Communication-Avoiding Methods for Regularized Least-Squares

Aditya Devarakonda

SIAM Annual

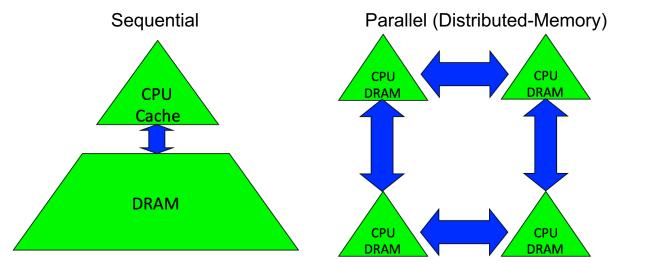
July 14th, 2017

Collaborators:

Jim Demmel (Adviser), Kimon Fountoulakis (Post-Doc), and Michael W. Mahoney (Co-adviser)

Definition

Communication is data movement.



Courtesy: Demmel

Least-Squares (Linear Regression)

Many ways to solve.

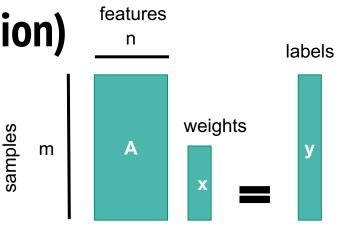
<u>Direct</u>

Explicitly solve normal equation.

Implicitly through matrix factorizations.

<u>lterative</u>

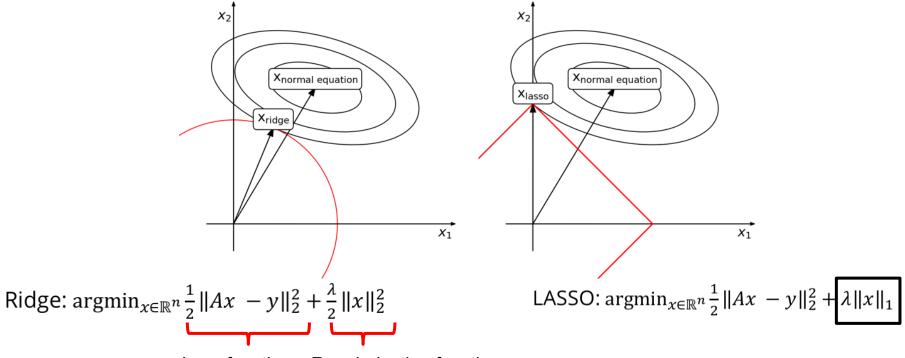
Krylov methods (e.g. Conjugate Gradients). (Block) Coordinate Descent.



Least-Squares:
$$\operatorname{argmin}_{x \in \mathbb{R}^n} \frac{1}{2} \|Ax - y\|_2^2$$

Normal Equation:
$$x = (A^T A)^{-1} A^T y$$

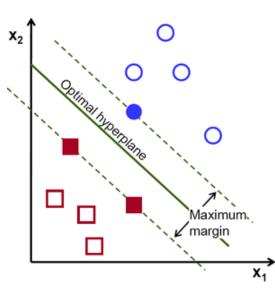
Regularized Least-Squares (Regression)



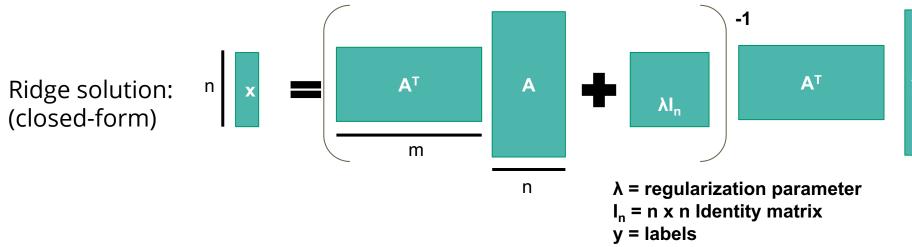
Loss function. Regularization function.

