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What is (gray-scale) image?
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Ground-Based Astronomy
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Unknown Point Spread Functions

Some well-known approaches for getting k(x, y):

[ Blind-decovolution to simultaneously
obtain k(z,y) and f(z,y):

glz, ) = k(”%)(w,y)*f(i)(x,y)—l-n(a:,y), § =1, 2.

[T. Chan & Wong IEEE TIP 98]



Unknown Point Spread Functions

Some well-known approaches for getting k(z, y):

L] Blind-decovolution to simultaneously
obtain k(x,y) and f(z,y):

g(z,y) = k(i+3) Y)xf 9 (z,y)+n(z,y), i=1,2...

[T. Chan & Wong IEEE TIP 98]

[l Reconstruct k(x,y) by some means
(e.g. natural or %tiﬁcial cuide-star)

National
Geography (1995)




Ground-Based Astronomy
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Point-spread Function Reconstruction

Planar waves change across
atmospheric turbulence

—_—

[ o(x,y): deviation from planarity
is called phase error or phase

Fourier optics model:

k(z,y) = |F~ {W(a, ,l/)e"(-‘>¢'.,-.,u)}|2

—
| S—)

| Wi(x,vy): aperture of the telescope

[]

F: Fourier transform

|Goodman 96, Bardslev SIMAX, 08]



Wavefront to Wavefront Gradient

Phase o(x,y) cannot be directly measured, only its
gradients by wavefront sensors:




Wavefront to Wavefront Gradient

Phase o(x,y) cannot be directly measured, only its
gradients by wavefront sensors:

O p, = D,¢(z,y): horizontal wavefront gradient

U py, = Dyo(z,y): vertical wavefront gradient

D;: 1st-order derivative operator modeling the sensor




The Problem

L1 Wavetront sensors collect wavefront gradients
D;o(x.,y), not the phase ¢(x, y)

U D;o(x,y) are collected on coarse grids

Phase o(z,y) Dl )

[1 Not accurate to compute ¢ from D;o(x, vy)



The Aim
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The Aim

(1 Use a sequences of low-resolution

(LR) frames of wavetront gradients
to obtain the high-resolution (HR)
wavefront gradients p, = D;o(x, y)

l

From HR wavetront gradient
D;o(x. y) reconstruct more

[

accurate o(z, y)

0 From o(x,y) reconstruct k(x, y)

[l Using k(z,vy), deblur g(z,y) to
get f(z,y)




Frozen Flow Hypothesis

Within a short time interval, phase does not change.

Move telescope to get a sequence of LR frames of
wavetront gradients to reconstruct the HR wavetront
gradients.

A LR wavefront
gradients
Sensor

b
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Frozen Flow Hypothesis

Within a short time interval, phase does not change.

Move telescope to get a sequence of LR frames of

waveiront gradients to reconstruct the HR wavetront
gradients.

A LR wavetiront
gradients

SCILSOTr

[Jetteries & Hart. 10]

HR is possible
with more
sample points
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Video Enhancement
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A 352-by-288 video
from avideo recorder

20 to 30 frames/second

Bilinear interpolation
from 1 frame
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Video Enhancement

Reference frame

Improving
resolution
of LR
reference
Jrame
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Video Enhancement
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Reference frame

Improving
resolution
of LR
reference
Jrame
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Video Enhancement
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Reference frame

Displacement
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—

Improving
resolution
of LR
reference
frame
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Video Enhancement

A 352-by-288 video
from avideo recorder
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Video Enhancement

A 352-by-288 video
from a video recorder

Tight-frame method
using 21 frames

[C.. Shen. & Xia, ACHA 08]

More on this later
in Part 3
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Relation between HR and LR Gradients

q. = RWA;p,+nt, i=12---,m
q.:/ = RWA;py + n;. 1 =1,2,~ ,m

U p,., py,: HR wavefront gradients
U g}, q,: sequences of LR wavetront gradients

L nj, n;: noise

[1 A;: motion operator

LI W: aperture operator e
N A ot

[l R: down-sampling operator P,




Tikhonov -2 Model

Nagy, Jefferies, & Chu, Maui Conf. 10, SISC 13]:

;112

min g3 + 3 Z |RWA;p, —

=1
min [|py 3+ 3 ZHRWAzpy A
=1
O linear solve with [I +a ) (RWA;)TRW A,]

0 o3 I3 ~ V)3
. phase ¢

.
[J may smooth the Sdges w )

in o
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Combined Model for the Phase

[0 Note that:

[l Treat ¢ as an “image” and regularize it:
RW A; D, b — q

[0 Regularizer C' can be TV, wavelet,
tight-frame, fractional, ...

