Point Spread Function Reconstruction in Ground-based Astronomy

Raymond H. Chan

Department of Mathematics

The Chinese University of Hong Kong

Outline

- 1. Ground-based Astronomy
- 2. Models and Solution Methods
- 3. High-resolution Image Reconstruction

What is (gray-scale) image?

1000-by-1000 image = 1000-by-1000 matrix concatenate into 1M-vector

3

Ground-Based Astronomy

true image f(x,y)

point spread function k(x,y)

observed image g(x, y)

Unknown Point Spread Functions

Some well-known approaches for getting k(x, y):

□ Blind-decovolution to simultaneously obtain k(x, y) and f(x, y):

$$g(x,y) = k^{(i+\frac{1}{2})}(x,y)*f^{(i)}(x,y)+n(x,y), i = 1,2...$$

[T. Chan & Wong IEEE TIP 98]

Unknown Point Spread Functions

Some well-known approaches for getting k(x, y):

 \square Blind-decovolution to simultaneously obtain k(x, y) and f(x, y):

$$g(x,y) = k^{(i+\frac{1}{2})}(x,y)*f^{(i)}(x,y)+n(x,y), i = 1,2...$$

[T. Chan & Wong IEEE TIP 98]

 \square Reconstruct k(x,y) by some means (e.g. natural or artificial guide-star)

Ground-Based Astronomy

true image f(x,y)

point spread function k(x, y)

observed image g(x, y)

Point-spread Function Reconstruction

Planar waves change across atmospheric turbulence

 \Box $\phi(x,y)$: deviation from planarity is called phase error or phase

Fourier optics model:

$$k(x,y) = \left| \mathcal{F}^{-1} \left\{ W(x,y) e^{i\phi(x,y)} \right\} \right|^2$$

- \square W(x,y): aperture of the telescope
- \square \mathcal{F} : Fourier transform

[Goodman 96, Bardsley SIMAX, 08]

$$\phi(x,y)$$

Wavefront to Wavefront Gradient

Phase $\phi(x, y)$ cannot be directly measured, only its gradients by wavefront sensors:

Wavefront to Wavefront Gradient

Phase $\phi(x, y)$ cannot be directly measured, only its gradients by wavefront sensors:

- \square $\mathbf{p}_x = D_x \phi(x, y)$: horizontal wavefront gradient
- \square $\mathbf{p}_y = D_y \phi(x, y)$: vertical wavefront gradient

 D_i : 1st-order derivative operator modeling the sensor

The Problem

- \square Wavefront sensors collect wavefront gradients $D_i\phi(x,y)$, not the phase $\phi(x,y)$
- $\square D_i \phi(x,y)$ are collected on coarse grids

 \square Not accurate to compute ϕ from $D_i\phi(x,y)$

The Aim

The Aim

- Use a sequences of low-resolution (LR) frames of wavefront gradients to obtain the high-resolution (HR) wavefront gradients $\mathbf{p}_i = D_i \phi(x, y)$
- □ From HR wavefront gradient $D_i\phi(x,y)$ reconstruct more accurate $\phi(x,y)$
- \square From $\phi(x,y)$ reconstruct k(x,y)
- Using k(x, y), deblur g(x, y) to get f(x, y)

Frozen Flow Hypothesis

Within a short time interval, phase does not change.

Move telescope to get a sequence of LR frames of wavefront gradients to reconstruct the HR wavefront gradients.

A LR wavefront gradients sensor

Frozen Flow Hypothesis

Within a short time interval, phase does not change.

Move telescope to get a sequence of LR frames of wavefront gradients to reconstruct the HR wavefront gradients.

A LR wavefront gradients sensor

[Jefferies & Hart, 10]

20 to 30 frames/second

Bilinear interpolation from 1 frame

Reference frame

Improving resolution of LR reference frame

Reference frame

Improving resolution of LR reference frame

Reference frame

A 352-by-288 video from a video recorder

A 352-by-288 video from a video recorder

Tight-frame method using 21 frames

[C., Shen, & Xia, ACHA 08]

More on this later in Part 3

Relation between HR and LR Gradients

$$\mathbf{q}_{x}^{i} = RWA_{i}\mathbf{p}_{x} + \mathbf{n}_{x}^{i}, \quad i = 1, 2, \cdots, m$$

$$\mathbf{q}_{y}^{i} = RWA_{i}\mathbf{p}_{y} + \mathbf{n}_{y}^{i}, \quad i = 1, 2, \cdots, m$$

