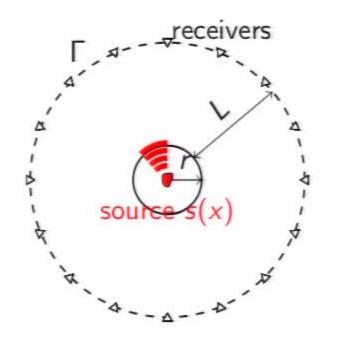
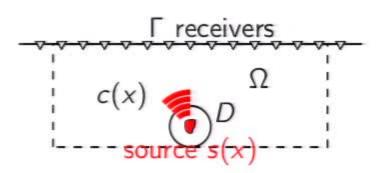
Interferometric wave source inversion for Photoacoustic Imaging

Laurent Seppecher École Centrale de Lyon Joint work with L. Demanet (MIT)

May 24th, 2016

The direct source problem





In frequency domain the wave field $u(x,\omega)$ is solution of

$$\begin{cases} \left(\Delta + \frac{\omega^2}{c^2(x)}\right) u(x,\omega) = s(x) \text{ on } \mathbb{R}^d \\ \text{Sommerfeld condition at } \infty \end{cases}$$

Applications

Earth science:

- Passive geo-seismic source imaging
- Active geo-seismic imaging

Medical imaging :

- Ultrasound medical imaging
- Microwave imaging
- thermo-acoustic/opto-acoustic imaging

Military purpose :

- Active/passive sonar
- EM sources identification

Forward operator

If we have N_r receivers and N_ω frequencies, we have $N:=N_rN_\omega$ complex numbers.

Data

$$d_i := u(x_i, \omega_i), \quad i = 1, \ldots, N$$

Forward operator

$$\tilde{F}: L^2(\Omega) \longrightarrow \mathbb{C}^N$$

 $s \longmapsto d$

Limitation

These methods work if and only if

$$\left\|F-\tilde{F}\right\|_{\mathcal{L}\left(L^{2}(\Omega),\mathbb{C}^{N}\right)}<<\left\|\tilde{F}\right\|_{\mathcal{L}\left(L^{2}(\Omega),\mathbb{C}^{N}\right)}$$

and this requires an excellent approximation of the speed map c(x). In this case the error is controlled by

$$\frac{\|s_{LS} - s\|}{\|s\|} \le \kappa(F)^2 \frac{||\tilde{F} - F||}{||F||}$$

Sensitivity to a change of speed

If c is constant, then the forward map ca be written in 3D as

$$(\tilde{F}s)_i := \int_{\Omega} \frac{e^{\frac{i\omega_i}{c}|y-x_i|}}{4\pi|y-x_i|} s(y) dy$$

We can see that un error on 1/c of order $1/(\omega_{max}dist(s,\Gamma))$ completely destroy the data. On other terms, one can show that if c_0 does not respect

$$\frac{c-c_0}{c_0} << \frac{c_0}{\omega_{\sf max} dist(s,\Gamma)} \ \ (\approx 5\% \ {\sf in geoseismic setting.})$$

then the operator error

$$\frac{|||\tilde{F} - F|||}{|||F|||} \approx 1$$

Sensitivity to a change of receivers position (defocusing)

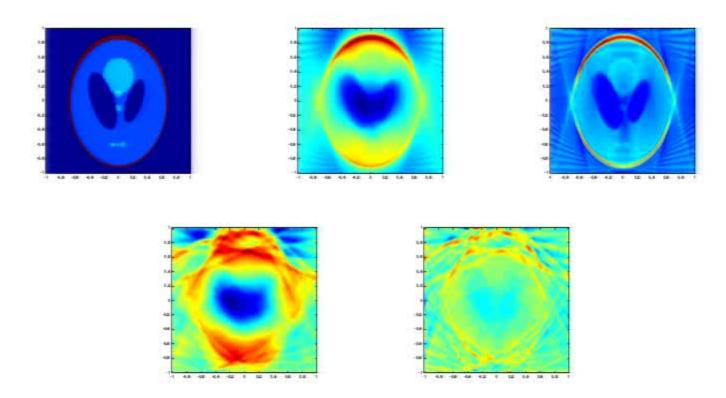


Figure: Source inversion with c=1, aperture =80, depth =10, $\omega_{\text{max}}=128$. (1) The source. (2) Back projection solution. (3) Least squares solution. (4) Back projection solution with 2% of error on the receivers location. (5) Least squares solution with 2% of error on the receivers location.