[C.. Yuan. & Zhang. Science China, 13]

m

) (@7
min [[Colx +5 >

=1

i=1,2,---.m.
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Multi-layered Atmosphere

Obscrvatonal
platform. G

S.J. Weddell, “Optical
wavefront prediction with
reservoir computing”.
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Multi-layered Atmosphere

Obscrvational
platform. G

S.J. Weddell, “Optical
wavefront prediction with
reservoir computing”.
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Multi-layered Phase

One-layer o Multi-layer {(j),}
LR Horizontal q, LR Horizontal q.



Experiment Setup

O generate true 256-by-256 ¢ [Nagy et al., 10, 13]

24



Experiment Setup

O generate true 256-by-256 ¢ [Nagy et al., 10, 13]
U generate HR p, = D,¢ and p, = D,¢

[l generate LR qj- with 1% Gaussian noise by

q. = RWAp,+n, i=1,2---,m
q, = RWApy,+n;, i=12,---,m

[ downsample by a
factor of 4
(64-by-64 LR)

LI use m = 16 frames
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Reconstructing the PSF

O Given {q}}, and {q;}}*,, solve
. o m il2
0 min [Ip.[3 +5 S | AW Ap. — ol

[ H;iﬂ IPzlli + 5 > im; IRW Aip: — ;|5

| m |\[RWA;D,] . [d
o " el = s
min Vo[l + 3 2:231 [RWAz-Dy] ¥ q;] 2

O Recover ¢ from p, = D,¢ and p, = D,¢
0 Recover PSF from k(z,y) = ‘]-‘—1 {W(x, y)eicb(;r,y)}‘z

[0 Compare computed k. with true k& from true ¢

25
.



PSF Error Comparison
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How good is the Deblurring?

[l Use true PSF k(x,y) to generate blurred image:
g(z,y) = k(z,y) * f(z,y) + n(z,y)
with 1% Gaussian noise added.
[ In matrix terminology:

g=Kf+n

[ Deblur g with computed PSF k.(z,y): g(x,y)

l - :
mfin | V£, + %H[\(f — g5



Rc"\'lllf‘\‘f()}‘ I-L(IJ'C’I‘ Case { 1dB 1t ~ 10% | in relative error ]

true image f

15.21dB

blurred 1mage g
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Results for I-Layer Case [ 1dB 1 =~ 10% | in relative error ]

29.66dB

true image f true pst

15.21dB

blurred image g
N




RC.\’Z(/’?’,\,'Q]‘“()]‘ Z-LU}’L’I‘ Case [ 1dB 1 =~ 10% | in relative error ]

29.66dB 23.64dB

true image f true pst

15.21dB

blurred image ¢




RL’.S’ZI/T.‘S(}‘OI' l-LU.]'C’I‘ Case [ 1dB 1T = 10% | in relative error ]

29.66dB 23.64dB

true image f

15.21dB

blurred image g




RC>5-11]“‘ff()]~ ]-L({)’L’i‘ Case [ 1dB 1 ~ 10% | in relative error ]

29.66dB 23.64dB

true image f

15.21dB

blurred 1mage g



Results for 3-Layer Case

true image f

21.83dB

blurred 1image g
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Results for 3-Layer Case

true image f

21.83dB

.

blurred 1image g

34.57dB
'

/4
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Results for 3-Layer Case

'

j

-
.

true image f

21.83dB

.

blurred image g

34.57dB

31.78dB
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Results for 3-Layer Case

34.57dB 31.78dB

true image f

21.83dB

.

blurred image g



RC.\'”/TS'/{?()]' :?-L(‘{."(]]‘ (YUSC’

34.57dB 31.784dB

true image f

21.83dB

.

blurred image g



Classical Approach [Tsai & Huang, 84]

I

RAr  RAr  RA.r

p

) /’ R | "
“ : o R
q; qg;

q- T

> 1

0 q,=RBAr+n;,i1=1,...,m
O Solve, e.g.

. O o
min V|| + 5 Z |RA;r — qil|5.

=1
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Low-rank Approach

TR R

£] = A11'1 = A i Ly i = ml'm
hﬂu lﬂu rﬂ_
q, = Rr, q; = Rr; Q.. =

> 1

] ql.:Rri—{—nz-,i-—-l,...,m

O [Airy,. .., Apry] low rank, so:

. a -
minrank[A;ry, ..., Anly] + 5 ZQJ —qil3.

r;
=1 k
35
- x (DN



Nuclear Norm [Candes. Recht. 09; Recht, Fazel. Parrilo, 10]
. O — )
min ||[A1r1, C e ,Amrm]H* + 5 Z—ZI Her — quQ

r;

O Nuclear norm: ||Ul||« =)_.0;(U) = |la(U)|x.

j
0 An /*-¢?> model. Can be solved by ADMM:

O Auxiliary variables: v; = A;r;.

O r;-subproblem: (aR'R + BA!A;)r? ™ =Db’.

O v;-subproblem: [v/*! ... v, %] = SVS, (UY).