- \square \mathbf{p}_x , \mathbf{p}_y : HR wavefront gradients
- $\square \mathbf{q}_x^i, \mathbf{q}_y^i$: sequences of LR wavefront gradients
- \square \mathbf{n}_x^i , \mathbf{n}_y^i : noise
- \square A_i : motion operator
- \square W: aperture operator
- \square R: down-sampling operator

Tikhonov P-P Model

[Nagy, Jefferies, & Chu, Maui Conf. 10, SISC 13]:

$$\min_{\mathbf{p}_{x}} \|\mathbf{p}_{x}\|_{2}^{2} + \frac{\alpha}{2} \sum_{i=1}^{m} \|RWA_{i}\mathbf{p}_{x} - \mathbf{q}_{x}^{i}\|_{2}^{2}$$

$$\min_{\mathbf{p}_{y}} \|\mathbf{p}_{y}\|_{2}^{2} + \frac{\alpha}{2} \sum_{i=1}^{m} \|RWA_{i}\mathbf{p}_{y} - \mathbf{q}_{y}^{i}\|_{2}^{2}$$

- \square linear solve with $\left[I + \alpha \sum_{i} (RWA_i)^T RWA_i\right]$
- $\square \|\mathbf{p}_{x}\|_{2}^{2}, \|\mathbf{p}_{y}\|_{2}^{2} \approx \|\nabla \phi\|_{2}^{2}$
- \square may smooth the edges in ϕ

phase ϕ

Combined Model for the Phase

 \square Note that:

$$\begin{cases} \mathbf{q}_x^i = RWA_iD_x\phi + \mathbf{n}_x^i, \\ \mathbf{q}_y^i = RWA_iD_y\phi + \mathbf{n}_y^i, \end{cases} i = 1, 2, \dots, m.$$

 \square Treat ϕ as an "image" and regularize it:

$$\min_{\boldsymbol{\phi}} \| \boldsymbol{C}\boldsymbol{\phi} \|_1 + \frac{\alpha}{2} \sum_{i=1}^m \left\| \begin{bmatrix} RWA_iD_x \\ RWA_iD_y \end{bmatrix} \boldsymbol{\phi} - \begin{bmatrix} \mathbf{q}_x^i \\ \mathbf{q}_y^i \end{bmatrix} \right\|_2^2.$$

 \square Regularizer C can be TV, wavelet, tight-frame, fractional, ...

[C., Yuan, & Zhang, Science China, 13]

Multi-layered Atmosphere

S.J. Weddell, "Optical wavefront prediction with reservoir computing".

Multi-layered Atmosphere

 $\phi_2(x,y)$

 $\phi_1(x,y)$

S.J. Weddell, "Optical wavefront prediction with reservoir computing".

Multi-layered Phase

One-layer ϕ

LR Horizontal \mathbf{q}_x

Multi-layer $\{\phi_l\}$

LR Horizontal \mathbf{q}_x

Experiment Setup

 \Box generate true 256-by-256 ϕ [Nagy et al., 10, 13]

Experiment Setup

- \square generate true 256-by-256 ϕ [Nagy et al., 10, 13]
- \square generate HR $\mathbf{p}_x = D_x \phi$ and $\mathbf{p}_y = D_y \phi$
- \square generate LR \mathbf{q}_{i}^{i} with 1% Gaussian noise by

$$\mathbf{q}_{x}^{i} = RWA_{i}\mathbf{p}_{x} + \mathbf{n}_{x}^{i}, \quad i = 1, 2, \cdots, m$$

$$\mathbf{q}_{y}^{i} = RWA_{i}\mathbf{p}_{y} + \mathbf{n}_{y}^{i}, \quad i = 1, 2, \cdots, m$$

- \square downsample by a factor of 4 (64-by-64 LR)
- use m = 16 frames

Reconstructing the PSF

- \square Given $\{\mathbf{q}_x^i\}_{i=1}^m$ and $\{\mathbf{q}_y^i\}_{i=1}^m$, solve

 - $\Box \quad \min_{\boldsymbol{\phi}} \ \|\nabla \boldsymbol{\phi}\|_1 + \frac{\alpha}{2} \sum_{i=1}^m \left\| \begin{bmatrix} RWA_iD_x \\ RWA_iD_y \end{bmatrix} \boldsymbol{\phi} \begin{bmatrix} \mathbf{q}_x^i \\ \mathbf{q}_y^i \end{bmatrix} \right\|_2^2$
- \square Recover ϕ from $\mathbf{p}_x = D_x \phi$ and $\mathbf{p}_y = D_y \phi$
- \square Recover PSF from $k(x,y) = \left| \mathcal{F}^{-1} \left\{ W(x,y) e^{i\phi(x,y)} \right\} \right|^2$
- \square Compare computed k_c with true k from true ϕ

PSF Error Comparison

- v: [Chu, Jefferies, & Nagy, SIAM J. Sci. Comput., 13]
- o: [C., Yuan, & Zhang, J. Opt. Soc. Amer. A, 12]
- ♦: [C., Yuan, & Zhang, Science China A., 13]

How good is the Deblurring?