Binary Classification

Support Vector Machines

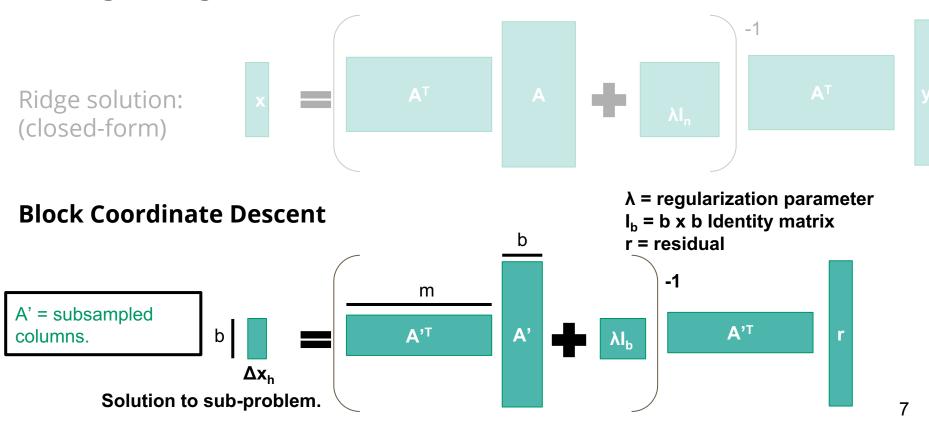


Ridge Regression with Block Coordinate Descent

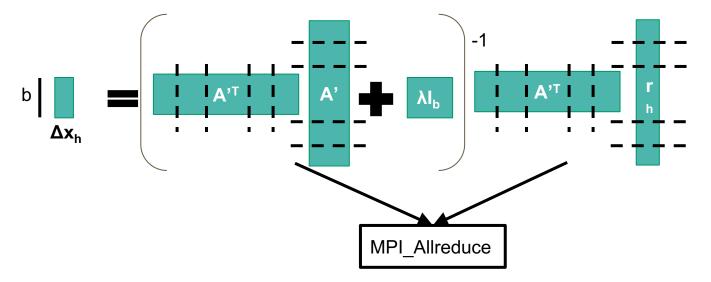


Similar to normal equation.

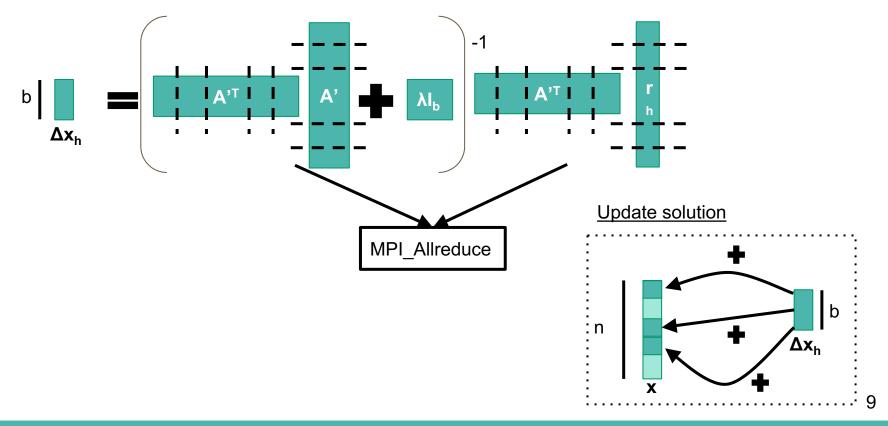
Ridge Regression with Block Coordinate Descent



