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Network Biology: Mapping pathways to
understand and diagnose disease



Many kinds of interaction technologies

PHYSICAL GENETIC

Protein-gene
(transcriptional, ChlP-Chip?2: 39) Epistatic orderings
a<bORb<a
ORDERED Protein-RNA (RIP-chip20) (EMAP?28. 83)

Cause and effect Protein-protein Knock-down expression profiles
Signal transducing (kinase-substrate (RNAI*?, deletion mutants36: 37)
arrays?!, LUMIER®!)
Expression QTLs*: 42
Protein-compound?®?

Synthetic lethality

UNORDERED Protein-protein ab << a, b, wt

(co-IP/MS/MS18-20 Y 2H15, 84-86)
Ambiguous

88 31,71 28, 83
directionality Gene-gene (co-regulon®’) (SGA™, dSLAM® 7, EMAP %5,

chemogenomic profiling®®)

Beyer, Bandyopadhyay, and ldeker Nat. Rev. Genetics (2007




' SYSTRP=varas @teraction
Two overrldlng aims: g..

1) Assemble many interactions
and types into unified models

2) Get rid of false and non-
functional interactions




These aims lead to many subproblems

v Mapping transcriptional networks

v Networ

v Networ

KS to Interpret genetic variations

KS to Interpret combinatorial

perturbations (e.g. synthetic lethals)

v Network evolution

v Network-based diagnosis



Assembly of
physical and genetic interactions
to map transcriptional circuits

(Chris Workman, Craig Mak with
Leona Samson, Richard Kolodner)



Transcriptional response of Saccharomyces cerevisiae
to DNA-damaging agents does not identify the
genes that protect against these agents

Geoff W. Birrell*, James A. Brown*, H. Irene Wu*, Guri Giaever?, Angela M. Chu®, Ronald W. Davis®,
and J. Martin Brown**

Departments of *Radiation Oncology and TBicdchemistry, Stanford University School of Medicine, Stanford, CA 94305

Contributed by Ronald W. Davis, May 8, 2002

=-w Can this apparent paradox be
= explained by a physical model of i
uvradaiol 1€ DNA damage response? oty s

Deletion ol e genes has been accomplished DY an interna-
tional consortium, the Saccharomyces Genome Deletion Project,
that has replaced all of the ==6.200 known open reading frames
(ORFs) of yeast by using a PCR-mediated gene deletion strategy
(200, In addition to a selectable marker, two molecular bar codes
or “‘tags,” unique 20-base oligonucleotide sequences, are in the
replacement cassette. These tags, after PCR amplification, can

no relationship between the genes necessary for survwal to the
DNA-damaging agents and those genes whose transcription is
increased after exposure. These data show that few, if any, of the
genes involved in repairing the DMNA lesions produced in this study,
including double-strand breaks, pyrimidine dimers, single-strand
breaks, base damage, and DNA cross-links, are induced in response

8778-8783 | PNAS |

to toxic doses of the agents that produce these lesions. This finding
suggests that the enzymes necessary for the repair of these lesions
are at sufficient levels within the cell. The data also suggest that
the nature of the lesions produced by DMA-damaging agents
cannot easily be deduced from gene expression profiling.

June 25, 2002 | wvol.99 | no.13

be detected by hybridization to the corresponding complemen-
tary sequence in a high-density oligonucleotide array, thus
e11'1t1]111cr the relative abundances of each tag, and hence the
abundances of each deletion strain, to be determined (20). We
have recently shown that this system can detect essentially all of

www . pnas.org/cgi/doi/ 10,1073/ pnas. 122275199



ChiIP-chip measurement of protein—DNA interactions

Ey = J Crosslink protein to DNA
C— in vivo with formaldehyde

v It&qng Break open cells and
i ouonen,. shear DHA

Immunoprecipitate

Reverse-crosslinks,
Y Blunt ONA and ligate
ROt to unidirectional linkers

-"- W !f} Y' wh " LM-PCR

e

A A
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From Figure 1 of Simon et al. Ce// 2001



Mapping DNA Damage Response Networks
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Workman, Mak, et al. Science 2006



Integration of cause-and-effect
Interactions with physical networks

Perturbation Physical
effects interactions
% |

Gy |
/N S

=3P Perturbation causes up-regulation —> TF-promoter binding
Perturbation causes down-regulation ™= ™= ™ Protein-protein binding

Yeang, Mak et al. Genome Biology 2005



Such methods can yield large regulatory networks
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Workman, Mak, et al. Science 2006




8778-8783 |

Transcriptional response of Saccharomyces cerevisiae
to DNA-damaging agents does not identify the
genes that protect against these agents

Geoff W. Birrell*, James A. Brown*, H. Irene Wu*, Guri Giaever?, Angela M. Chu®, Ronald W. Davis®,

and J. Martin Brown**

Departments of *Radiation Oncology and TBicdchemistry, Stanford University School of Medicine, Stanford, CA 94305