 \square Use true PSF k(x,y) to generate blurred image:

$$g(x,y) = k(x,y) * f(x,y) + n(x,y)$$

with 1% Gaussian noise added.

 \square In matrix terminology:

$$\mathbf{g} = K\mathbf{f} + \mathbf{n}$$

 \square Deblur **g** with computed PSF $k_c(x,y)$:

$$\min_{\mathbf{f}} \|\nabla \mathbf{f}\|_1 + \frac{\mu}{2} \|K_c \mathbf{f} - \mathbf{g}\|_2^2$$

Results for 1-Layer Case $1dB \uparrow \approx 10\% \downarrow$ in relative error

true image f

blurred image g

Results for 1-Layer Case $1dB \uparrow \approx 10\% \downarrow$ in relative error

true image f

true psf

blurred image g

Results for 1-Layer Case $1dB \uparrow \approx 10\% \downarrow$ in relative error

true image f

true psf

on $\mathbf{p}_x, \mathbf{p}_y$

blurred image g

Results for 1-Layer Case | $1dB \uparrow \approx 10\% \downarrow$ in relative error

true image f

true psf

 ℓ^2 on $\mathbf{p}_x, \mathbf{p}_y$

blurred image g

on $\mathbf{p}_x, \mathbf{p}_y$

Results for 1-Layer Case $1 dB \uparrow \approx 10\% \downarrow$ in relative error

true image f

29.66dB

true psf

on $\mathbf{p}_x, \mathbf{p}_y$

 ℓ^2 on $\mathbf{p}_x, \mathbf{p}_y$

TV on ϕ

true image f

blurred image g

true image f

blurred image g

true psf

true image f

blurred image g

true psf

 ℓ^2 on $\mathbf{p}_x, \mathbf{p}_y$

true image f

blurred image g

true psf

on $\mathbf{p}_x, \mathbf{p}_y$

29

Classical Approach [Tsai & Huang, 84]

$$\square \mathbf{q}_i = RBA_i\mathbf{r} + \mathbf{n}_i, i = 1, \dots, m$$

 \square Solve, e.g.

$$\min_{\mathbf{r}} \|\nabla \mathbf{r}\|_1 + \frac{\alpha}{2} \sum_{i=1}^m \|RA_i \mathbf{r} - \mathbf{q}_i\|_2^2.$$

Low-rank Approach

- $\square \mathbf{q}_i = R\mathbf{r}_i + \mathbf{n}_i, i = 1, \dots, m.$
- \square $[A_1\mathbf{r}_1,\ldots,A_m\mathbf{r}_m]$ low rank, so:

$$\min_{\mathbf{r}_i} \operatorname{rank}[A_1\mathbf{r}_1, \dots, A_m\mathbf{r}_m] + \frac{\alpha}{2} \sum_{i=1}^m \|R_i^{\mathbf{r}_i} - \mathbf{q}_i\|_2^2.$$

Nuclear Norm [Candes, Recht, 09; Recht, Fazel, Parrilo, 10]

$$\min_{\mathbf{r}_{i}} \|[A_{1}\mathbf{r}_{1}, \dots, A_{m}\mathbf{r}_{m}]\|_{*} + \frac{\alpha}{2} \sum_{i=1}^{m} \|R\mathbf{r}_{i} - \mathbf{q}_{i}\|_{2}^{2}.$$

- \square Nuclear norm: $||U||_* = \sum_j \sigma_j(U) = ||\boldsymbol{\sigma}(U)||_1$.
- \square An ℓ^1 - ℓ^2 model. Can be solved by ADMM:
 - \square Auxiliary variables: $\mathbf{v}_i = A_i \mathbf{r}_i$.
 - \square \mathbf{r}_i -subproblem: $(\alpha R^t R + \beta A_i^t A_i) \mathbf{r}_i^{j+1} = \mathbf{b}^j$.
 - \square \mathbf{v}_i -subproblem: $[\mathbf{v}_1^{j+1}, \dots, \mathbf{v}_m^{j+1}] = SVS_{\frac{1}{\beta}}(U^j).$

