Casualty Actuarial Society

Machine Learning Part 2- Webinar

Thursday February 27, 2020

Ben Williams, Graham Wright

Willis Towers Watson III'I'II

© 2020 Willis Towers Watson. All rights reserved.

Agenda

Agenda

Context of machine learning in pricing

Session 1:

Decision trees Random forests Gradient boosting machines

Session 2:

"Earth" Penalized regression Neural networks

Conclusions

Q&A

Objective: to give you a working knowledge of some machine learning methods that may be used to improve GLM results and/or offer valuable insights in their own right in the field of P&C insurance pricing

Who's interested in what?

Applications of machine learning in the insurance sector

This is not new....

What are these machine learning methods?

Kaggle

kaggle ноst	Competitions	Datasets Scripts Jol	bs Community •	Sign up Login	kaggle H		
Welcome to Kaggle's data science competitions. New to Data Science? <u>Tutorials on the Titanic competition »</u> Want to learn from other's code? <u>Kaggler's top rated scripts »</u>		Download Choose a competition & download the training data.	Duild a model using whatever methods and tools you prefer.		Kaggle Ranking Kaggle users are allocate information on how we de 1st 191,154 pts		
Active Competitions	Active Compe	titions					
All Competitions	T State Fa	Can computer vision spo	acted Driver Detection at distracted drivers?	3 months 239 teams 110 scripts \$65,000	Gilberto Titericz 66 competitions Curitiba Brazil		
		Santander Custor Which customers are hap	mer Satisfaction ppy customers?	18 days 3894 teams 2478 scripts \$60,000	6th 129,891 pts		
		Home Depot Proc Predict the relevance of s	luct Search Relevance search results on homedepot.com	11 days 1944 teams 1486 scripts \$40,000			
	**	BNP Paribas Card	if Claims Management Paribas Cardif's claims management	4.4 days 2947 teams process? 1692 scripts \$30,000	Alexander Guschin 21 competitions Moscow Russia		
		2016 US Election Explore data related to th	he 2016 US Election	339 scripts 699 downloads	11th 102,606 pts		
		2013 American Co Find insights in the 2013	ommunity Survey American Community Survey	1077 scripts 1098 downloads	4		
		Explore country developme	ent Indicators ment indicators from around the wor	147 scripts 1694 Id downloads	y 55 competitions South Korea		

kaggle	Host Co	mpetitions Data	sets Scripts	Jobs Commu	nity •	Sign up	D D
Kaggle Ra	nkings						
Kaggle users are information on h	allocated points fo ow we calculate po	r their performan bints, please visit t	ce in competitior he user ranking v	ns. This page sho wiki page.	ws the current	global ranking	. For
1st 191,1	54 pts 2nd	189,482 pts	3rd 163,40	7 pts 4th	144,134 pts	Sth	139,65
Gilberto Titee 66 competition Curitiba Brazil	ricz Μαριος s 72 co	MIXanJiōnç mpetitions Volos prece	Stanislav Semen 31 competitions Moscow Russian Federation	nov (42 cr n Uni	Owen ompetitions NYC ited States	Kol 70 comp Tok Jap	etitions yo an
			13,39				
Alexander Gus 21 competition Moscow Russia	s chin Ab s 97 co G	hishek mpetitions Berlin ermany	Leustagos 45 competitions Belo Horizonte Brazil	4 co	Cardal ompetitions Israel	Ge 24 comp Go The Neth	rt etitions es erland
11th 102,6	506 pts 12th	100,359 pts	13th 100,123	8 pts 14th	99,000 pts	15th	95,4
-			-		2 and		
У	Mi	ke Kim	clustifier	Ma	rio Filho	util	ity
55 competition	s 48 cc	mpetitions	56 competitions	17 ci	ompetitions ão Paulo	15 comp	etitions
South Korea	Unit	ed States	Israel	2	Brazil	Russian Fe	deratio

How do you measure value?

- Rank hold out observations by their fitted values (high to low)
- Plot cumulative response by cumulative exposure
- A better model will explain a higher proportion of the response with a lower proportion of exposure
- ...and will give a higher Gini coefficient (yellow area)

- Think of a model...
- Multiply it by 123
- Square it
- Add 74½ billion

 ...and you get the same Gini coefficient!

Double lift chart

Is there more to it...?