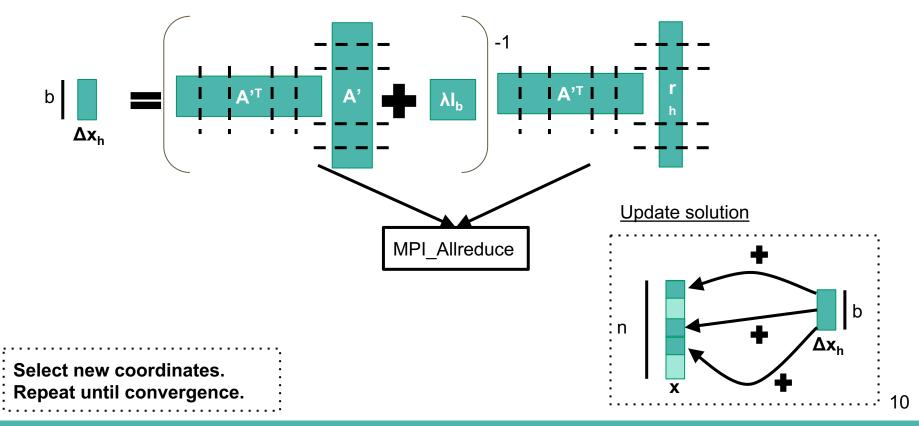
Block Coordinate Descent in Parallel



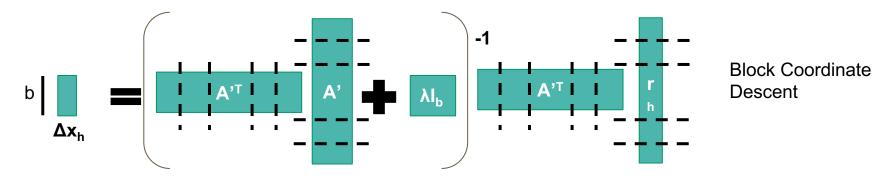
Block Coordinate Descent in Parallel



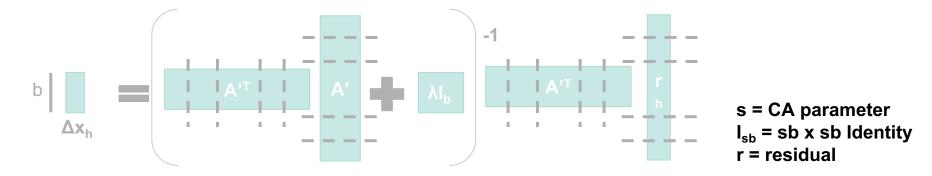
Block Coordinate Descent in Parallel

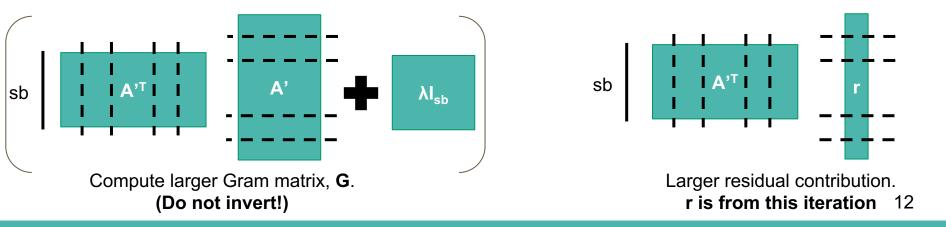


Communication-Avoiding Block Coordinate Descent



Communication-Avoiding Block Coordinate Descent

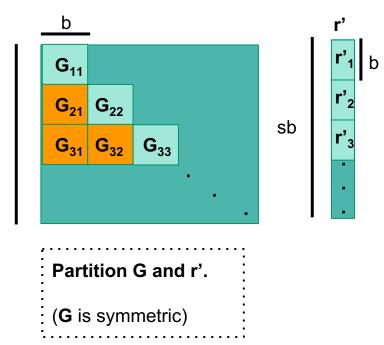




Redundantly on all processors.

Dimensions exaggerated for clarity.

Communication-Avoiding Block Coordinate Descent



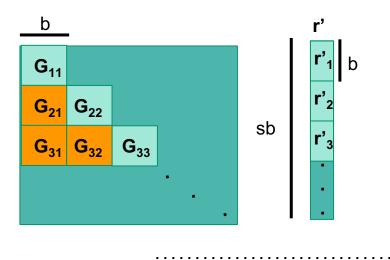
13

Redundantly on all processors.

No communication for inner iterations.

Communication-Avoiding Block Coordinate Descent

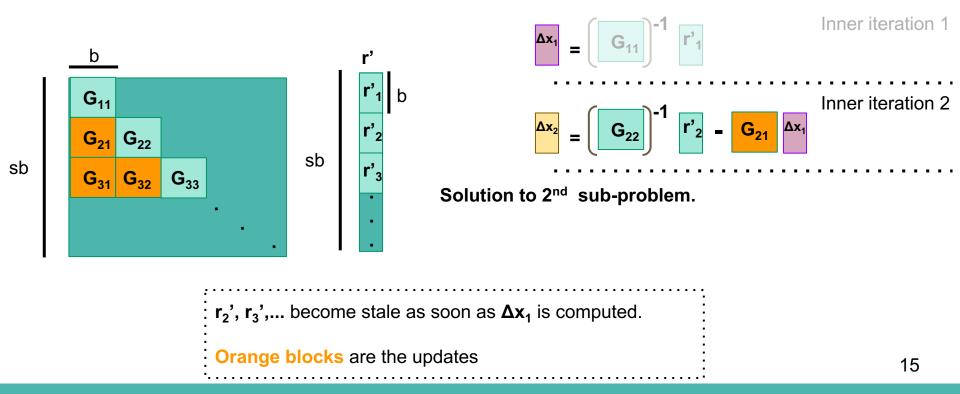
Solution to 1st sub-problem.