Interferometric data

Instead of using the data $u(x_i, \omega_i)$ which is very sensitive to uncertainties, we may use a correlation between two data :

$$D_{i,j} := u(x_i, \omega_i) \overline{u(x_j, \omega_j)}$$

Which may be more robust. The intuition is that if $u(x_i, \omega_j) \approx A(x_i)e^{i\omega_j T(x_i)}$ where $T(x_i)$ is the travel time between the source and the receiver, an error on $T(x_j)$ is dramatic but as

$$u(x_i, \omega_i)\overline{u(x_j, \omega_j)} \approx A(x_i)A(x_j)e^{i(\omega_i T(x_i) - \omega_j (T(x_j))}$$

then the error on T might be almost the same on x_i and x_k if these receivers are close to each other.

Interferometric inversion

Introduce a sparse selector $E \in S_N(\{0,1\})$ the associated semi-norm defined on hermitian matrices

$$|A|_{E,2}^2 = \sum_{i,j} E_{i,j} A_{i,j}^2,$$

We introduce the functional

$$J_E(s) := \frac{1}{2} |(Fs)(Fs)^* - dd^*|_{E,2}^2$$

which is an order 4 polynomial non convex cost function that we want to minimize.

Lifting method

Instead of minimizing

$$J_E(s) := \frac{1}{2} |Fss^*F^* - dd^*|_{E,2}^2$$

One can minimize the quadratic least square cost function

$$\tilde{J}_{E}(M) := \frac{1}{2} |FMF^* - dd^*|_{E,2}^2$$

which is convex and then extract s as the first eigenvector of M.

Interpretation of s_{CINT} formula (Interferometric back propagation)

$$s_{CINT} = diag \nabla \tilde{J}_{E}(0)$$

This is the first step of a gradient descent for \tilde{J}_E .

Interferometric inversion

Introduce a sparse selector $E \in S_N(\{0,1\})$ the associated semi-norm defined on hermitian matrices

$$|A|_{E,2}^2 = \sum_{i,j} E_{i,j} A_{i,j}^2,$$

We introduce the functional

$$J_E(s) := \frac{1}{2} |(Fs)(Fs)^* - dd^*|_{E,2}^2$$

which is an order 4 polynomial non convex cost function that we want to minimize.

Papanicolaou's imaging formula

Papanicolaou et Al. proposed the following formula in 2005:

$$s_{CINT}(x) = \sum_{|x_i - x_j| < \alpha} \sum_{|\omega_i - \omega_j| < \beta} \overline{G_{\omega_i}(x_i, x)} G_{\omega_j}(x_j, x) u(x_i, \omega_i) \overline{u(x_j, \omega_j)}$$

where G is the green function for the forward problem. He sees it as a square of a back-propagation. α and β are some parameter to calibrate.

It is a way to back propagate the interferometric data.

Interferometric inversion

Introduce a sparse selector $E \in S_N(\{0,1\})$ the associated semi-norm defined on hermitian matrices

$$|A|_{E,2}^2 = \sum_{i,j} E_{i,j} A_{i,j}^2,$$

We introduce the functional

$$J_E(s) := \frac{1}{2} |(Fs)(Fs)^* - dd^*|_{E,2}^2$$

which is an order 4 polynomial non convex cost function that we want to minimize.

Lifting method

Instead of minimizing

$$J_E(s) := \frac{1}{2} |Fss^*F^* - dd^*|_{E,2}^2$$

One can minimize the quadratic least square cost function

$$\tilde{J}_{E}(M) := \frac{1}{2} |FMF^* - dd^*|_{E,2}^2$$

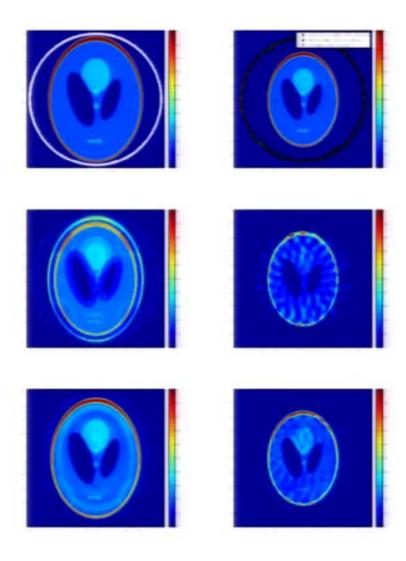
which is convex and then extract s as the first eigenvector of M.

Interpretation of s_{CINT} formula (Interferometric back propagation)

$$s_{CINT} = diag \nabla \tilde{J}_{E}(0)$$

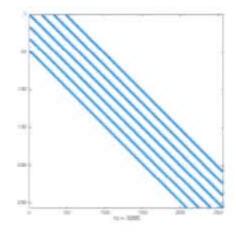
This is the first step of a gradient descent for \tilde{J}_E .

Autofocus effect



with $E_{i,j} = \chi_{\{|x_i-x_j| \le \alpha, |\omega_i-\omega_j| \le \beta\}}$.