Comparison

Single frame with bilinear interpolation

Comparison

Single frame with bilinear interpolation

21 frames with TV regularization

21 frames with nuclear norm

21 frames with tightframe approach

HS Image Reconstruction by Tightframe

□ Not classical approach:

$$\min_{\mathbf{r}} \|\mathbf{\mathcal{T}r}\|_1 + \frac{\alpha}{2} \sum_{i=1}^m \|RA_i\mathbf{r} - \mathbf{q}_i\|_2^2.$$

- □ Tightframes are generalization of wavelets. Explain idea by the simplest tightframe, the Haar wavelet.
- □ Consider the simplest case: 4 low-resolution images merge into 1 high-resolution image:

HS Image Reconstruction by Tightframe

□ Not classical approach:

$$\min_{\mathbf{r}} \|\mathbf{\mathcal{T}r}\|_1 + \frac{\alpha}{2} \sum_{i=1}^m \|RA_i\mathbf{r} - \mathbf{q}_i\|_2^2.$$

- □ Tightframes are generalization of wavelets. Explain idea by the simplest tightframe, the Haar wavelet.
- □ Consider the simplest case: 4 low-resolution images merge into 1 high-resolution image:

LR images q align exactly at half-pixel

High-resolution **p**

The Process from HR to LR

4 perfectly aligned
LR images merge
into 1 HR image:

HR pixels
p

pixel of 3rd LR image

 \square HR \rightarrow LR process = convolution (blurring) with kernel

$$\left(\dots,0,\frac{1}{2},\frac{1}{2},0,\dots\right)\otimes\left(\dots,0,\frac{1}{2},\frac{1}{2},0,\dots\right)$$

 \square $\left[\frac{1}{2}, \frac{1}{2}\right]$ is Haar's low-pass filter

Key Observation

High-resolution **p**

LR images q align exactly at half-pixel

$$\begin{bmatrix} \ddots & \ddots & & & \\ \frac{1}{2} & \frac{1}{2} & & & B \\ & \frac{1}{2} & \frac{1}{2} & & \\ & \frac{1}{2} & \frac{1}{2} & & \\ & & \ddots & \ddots \end{bmatrix} \mathbf{p} = \begin{bmatrix} \mathbf{p} & \mathbf{p} & \mathbf{p} \\ \mathbf{q} & \mathbf{p} \\ \mathbf{q} & \mathbf{p} & \mathbf{p} \\ \mathbf{q} & \mathbf{p} & \mathbf{p} \\ \mathbf{q} & \mathbf{p} \\ \mathbf{q} & \mathbf{p} \\ \mathbf{q} & \mathbf{p} & \mathbf{p} \\ \mathbf{q} & \mathbf{q} \\ \mathbf{$$

 \square $B\mathbf{p} = \mathbf{q}$ with B block-Toeplitz-Toeplitz-block.

Frequency Domain Inpainting

HR image reconstruction = frequency domain inpainting

Frequency Domain Inpainting

HR image reconstruction = frequency domain inpainting

- \Box The low-pass framelet coefficients **q** are given at locations Γ.
- \square Find **p** such that $P_{\Gamma} \mathcal{T} \mathbf{p} = P_{\Gamma} \mathbf{q}$.

Tightframe Algorithm for Inpainting

For $j = 0, 1, \ldots$, until convergence:

- 1. Compute $\mathbf{c}^j = \mathcal{T}\mathbf{p}^j$.
- 2. Data fitting: set

$$[\mathbf{c}_d^j]_l = \left\{ \begin{array}{l} [\mathbf{q}]_l, & l \in \Gamma \\ [\mathbf{c}^j]_l, & l \notin \Gamma. \end{array} \right.$$

- 3. Denoise \mathbf{c}_d^j by shrinkage to get \mathbf{c}_t^j .
- 4. Reconstruct $\mathbf{p}^{j+1} = \mathcal{T}^t \mathbf{c}_t^j$.

Note that for tightframes, we have $\mathcal{T}^t\mathcal{T}=I$.

Tightframe Algorithm for Inpainting

The tight-frame frequency domain inpainting algorithm:

$$\mathbf{p}^{j+1} = \mathcal{T}^t \mathcal{S}_{\lambda} \left(P_{\Gamma^c} \mathcal{T} \mathbf{p}^j + P_{\Gamma} \mathbf{q} \right)$$

where

 \square P_{Γ^c} : projection onto complement of Γ

 \square S_{λ} : shrinkage operator with threshold λ

$$s_{\lambda_l}(c) \equiv \begin{cases} \operatorname{sgn}(c)(|c| - \lambda_l), & \text{if } |c| > \lambda_l, \\ 0, & \text{if } |c| \le \lambda_l. \end{cases}$$

16-to-1 sensor array

16 LR images

16-to-1 sensor array

16 LR images

recovered

16-to-1 sensor array

16 LR images

recovered

only
4 LR
images
given

4 LR images

recovered

Piecewise linear tightframe is used in our examples.