36



Comparison

Single frame with
bilinear interpolation
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Comparison

Single frame with
bilinear interpolation

21 frames with
I regularization

21 frames with
niclear norm

21 frames with
tightframe approach

37



HYS Image Reconstruction by Tightframe

LI Not classical approach:

| QO
min || 7r]s + > [|RAx — qilf3.

=1

[ Tightframes are generalization of wavelets. Explain
idea by the simplest tightframe, the Haar wavelet.

[ Consider the simplest case: 4 low-resolution images
merge into 1 high-resolution image:

38



HS Image Reconstruction by Tightframe

L1 Not classical approach:

. O )
min || 77l + 5 ; |RAr — qill3-

L Tightframes are generalization of wavelets. Explain
idea by the simplest tightframe, the Haar wavelet.

[ Consider the simplest case: 4 low-resolution images
merge into 1 high-resolution image:

LR images q
align exactly at
half-pixel

High-resolution
p

38



The Process from HR to LR

4 perfectly aligned
LR images merge
into 1 HR image:

pixel of 3rd
LR image

HR pixels
p

[0 HR — LR process = convolution (blurring) with kernel

(...,o,%,g,o,...)@)(...,o,

O [4, 3] is Haar’s low-pass filter

39



Key Observation

LR images q

High-resolution _ b
align exactly at g

P half-pixel
11 A low-pass
2 2 B ) Ny
1 1 T ] T wavelet
5 5 L 7’ coefficients
1 1 -
2 3 ; of p

[l Bp = q with B block-Toeplitz-Toeplitz-block.

N



Frequency Domain Inpainting

{ HR image reconstruction = frequency domain inpainting ]

tightirame
transform

41



Frequency Domain Inpainting

{ HR image reconstruction = frequency domain inpainting 1

[0 The low-pass framelet coefficients q are
given at locations I'.

O Find p such that Pr'7Tp = Prq.

/T_\ data set
d  tightframe I
transform

& 41



Tightframe Algorithm for Inpainting

For y = 0,1,..., until convergence:

1. Compute ¢/ = Tp’.

2. Data fitting: set

3. Denoise ¢/, by shrinkage to get c’.

4. Reconstruct p/*! = T'c].

{Note that for tightframes, we have T'T = I ]



Tightframe Algorithm for Inpainting

The tight-frame frequency domain inpainting algorithm:
pj+1 = 7-t8,\ (P[‘chj oin qu)

where t

/.

[0 Pre: projection onto complement of I' / A

(1 S,: shrinkage operator with threshold A

55 (¢) = sgn(c)(|c| — N), if |c| > Ay,
l N O, if |C| < /\l.

43



16-to-1
Sensor
array

16 LR images



16-to-1
Sensor
array

16 LR images recovered

Piecewise linear tightframe is used in our examples.



16-to-1
Sensor
array

only

4 LR
1mages
given

4 LR mmages recovered

Piecewise linear tightframe is used in our examples. ,,



Iterative Thresholding Algorithms

[]

[l

L

[

[l

[C* + S?, SISC, 03]:

Proximal forward-backward algorithm

Daubechies, Defrise, & De Mol, CPAM 04]
Iterative thresholding with sparsity constraint

[Elad, Starck, Querre & Donoho, MCA 05]
Simultaneous cartoon and texture image inpainting

[Combettes & Wajs, SIAM MMS, 05]
Signal recovery by proximal forward-backward splitting

Beck & Teboulle, SIIMS 09]
A fast iterative shrinkage-thresholding algorithm (FISTA)

LD e
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npainting in Image Domain

Find image p from data q given on A,
1.e PAp = Paq-

P’ = PrT'S\TP’ + Parq

>. £

70% S+P noise



Inpainting in Image Domain

Find image p from data q given on A,
1.e PAp = Paq.

L p’ " = PaT S\ TP’ + Paq

Adapative Median Filter
(AMF)

70% S+P noise



Inpainting in Image Domain

Find image p from data q given on A,
1.e Pop = Paq.

P’ = PaT'S\TP’ + Paq J

Adapative Median Filter AMF + ¢
(AMF) [C.. Ho, Nikolova, 053]
™\
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Inpainting in Image Domain

Find image p from data q given on A,
1.e PAop = Paq.

[ I = PAC’TTS,\TP + Paq J

Adapative Median Filter AMF + -2 AMF + tightframe

(AMF) [C..ﬁo. Nikolova, 03] [Cat, C., Shen, Shen, 09] .



Single Frame Upsampling

HR video from
LR video
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Single Frame Upsampling
HR video from
LR video

—> [ 48



Single Frame Upsampling

HR video from

LR video




(Vi)

Upsampled by bicubic Level 6 Tightframe




Input Video Qian et al. Siggraph 09: |[¥(VE)||

- &

Usampled by bicubic Level 6 Tightframe
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Concluding Remarks

O ¢'-¢? problems are common in image processing
[l Efficient solvers by adding auxiliary variables

[1 Solution requires solving a linear system for every
outer 1teration

[l Some requires computing an SVD for every outer
iteration
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