Inner iteration 1

No communication for inner iterations.

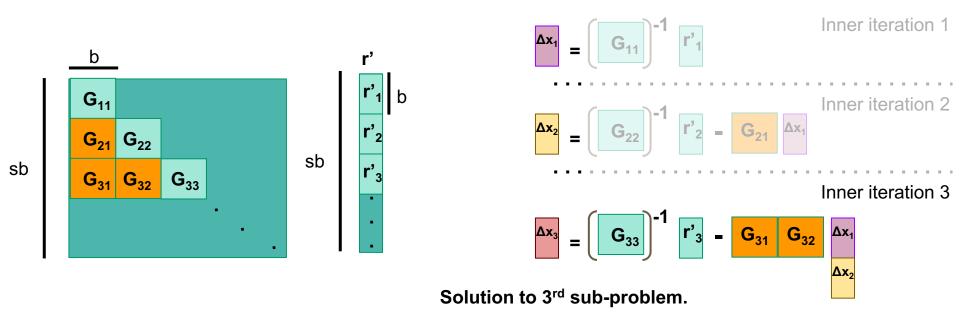
Communication-Avoiding Block Coordinate Descent



Redundantly on all processors.

No communication for inner iterations.

Communication-Avoiding Block Coordinate Descent



Subtraction terms are needed for CA and non-CA solutions to agree.

16

Algorithm 1 Block Coordinate Descent (BCD) Algorithm

1: Input: $X \in \mathbb{R}^{d \times n}, y \in \mathbb{R}^n, H > 1, w_0 \in \mathbb{R}^d, b \in \mathbb{Z}_+$ s.t. b < d2: for $h = 1, 2, \dots, H$ do choose $\{i_m \in [d] | m = 1, 2, ..., b\}$ uniformly at random without replacement 3: 4: $\mathbb{I}_h = [e_{i_1}, e_{i_2}, \cdots, e_{i_k}]$ 5: $\Gamma_{h} = \frac{1}{n} \mathbb{I}_{h}^{T} X X^{T} \mathbb{I}_{h} + \lambda \mathbb{I}_{h}^{T} \mathbb{I}_{h}$ 6: $\Delta w_{h} = \Gamma_{h}^{-1} \left(-\lambda \mathbb{I}_{h}^{T} w_{h-1} - \frac{1}{n} \mathbb{I}_{h}^{T} X z_{h-1} + \frac{1}{n} \mathbb{I}_{h}^{T} X y \right)$ (every iteration) 7: $w_h = w_{h-1} + \mathbb{I}_h \Delta w_h$ Algorithm 2 Communication-Avoiding Block Coordinate Descent (CA-BCD) Algo-8: $z_h = z_{h-1} + X^T \mathbb{I}_h \Delta w_h$ rithm 9: **Output** w_H 1: Input: $X \in \mathbb{R}^{d \times n}, y \in \mathbb{R}^n, H > 1, w_0 \in \mathbb{R}^d, b \in \mathbb{Z}_+$ s.t. b < d2: for $k = 0, 1, \dots, \frac{H}{2}$ do for $j = 1, 2, \cdots, s$ do 3: choose $\{i_m \in [d] | m = 1, 2, \dots, b\}$ uniformly at random without replacement 4: $\mathbb{I}_{sk+j} = [e_{i_1}, e_{i_2}, \cdots, e_{i_b}]$ Communication (every outer iteration) $\begin{bmatrix} 6: \\ 7: \end{bmatrix} \begin{bmatrix} 1\\ s_{k+1}, \mathbb{I}_{s_{k+2}}, \cdots, \mathbb{I}_{s_{k+s}} \end{bmatrix}^T X.$ compute the Gram matrix, $G = \frac{1}{n}YY^T + \lambda I.$ 8: **for** $j = 1, 2, \cdots, s$ **do** 9: Γ_{sk+j} are the $b \times b$ diagonal blocks of G. 10: $\Delta w_{sk+j} = \Gamma_{sk+j}^{-1} \left(-\lambda \mathbb{I}_{sk+j}^T w_{sk} - \lambda \sum_{t=1}^{j-1} \left(\mathbb{I}_{sk+j}^T \mathbb{I}_{sk+t} \Delta w_{sk+t} \right) - \frac{1}{n} \mathbb{I}_{sk+j}^T X z_{sk}$ 10. $-\frac{1}{n}\sum_{t=1}^{j} \langle x_{sk+j} \rangle$ 11: 12: $w_{sk+j} = w_{sk+j-1} + \mathbb{I}_{sk+j}\Delta w_{sk+j}$ 12: $z_{sk+j} = z_{sk+j-1} + X^T \mathbb{I}_{sk+j}\Delta w_{sk+j}$ No communication $-\frac{1}{n}\sum_{t=1}^{j-1} \left(\mathbb{I}_{sk+j}^T X X^T \mathbb{I}_{sk+t} \Delta w_{sk+t} \right) + \frac{1}{n} \mathbb{I}_{sk+j}^T X y \right)$

