sequential Parallel (Distributed-Memory)

Communication is data movement.

Courtesy:
Demmel
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Least-Squares (Linear Regression)
Many ways to solve.

Direct
Explicitly solve normal equation.
Implicitly through matrix factorizations.

Iterative
Krylov methods (e.g. Conjugate Gradients).
(Block) Coordinate Descent.
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Regularized Least-Squares (Regression)

Loss function. Regularization function. 4



Binary Classification
Support Vector Machines
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Ridge solution:
(closed-form)

Similar to normal equation.

Ridge Regression with Block Coordinate Descent
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λ = regularization parameter 
In = n x n Identity matrix
y = labels 



Ridge Regression with Block Coordinate Descent
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Ridge solution:
(closed-form)

Block Coordinate Descent
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Solution to sub-problem.

λ = regularization parameter 
Ib = b x b Identity matrix
r = residual



Block Coordinate Descent in Parallel
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Block Coordinate Descent in Parallel
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Block Coordinate Descent in Parallel
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Repeat until convergence. 10
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Communication-Avoiding Block Coordinate Descent
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Communication-Avoiding Block Coordinate Descent
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Compute larger Gram matrix, G.
(Do not invert!) 
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r is from this iteration
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s = CA parameter
Isb = sb x sb Identity
r = residual



Communication-Avoiding Block Coordinate Descent
Dimensions exaggerated for clarity.

Partition G and r’.

(G is symmetric)
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Redundantly on all processors.
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Communication-Avoiding Block Coordinate Descent
No communication for inner iterations.
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Orange blocks are the updates 14

Solution to 1st sub-problem.



Communication-Avoiding Block Coordinate Descent
No communication for inner iterations.
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Solution to 2nd sub-problem.



Communication-Avoiding Block Coordinate Descent
No communication for inner iterations.
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Solution to 3rd sub-problem.

Subtraction terms are needed for CA and non-CA solutions to agree.



Communication
(every iteration)

Communication
(every outer iteration)

No communication
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Theoretical Bounds
No free lunch: Reduce latency, but increase flops and bandwidth.

Suppose we perform H iterations.

Similar bounds for sparse.

So, Latency- or Synchronization-Avoiding.
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Speedups (Ridge Regression)

64 nodes of Edison 1K nodes of Edison

mnist8m mnist8m
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Standard Algorithm Communication-Avoiding

GoodGood

Bad Bad

8M samples x 768 features

Best

Best



Strong Scaling (Ridge Regression)

Strong scaling = fixed problem size as P increases.

Blocksize = 1 Blocksize = 8

3.6x

6.2x
4.5x

1.3x

1.9x

1.9x



Theoretical Peak Attainable
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CPU Bound

BCD = Block Coordinate Descent

Dataset
a9a: 32k x 123 matrix.
Sparsity: 11.28%

Intel “Ivy Bridge”: ~19 Gflops
64 GB DDR3 1866 MHz: 14GB/s



Running Time Breakdown (Ridge Regression)

64 nodes of Edison 1K nodes of Edison

mnist8m mnist8m

Blocksize = 1

Best
Best



Numerical Stability (Ridge Regression)
a9a dataset. 32k samples by 123 features. 11.28% non-zeros.

Blocksize = 16, 
𝛌 = 1000*𝛔min

𝛔min = 4.884e-6



Not Just Ridge Regression
Applies to proximal methods (e.g. LASSO, Group LASSO, elastic-net).

Support Vector Machines (binary classification).

And associated Dual problems.

Kernel Ridge and SVM (current work).

more generally to Generalized Linear Models? (future work).

Other optimization methods: Stochastic Gradient Descent? (future work).
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Summary and Future Work
Large speedups when latency dominates.

Provably communication-avoiding.

CA-technique applies to non-linear optimization.

How far can we go (e.g. Logistic regression)?

Speedups on other platforms and frameworks?

Example: Cloud + Spark is latency dominated.

Expect greater speedups!
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Problem MPI 
Speedup

Ridge Regression Up to 6.1x

Proximal Least-Squares Up to 5.1x

SVM Similar 
expected



Questions?

Thanks!
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Backup Slides

Running Time Breakdown 

Strong Scaling (Ridge Regression)

Numerical Stability

Proof of communication-avoidance (Ridge Regression) 27



CALASSOS: Scalable Proximal Methods
Strong scaling and speedups on Url dataset (2M by 3M).
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Good

Good

accCD = accelerated
Coordinate Descent

CA-technique 
applies to accelerated 
methods.



CALASSOS: Scalable Proximal Methods
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Good

CA-method perform s2 more flops.

But still get computation speedup.

Due to BLAS-3 calls instead of BLAS-1 in non-CA.

BLAS-3 = Cache-efficient computation + higher flops rate. 



CA-SVM: Preliminary Results
Based on Dual Coordinate Descent for Linear SVM (Hsieh, et. al.)

SVM-L1 = Hinge loss = max(0, 1 –AT
ixyi)

SVM-L2 = (Hinge loss)2

easier so, converges quickly.

Numerically stable (unlike CA-Krylov)!

Ditto for Ridge and Proximal.

30

Good



Running Time Breakdown (Ridge Regression)

64 nodes of Edison 1K nodes of Edison

Blocksize = 1
(Coordinate Descent) 31



Strong Scaling (Ridge Regression)

Strong scaling = fixed problem size as P increases.

Blocksize = 1 Blocksize = 8
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Provably Communication-Avoiding
No free lunch: Reduce latency, but increase flops and bandwidth.

Suppose we perform H iterations.

Similar bounds for sparse.
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CALASSOS: Scalable Proximal Methods
Re-organized Accelerated BCD (Fercoq and Richtarik) for LASSO.

CA vs. non-CA on 1K nodes of Cray XC30.

Choose s carefully.
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Numerical Stability (Ridge Regression)
a9a dataset. 32k samples by 123 features. 11% non-zeros.
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Numerical Stability (Ridge Regression)
We extract blocks from G.

So, cond(G) not a problem.
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Numerical Stability (Ridge Regression)
CA-Krylov: numerical stability issues

Fix: Orthogonal polynomials and residual replacement strategies.

Dissertations by Hoemmen and Carson.

CA-Machine Learning: Magnitude of numerical error is small ~O(10-15).

If we want low-accuracy, then CA-ML essentially stable.
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CALASSOS: Scalable Proximal Methods
Re-organized Accelerated BCD (Fercoq and Richtarik) for LASSO.
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CA-SVM: Preliminary Results
Dual Coordinate Descent for Linear SVM (Hsieh, et. al.)

Once again, non-linearity in “inner loop”.

CA technique applies.

Similar speedups to LASSO expected.
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Modeling Communication
Running Time = Computation time + Communication time

(time per flop) x (# of flops)

(time per word) x (# of words) + (time per message) x (# of messages)

Hardware Parameters 

Algorithm Parameters
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