© 2020 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

© 2020 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

What do you use where?

It's domain expertise that helps decide

What are these machine learning methods?

Focus on "Earth"

Numerical factors

-2.815

0.051

-0.006

Numerical factors

-2.931

0.025

-0.003

Numerical factors

-3.026

0.017

0.000

Numerical factors

-3.143

0.013

0.011

Interactions

-3.143

0.013

0.011

Interactions

Intercept	-3.143
MAX(65-Age,0)	0.013
MAX(Age-65,0)	0.010
MAX(Age-65,0)*(Gender=F)	0.003

Interactions

ntercept	-3.131
MAX(65-Age,0)	0.011
MAX(Age-65,0)	0.011
MAX(65-Age,0)*MAX(VG-12,0)	0.004
MAX(65-Age,0)*MAX(12-VG,0)	-0.001
Multivariate adaptive regression splines ("Earth")

Advantages

- Minimum manual setup required
- Fast run time
- Highly interpretable results

Disadvantages

- Model will contain discontinuities around knot points
- Hand-crafting likely to improve results

Intercept	0.412
UsuallyPayANNUAL	0.543
h(Log_Premium – 6.314)	0.432
h(Age-35)	-0.329
UsuallyPayANNUAL * h(Log_Premium-6.5673)	0.00654
Homeowner	-0.0291
etc	

© 2020 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

Some machine learning methods

Focus on Penalized Regression

Overview

GLMs

- Predictions are given by f(<u>x</u>) = g⁻¹(**X**.<u>β</u>)
- $\underline{\beta}$ is estimated by minimizing a loss function $L(\underline{\beta}|\mathbf{X},\underline{y})$ (**X** is data & model, \underline{y} the response)

Penalized regression

• The same, except the objective function becomes $L(\underline{\beta}|\mathbf{X},\underline{y}) + \lambda$. "Penalty on $\underline{\beta}$ "

Elastic Net

Minimize:
$$L(\beta|X, y) + \lambda_1 \sum_i |\beta_i| + \lambda_2 \sum_i \beta_i^2$$

Lasso - just the blue part

Penalty reduces insignificant parameter values to zero – useful for variable selection

Ridge - just the purple part regression models

Penalty heavily penalize extreme parameters, but do not reduce parameters to zero

GLM

 $f(\underline{x}) = g^{-1}(\mathbf{X}, \underline{\beta})$ where $\underline{\beta}$ estimated by minimizing $L(\beta | X, y)$

 $f(\underline{x}) = g^{-1}(\mathbf{X},\underline{\beta})$ where $\underline{\beta}$ estimated by minimizing

GLM Lasso Ridge
$$L(\beta|X,y) + \lambda_1 \sum_i |\beta_i| + \lambda_2 \sum_i \beta_i^2$$

Elastic Net

Heavily penalize large parameters, but does not reduce parameters to zero

Mix of the two

Penalty reduces insignificant parameter values to zero - useful for variable selection

 $f(\underline{x}) = g^{-1}(\mathbf{X}.\underline{\beta})$ where $\underline{\beta}$ estimated by minimizing

Heavily penalize large parameters, but does not reduce parameters to zero

Mix of the two

Penalty reduces insignificant parameter values to zero - useful for variable selection

Parameter selection

- Minimize: $L(\beta|X, y) + \lambda_1 \sum_i |\beta_i| + \lambda_2 \sum_i \beta_i^2$
- Penalty parameters can be re-written: $\lambda_1 = \lambda \alpha$, $\lambda_2 = \lambda \left(\frac{1-\alpha}{2}\right)$
- α controls the mixture between Lasso ($\alpha = 1$) and Ridge ($\alpha = 0$)
- λ controls the overall size of the penalty
- λ , α selected using cross-validation
- Factors automatically selected from initial set!

Parameter selection - example

Parameter selection - example

The fitting process can be investigated to help with feature selection

Parameter selection

There are costs to allowing too many factors in our models

- Computational cost of processing more data / fitting more parameters
- Time cost of analysts needing to consider more potential effects
- Reduced comprehensibility of interplay of many different correlated effects in our models
- Financial cost of licensing and maintaining many different data sources, and hosting/updating tables to use them in rating
- Performance cost as increased number of tests makes it more likely that we will find false-positives and overfit to noise in our data

Deploying Penalized Regression

Same as GLMs!