17

Theoretical Bounds

No free lunch: Reduce latency, but increase flops and bandwidth.

Suppose we perform **H iterations.**

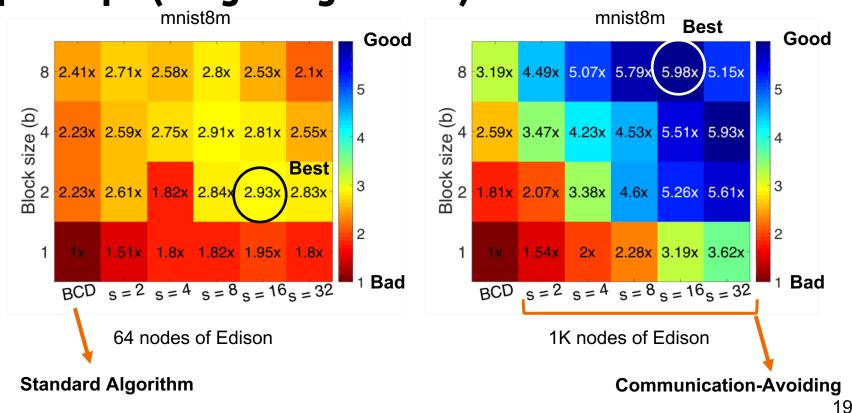
	Flops	Bandwidth	Latency
BCD	$O\left(\frac{Hb^2n}{P} + Hb^3\right)$	$O(Hb^2)$	$O(H \log P)$
CA-BCD	$O\left(\frac{Hsb^2n}{P} + Hb^3\right)$	$O(Hsb^2)$	$O\left(\frac{H}{s}\log P\right)$

Similar bounds for **sparse.**

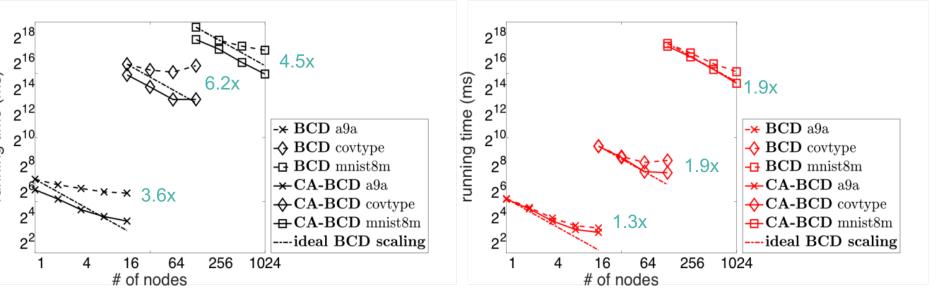
So, Latency- or Synchronization-Avoiding.

8M samples x 768 features

Speedups (Ridge Regression)



Strong Scaling (Ridge Regression)