Iterative Thresholding Algorithms

- \square [$C^2 + S^2$, SISC, 03]: Proximal forward-backward algorithm
- □ [Daubechies, Defrise, & De Mol, CPAM 04]
 Iterative thresholding with sparsity constraint
- □ [Elad, Starck, Querre & Donoho, MCA 05]
 Simultaneous cartoon and texture image inpainting
- □ [Combettes & Wajs, SIAM MMS, 05]
 Signal recovery by proximal forward-backward splitting
- □ [Beck & Teboulle, SIIMS 09]
 A fast iterative shrinkage-thresholding algorithm (FISTA)

□ ...

Find image **p** from data **q** given on Λ , i.e $\mathcal{P}_{\Lambda}\mathbf{p} = \mathcal{P}_{\Lambda}\mathbf{q}$.

$$\mathbf{p}^{j+1} = \mathcal{P}_{\Lambda^c} \mathcal{T}^t \mathcal{S}_{\lambda} \mathcal{T} \mathbf{p}^j + \mathcal{P}_{\Lambda} \mathbf{q}$$

Find image **p** from data **q** given on Λ , i.e $\mathcal{P}_{\Lambda}\mathbf{p} = \mathcal{P}_{\Lambda}\mathbf{q}$.

$$\mathbf{p}^{j+1} = \mathcal{P}_{\Lambda^c} \mathcal{T}^t \mathcal{S}_{\lambda} \mathcal{T} \mathbf{p}^j + \mathcal{P}_{\Lambda} \mathbf{q}$$

70% S+P noise

Adapative Median Filter (AMF)

Find image **p** from data **q** given on Λ , i.e $\mathcal{P}_{\Lambda}\mathbf{p} = \mathcal{P}_{\Lambda}\mathbf{q}$.

$$\mathbf{p}^{j+1} = \mathcal{P}_{\Lambda^c} \mathcal{T}^t \mathcal{S}_{\lambda} \mathcal{T} \mathbf{p}^j + \mathcal{P}_{\Lambda} \mathbf{q}$$

Adapative Median Filter
(AMF)

AMF + ℓ^1 - ℓ^1 [C., Ho, Nikolova, 05]

Find image **p** from data **q** given on Λ , i.e $\mathcal{P}_{\Lambda}\mathbf{p} = \mathcal{P}_{\Lambda}\mathbf{q}$.

$$\mathbf{p}^{j+1} = \mathcal{P}_{\Lambda^c} \mathcal{T}^t \mathcal{S}_{\lambda} \mathcal{T} \mathbf{p}^j + \mathcal{P}_{\Lambda} \mathbf{q}$$

70% S+P noise

Adapative Median Filter (AMF)

 $AMF + \ell^1 - \ell^1$ [C., Yo, Nikolova, 05]

AMF + tightframe [Cai, C., Shen, Shen, 09]

Single Frame Upsampling

HR video from LR video

Single Frame Upsampling

HR video from LR video

Single Frame Upsampling

interpolate/inpaint

HR video from LR video

Input Video

Qian et al. Siggraph 09: $\|\Psi(\nabla \mathbf{f})\|_1$

Upsampled by bicubic

Level 6 Tightframe

Input Video

Upsampled by bicubic

Qian et al. Siggraph 09: $\|\Psi(\nabla \mathbf{f})\|_1$

Level 6 Tightframe

Thanks to the Collaborators

Jianfeng Cai (HK University of Science & Technology) ☐ Tony Chan (HK University of Science & Technology) Mila Nikolova (ENS Cachan) ☐ Lixin Shen (Syracuse University) Zuowei Shen (National University of Singapore) Xiaoming Yuan (HK Baptist University) Wenxing Zhang (China Uni. of Electronic Science & Tech.)

Thank you for your attention!

Welcome to SIAM LA18 in Hong Kong

May 4-8, 2018

Welcome to SIAM LA18 in Hong Kong

May 4-8, 2018

Welcome to SIAM LA18 in Hong Kong

Concluding Remarks

- \square ℓ^1 - ℓ^2 problems are common in image processing
- □ Efficient solvers by adding auxiliary variables
- □ Solution requires solving a linear system for every outer iteration
- □ Some requires computing an SVD for every outer iteration

Input Video

Qian et al. Siggraph 09: $\|\Psi(\nabla \mathbf{f})\|_1$

Upsampled by bicubic

Level 6 Tightframe