Contributed by Ronald W. Davis, May 8, 2002

The recent completion of the deletion of all of the nonessential
genes in budding yeast has provided a powerful new way of
determining those genes that affect the sensitivity of this organism
to cytotoxic agents. We have used this system to test the hypoth-
esis that genes whose transcription is increased after DNA damage
are important for the survival to that damage. We used a pool of
4,627 diploid strains each with homozygous deletion of a nones-
sential gene to identify those genes that are important for the
survival of yeast to four DNA-damaging agents: ionizing radiation,
UV radiation, and exposure to cisplatin or to hydrogen peroxide. In
addition we measured the transcriptional response of the wild-
ty pe parental strain to the same DMNA-damaging agents. We found
no relationship between the genes necessary for survival to the
DNA-damaging agents and those genes whose transcription is
increased after exposure. These data show that few, if any, of the
genes involved in repairing the DMNA lesions produced in this study,
including double-strand breaks, pyrimidine dimers, single-strand
breaks, base damage, and DNA cross-links, are induced in response
to toxic doses of the agents that produce these lesions. This finding
suggests that the enzymes necessary for the repair of these lesions
are at sufficient levels within the cell. The data also suggest that
the nature of the lesions produced by DMA-damaging agents
cannot easily be deduced from gene expression profiling.

PNAS | June 25,2002 | vol.99 | no.13

conferring resistance to that agent, and hence provide informa-
tion on its mechanism. Recent publications have, in fact, sug-
gested that several of the genes induced by DNA-damaging
agents are involved in the repair of DNA damage and hence in
the protection of the cell against such treatments (17-19).
However, the assumption that genes whose expression increases
in response to a particular cytotoxic agent are those that protect
against the damage caused by the agent has not been formally
tested. Here we use a pool of strains of budding yeast, 5.
cerevisige, with deletion of all nonessential genes to directly test
this hypothesis.

Deletion of the genes has been accomplished by an interna-
tional consortium, the Saccharomyces Genome Deletion Project,
that has replaced all of the ==6.200 known open reading frames
(ORFs) of yeast by using a PCR-mediated gene deletion strategy
(200, In addition to a selectable marker, two molecular bar codes
or “‘tags,” unique 20-base oligonucleotide sequences, are in the
replacement cassette. These tags, after PCR amplification, can
be detected by hybridization to the corresponding complemen-
tary sequence in a high-density oligonucleotide array, thus
enabling the relative abundances of each tag, and hence the
abundances of each deletion strain, to be determined (20). We
have recently shown that this system can detect essentially all of

www . pnas.org/cgi/doi/ 10,1073/ pnas. 122275199



Sensitivity of the TF knockout phenotype
correlates with its number of regulated targets
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Mapping Pathways In
Synthetic Lethal Networks

(Ryan Kelley, Sourav Bandyopadhyay
with Nevan Krogan)



Finding physical pathways to explain genetic interactions

Genetic Interactions:

Classical method used to
map pathways in model
species
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systematic studies
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Integration of genetic and physical interactions

GENETIC NETWORK X
Type Source Num.

Synthetic lethal SGA 2,015

Synthetic lethal MIPS 724 ’
' i

il ER 3

o e

:';: ]é W e S
PHYSICAL NETWORK
Type/Direction Source  Num.
Protein®protein  DIP 15,116
Protein=>DNA Lee et al. 5,869
Reaction®reaction KEGG 878

NETWORK MODEL
IDENTIFICATION

Between-pathway

physical

>

160 between-
pathway models

101 within-
pathway models

Num interactions:
1,102 genetic
933 physical

Kelley and Ideker Nature Biotechnology (2005)



Systematjc identificatien of
Qarallel pathway” relatiorishipsin yeas
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*A) Prefoldin complex




Global organization of genetic linkages
between physical modules (A-Z)
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I:l DNA catabolism . amino-terminal blocking I:l dynactin complex . glycoprotein metabolism . prefoldin complex

I:l budding . cell cortex . regulation of biological process I:l retromer complex I:l chromosome . motor activity



Towards a generative module map

» Use generative model of cell which considers k modules
simultaneously along with their inter-module functional relationships.

» Consider both positive and negative quantitative genetic interactions
(alleviating and aggravating)

Enrichment over random ®
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Functional maps of protein complexes
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with Nevan Krogan



Using protein networks to
understand molecular evolution

(with Roded Sharan, Richard
Karp, and others)



Cross-comparison of networks:
(1) Conserved regions in the presence vs. absence of stimulus
(2) Conserved regions across different species

Species 1 Matched Proteins Network Alignment

(e.g. Plasmodium) Match homologous protejn
Uy 80 pairs with E-value<1x10

| Conserved Matched
Species 2 Interactions) |Protein Pairs
(e.9. Sacchdromyces)
<o o High scoring dense
o R b Conserved Complexes

Interaction Scores
Logistic regression on:
*Number of observations
*Expression correlation
*Clustering coefficient

PROTEIN NETWORKS

Kelley et al. PN.AS 2003 Suthram et al. Nazure 2005 Sharan et al. RECOMB 2004
Ideker & Sharan Gen Res 2008  Sharan & Ideker Nat. Biotech. 2006 Scott et al. RECOMB 2005



Plasmodium: a network apart?