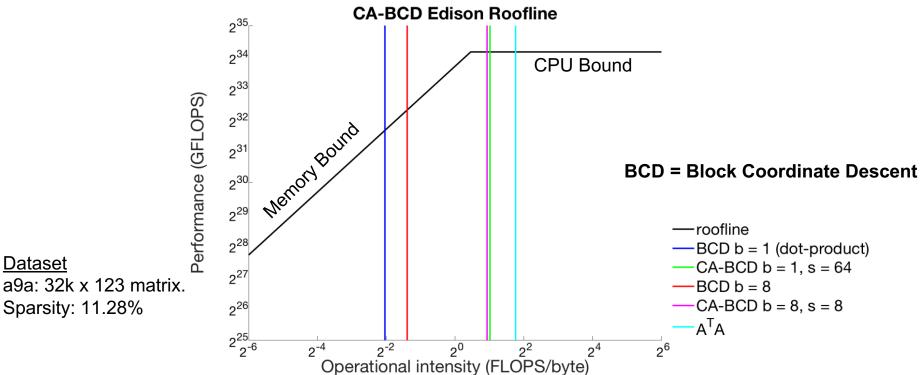
Blocksize = 1

Blocksize = 8

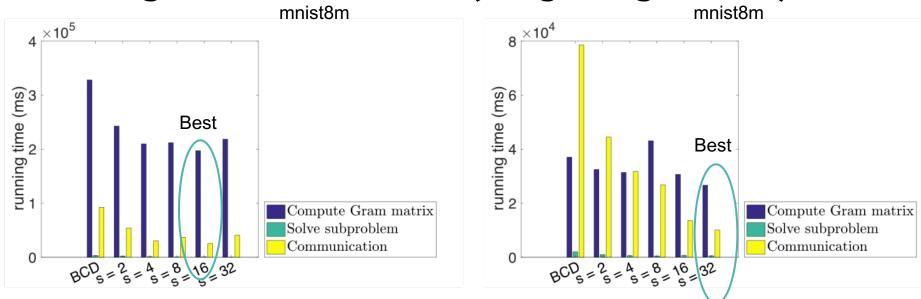
Strong scaling = fixed problem size as P increases.

Theoretical Peak Attainable

Intel "Ivy Bridge": ~19 Gflops 64 GB DDR3 1866 MHz: 14GB/s



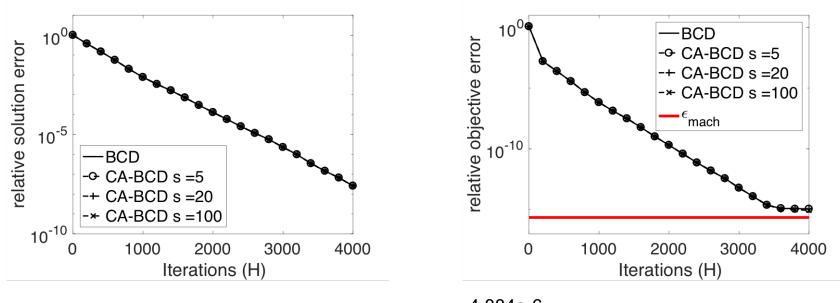
Running Time Breakdown (Ridge Regression)



64 nodes of Edison

1K nodes of Edison

a9a dataset. 32k samples by 123 features. 11.28% non-zeros.



Blocksize = 16, $\sigma_{min} = 4.884e-6$ $\lambda = 1000^* \sigma_{min}$

Not Just Ridge Regression

Applies to **proximal methods** (e.g. LASSO, Group LASSO, elastic-net).

Support Vector Machines (binary classification).

And associated Dual problems.

Kernel Ridge and SVM (current work).

more generally to **Generalized Linear Models?** (future work).

Other optimization methods: **Stochastic Gradient Descent?** (future work).

Summary and Future Work

Large speedups when latency dominates.	Problem	MPI		
Provably communication-avoiding.		Speedup		
Flovably communication-avoiding.	Ridge Regression	Up to 6.1x		
CA-technique applies to non-linear optimization .	Proximal Least-Squares	Up to 5.1x		
How far can we go (e.g. Logistic regression)?	SVM	Similar expected		
Speedups on other platforms and frameworks ?		onpooloa		
Example: Cloud + Spark is latency dominated.				
Expect greater speedups!				

Questions?

Backup Slides

Running Time Breakdown

Strong Scaling (Ridge Regression)

Numerical Stability

Proof of communication-avoidance (Ridge Regression)

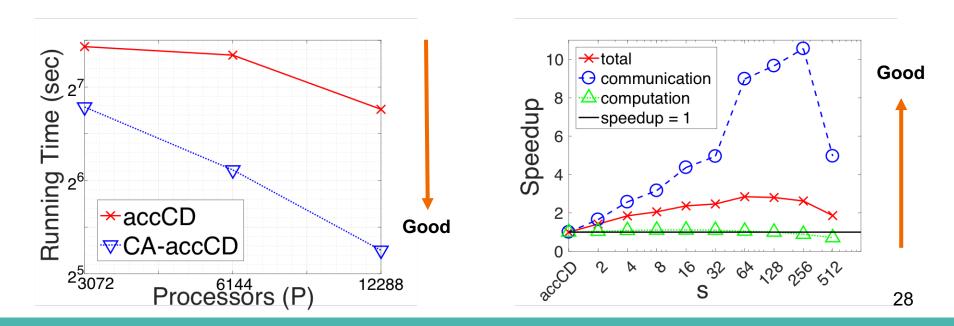
CALASSOS: Scalable Proximal Methods

Strong scaling and speedups on **Url dataset (2M by 3M).**

CA-technique applies to accelerated methods.