	Age	Exposure	Loss Cost
1	<=20	1,720	179
2	21-30	34,893	122
3	31-50	118,182	102
4	51+	127,054	70
5	Age Total	281,849	91

	Vehicle Group	Exposure	Loss Cost
1	1-10	164,107	77
2	11-14	84,859	101
3	15-18	28,952	116
4	19-20	3,931	272
5	VG Total	281,849	91

	Gender	Exposure	Loss Cost
1	Male	197,339	92
2	Female	84,510	87
3	Gender Total	281,849	91

Some machine learning methods

Focus on Neural Networks

Start with a simple GLM...

- Log link function, g
- Age (piecewise-linear variates)
- F (indicator of Gender = Female)
- Age x Gender interaction

Model structure decisions

- Input features
- Number of hidden layers
- Size of each hidden layer
- Activation functions
 - Typically specified by layer
 - ReLU is most commonly used
- Connectivity of layers and weight sharing
 - Typically fully connected with unique weights
 - Many variants exist, eg: Convolutional Neural Networks for image classification connect nearby blocks of pixels and apply the same shared weights across each block

Key model fitting decisions

- Optimization algorithm
 - Typically variants of Back-Propagation
- Loss function to be minimized
- Batch size number of rows to consider in each iteration
- **Epochs** number of passes through full data
- Initial weights
- Regularization parameters, eg:
 - L1 / L2 penalties
 - Learning rate and decay
 - Dropout

Where is the value?

2123 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85

Age

Which policyholder is more likely to make a claim?

Where is the value?

Which picture is more likely to be of a cat?

Where is the value?

Which picture is more likely to be of a cat?

Neural networks

Evolution or revolution?

Neural networks

Case study - market models

Context

- UK aggregator sites provide some historic quote data
- We wanted a model of "Average top 5 premium" for auto quotes to understand the market's pricing structure
- One month of data (~1m quotes)
- Limited subset of factors (no data enrichment beyond simple rating area & vehicle group)

Approach

- 60/40 split for training and holdout data
- Modelled as Log-Normal (ie ln(Premium) ~N(μ, σ²)) as Normal distributions well supported across packages
- Compare Neural Network performance to GLM (using existing model parameterizations) and GBM with RMSE of log-Premium on holdout data

Practical applications of neural networks in pricing

Machine learning in pricing

Conclusions (Part 2)

- Machine learning brings a proliferation of new methods
- Improving models is more than just finding the best method. Consider:
 - What data are available and how can data be transformed to give insight
 - What is the optimal model structure and target variable?
 - How can information be transferred between models?
- Earth is a fast, interpretable method that can improve overall lift by informing when/where to segment models
- Neural networks are complex and require numerous input decisions; analyzing unstructured data (e.g., imagery) is an intuitive application for this method ... but where else may it be helpful?
- Penalized regression can aid in factor selection decisions and may in fact be a good method in its own right – particularly when the modeler has less of a "feel" for the data
- Machine learning in pricing is not all about improving predictive power. Consider:
 - Fast investigation of new data
 - Quick assessment and response of emerging experience

So what? How the North American market is doing with machine learning

Some critical success factors

Component	Rating	Directional trend
Data availability		Static
Modelling tools and platforms		
Component	Rating	Directional trend
-----------------------------	--------	-------------------
		Static
Appetite to try new methods		Slowly upward

Component	Rating	Directional trend
Data availability		Static
Modeling tools and platforms		Slowly upward
Measuring value		

Component	Rating	Directional trend
Data availability		Static
Internal skill sets	?	Static
Measuring value		

Component	Rating	Directional trend
Data availability		Static
Measuring value		Static

Component	Rating	Directional trend
Data availability		Static
Modelling tools and platforms		
Measuring value		Slowly upward
Application	?	Slowly upward

Machine learning beyond pricing

- Carriers are experimenting with ML, it is becoming established within insurance analytics
- It opens up a broader set of problems to analytics, and offers a broader tool set for familiar problems
- New (wider) data beats new methods think UBI!
- Factor definition, problem specification and method selection are critical for success
- There's opportunity to reveal actionable, first-order insights in applications to which analytics have not been deployed previously
- With this broad new opportunity, spotting strong initial use cases is important

Questions