[a] Endocytosis

Calmodulin-dependent Kinases
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Conserved Plasmodium /
Saccharomyces protein complexes

[e] Chromatin remodeling
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v\
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, [ o] .
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[prii715w ]
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|
I Itranf ;
| acetyltranferase — !
. .
I ISWI homolog AL6P1.183 |
! AL8P1.15
! MALSP1.153

:
:

Plasmodium-specific
protein complexes

Suthram et al. Nature 2005
La Count et al. Nature 2005



Pairwise alignment of the E. coli protein network
versus the indicated species;
Sensitivity comparison of different methods

Edge threshold 0.5: Edge threshold 0.25:
B NetworkBLAST

B Mawish B Mawish

" Gramlin Gramlin

40

C. crescentus M. tuberculosis V. cholerae

Flannick et al. Genome Research (2006) [Batzoglou Lab]
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Sharan and Ideker Nat. Biotech (2006)



Using protein networks for
disease classification

(Han Yu Chuang)



Such methods can yield large regulatory networks
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Workman, Mak, et al. Science 2006




Usin%proteln networks to diagnose
reast cancer metastasis

Protein-protein interaction network Gene Expression Profiles
(PPI) mremas wmsesow

. Phenotype 1
:I Phenotype 2

Samples
s1 s2 s3 s4 s5 s6

gl
g2

Genes 93

\ /—Gene expression matrix

/ Samples \

gene-wise 1
normalized
Zjj = expression c
(W=0,6=1) enes |
n
Z.

Activity dy; = ‘/_ﬁ”‘ l ‘L i ¢ ‘L
Subnetwork k -

Phenotype ¢ 1 1 1 2 2 2

\Discriminative potential S(My) = the Mutual Information measuring the association between ax and ¢




Examples of
“Informative
subnetworks”

CR M,S,CR



Network markers are more reproducible and increase
classification accuracy of breast cancer metastasis

a. b.
0.14 . 100 0.75 Subnetwork
= markers
2012 1050 07 . Single-gene markers
& \ O (control for size)
5 0.1 1040 S g 0.65 Msig DB
Qo g =
5 0.08 P 06
2 006 =
O c ™ o O 0.55
2 10 &
© 0.04 c
a 02 0.5
o 0.02 10w Random
I Subnetworks
£ 4 | — |
Subnetwork Single-gene Single-gene e, f.
markers markers markers
(control for size) (previous studies) p

d.

2 Chuang et al. MSB, 2007



WWW.cytoscape.

org

OPEN SOURCE Java platform for
integration of systems biology data

L ayout and query of interaction
networks (physical and genetic)

*Visual and programmatic integration
of molecular state data (attributes)

*The ultimate goal is to provide the
tools to facilitate all aspects of
pathway assembly and annotation.

RECENT NEWS

*Version 2.5 released Summer 2007;
Scalability+efficiency now equivalent
to best commercial packages

*The Cytoscape Consortium is a 501(c)3 non-for-profit in the State of California
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*The Cytoscape ® Registered Trademark awarded

JOINTLY CODED with Agilent, ISB, Pasteur, Sloan-Kettering, UCSF, Unilever, U Toronto



DNA Damage Networks Genetic Interactions:

Chris Workman Ryan Kelley,

Craig Mak Sourav Bandyopadhyay,

Leona Samson (MIT) Nev Krogan (UCSF)
Tom Begley (U Albany)

Network Evolution:

Silpa Suthram
Roded Sharan (Tel Aviv)
Richard Karp (Berkeley)

Cancer Diagnosis:

Interpretation of eQTLs:
Han Yu Chuang,

Silpa Suthram Steve Briggs,
Andreas Beyer Tom Kipps,

Yonina Eldar (Technion) Eunjun Lee (KAIST),
Richard Karp (Berkeley) Doheon Lee (KAIST)

Funding: NIEHS, NIGMS, NSF, Packard, Agilent, Unilever

Websites: www.pathblast.org; www.cytoscape.org




Networks perturbed by individual
genetic variations

(Silpa Suthram)



Saua9

SNPs




Cause and effect interactions

)¢

Knock-down expression profiles
(RNAI, deletion mutants)

OR

Expression QTLs

=P Knockout causes up-regulation
Knockout causes down-regulation



Integration of cause-and-effect
Interactions with physical networks

Perturbation Physical
effects interactions
% |

Gy |
/N S

=3P Perturbation causes up-regulation —> TF-promoter binding
Perturbation causes down-regulation ™= ™= ™ Protein-protein binding

Yeang, Mak et al. Genome Biology 2005



Examples

[c] RNA biosynthesis

JEL

@@ 1 |RCSl

[d] Membrane-bound organelle
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. \CM

Silpa Suthram

Suthram et al. Nature/EMBO MSB 2008