accCD = accelerated

Coordinate Descent



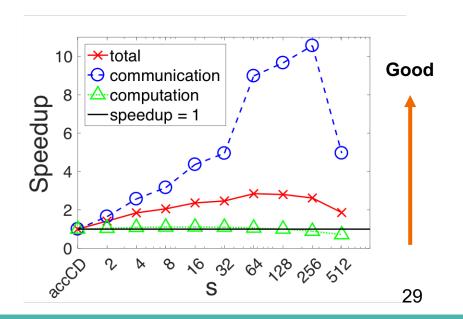
CALASSOS: Scalable Proximal Methods

CA-method perform s² more flops.

But still get computation speedup.

Due to BLAS-3 calls instead of BLAS-1 in non-CA.

BLAS-3 = Cache-efficient computation + higher flops rate.



CA-SVM: Preliminary Results

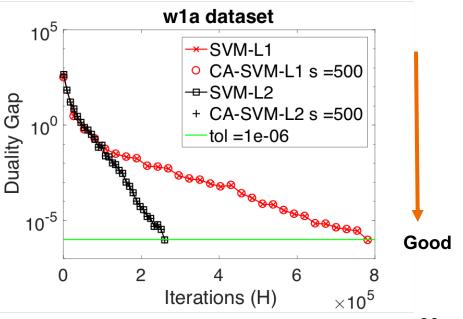
Based on Dual Coordinate Descent for Linear SVM (Hsieh, et. al.)

SVM-L1 = Hinge loss = $max(0, 1 - A_i^T x y_i)$

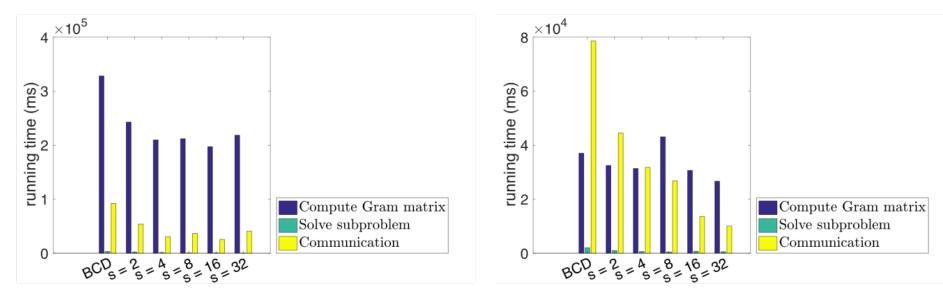
SVM-L2 = (Hinge loss)² easier so, converges quickly.

Numerically stable (unlike CA-Krylov)!

Ditto for Ridge and Proximal.



Running Time Breakdown (Ridge Regression)

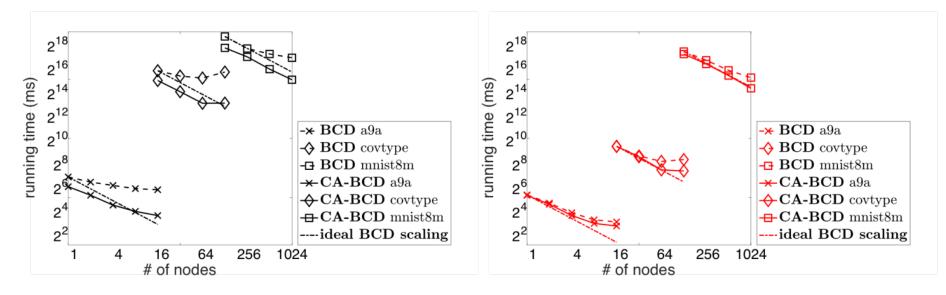


64 nodes of Edison

1K nodes of Edison

Blocksize = 1 (Coordinate Descent)

Strong Scaling (Ridge Regression)



Blocksize = 1

Blocksize = 8

Strong scaling = fixed problem size as **P** increases.

Provably Communication-Avoiding

No free lunch: Reduce latency, but increase flops and bandwidth.

Suppose we perform **H iterations.**

	Flops	Bandwidth	Latency
BCD	$O\left(\frac{Hb^2n}{P} + Hb^3\right)$	$O(Hb^2)$	$O(H \log P)$
CA-BCD	$O\left(\frac{H\mathbf{s}b^2n}{P} + Hb^3\right)$	$O(Hsb^2)$	$O\left(\frac{H}{s}\log P\right)$

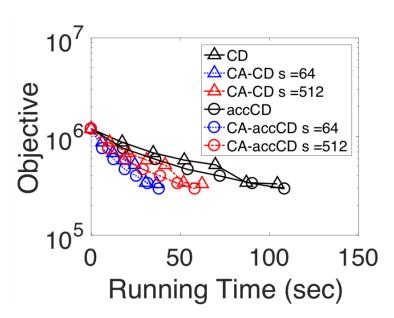
Similar bounds for **sparse.**

CALASSOS: Scalable Proximal Methods

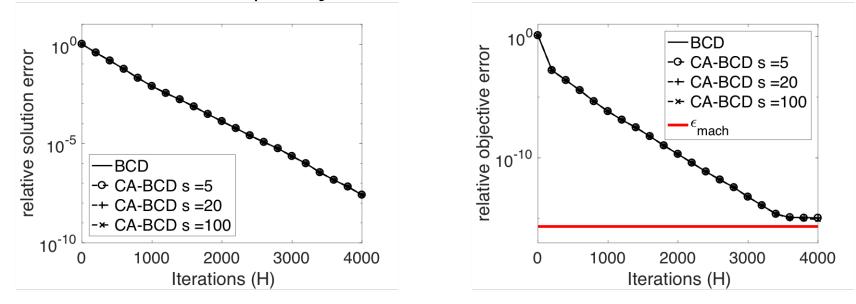
Re-organized Accelerated BCD (Fercoq and Richtarik) for LASSO.

CA vs. non-CA on 1K nodes of Cray XC30.

Choose **s carefully**.

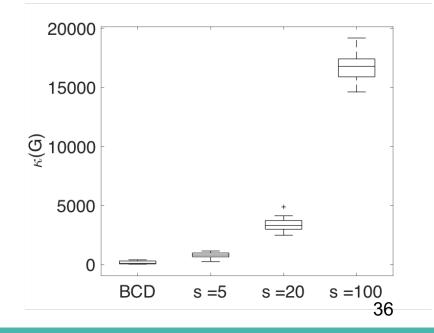


a9a dataset. 32k samples by 123 features. 11% non-zeros.



We extract blocks from **G**.

So, **cond(G)** not a problem.



CA-Krylov: numerical stability issues

Fix: Orthogonal polynomials and residual replacement strategies.

Dissertations by Hoemmen and Carson.

CA-Machine Learning: Magnitude of numerical error is small ~O(10⁻¹⁵).

If we want **low-accuracy**, then CA-ML **essentially stable**.

CALASSOS: Scalable Proximal Methods

Re-organized Accelerated BCD (Fercoq and Richtarik) for LASSO.



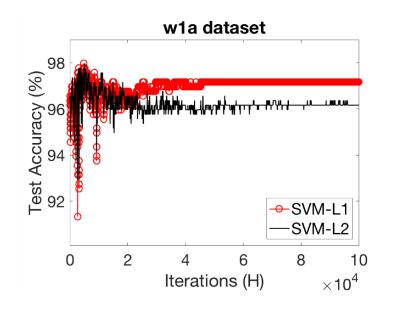
CA-SVM: Preliminary Results

Dual Coordinate Descent for Linear SVM (Hsieh, et. al.)

Once again, non-linearity in "inner loop".

CA technique applies.

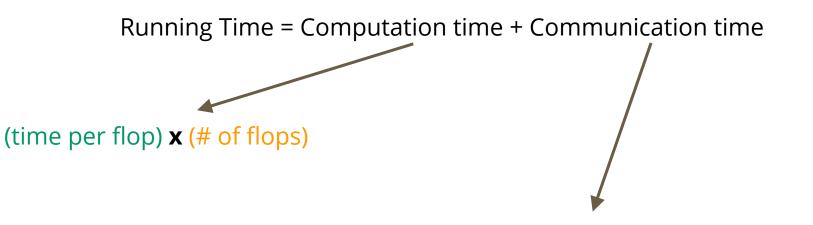
Similar speedups to LASSO expected.



Hardware Parameters

Modeling Communication

Algorithm Parameters



(time per word) **x** (# of words) + (time per message) **x** (# of messages)