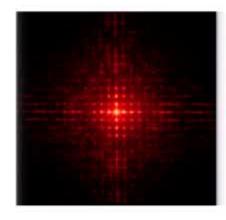
About the sparse filter

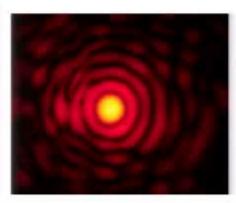


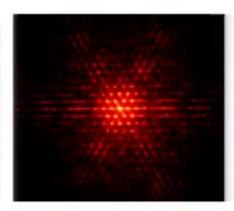
Intuitive sparse filter *E* :

Is it the best choice? It there a rule too choose pairs of data to compute correlations?

If E = Id it is the diffraction inversion case. The data looks like :







Far field approximation in constant speed

In 3D, the Helmholtz Green function is

$$G_c(x,\omega) = \frac{e^{i\frac{\omega}{c}|x|}}{4\pi|x|}$$

and satisfies

$$G_c(x-y,\omega) \approx G_c(x,\omega) \exp\left(-i\frac{\omega}{c}\frac{x}{|x|}\cdot y\right)$$

in far field approximation. Then the forward operator satisfies

$$(\tilde{F}s)_i \approx G_c(x_i, \omega_i) \hat{s} \left(\frac{\omega_i}{c} \frac{x_i}{|x_i|} \right)$$

Phase difference cancellation

Theorem: Filter for constant speed error

Suppose that the hypothetic linear forward operator is given by

$$F_{\varepsilon}s(x,\omega)=G_{\frac{c}{1+\varepsilon}}(x,\omega)\widehat{s}\left(\frac{(1+\varepsilon)\omega}{c}\frac{x}{|x|}\right),$$

where ε is a real error on the slowness 1/c. Fix a positive real number η and suppose that the sparse selector E satisfies

$$E_{i,j} = 1 \Rightarrow |\omega_i|x_i| - |\omega_j|x_j| \leq \eta c.$$

Then the dilated source given by $\widehat{s_{\varepsilon}}(\xi) = \widehat{s}((1+\varepsilon)\xi)$ satisfies

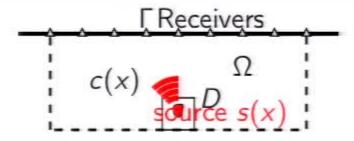
$$|F_{\varepsilon}[s_{\varepsilon}](F_{\varepsilon}[s_{\varepsilon}])^* - dd^*|_{E,2}^2 \leq C\varepsilon^2\eta^2.$$

Phases differences cancellation

Proof: For any i,j such that $E_{i,j} = 1$,

$$\begin{aligned} &\left| G_{\frac{c}{1+\varepsilon}}(x_{i}, \omega_{i}) \overline{G_{\frac{c}{1+\varepsilon}}(x_{j}, \omega_{j})} - G_{c}(x_{i}, \omega_{i}) \overline{G_{c}(x_{j}, \omega_{j})} \right| = \\ &\frac{\left| \exp\left(i\frac{(1+\varepsilon)}{c}(\omega_{i}|x_{i}| - \omega_{j}|x_{j}|)\right) - \exp\left(i\frac{1}{c}(\omega_{i}|x_{i}| - \omega_{j}|x_{j}|)\right) \right|}{16\pi^{2}|x||x_{j}|} \\ &= \frac{\left| \sin\left(\frac{\varepsilon}{2c}(\omega_{i}|x_{i}| - \omega_{j}|x_{j}|)\right) \right|}{8\pi^{2}|x||x_{j}|}, \\ &\leq \frac{\varepsilon|\omega_{i}|x_{i}| - \omega_{j}|x_{j}|}{16\pi^{2}c|x||x_{j}|}, \\ &\leq \frac{\varepsilon}{c}|\omega_{i}|x_{i}| - \omega_{j}|x_{j}| |G_{c}(x_{i}, \omega_{i})||G_{c}(x_{j}, \omega_{j})|. \\ &\leq \varepsilon\eta|G_{c}(x_{i}, \omega_{i})||G_{c}(x_{j}, \omega_{j})|. \end{aligned}$$

Sparse filter for horizontal setting



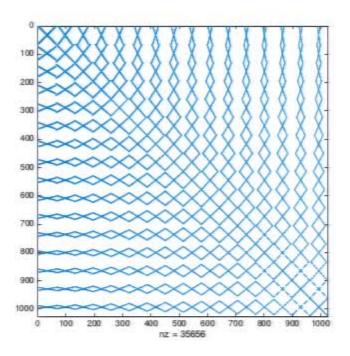


Figure: Sparse filter E for an horizontal array for 64 receivers and 16 frequencies for a speed error configuration

Error on receivers location

Filter for receivers location error

Suppose that the hypothetic linear forward operator F_h is given by

$$F_h s(x,\omega) = G_c(x + h(x), \omega) \hat{s} \left(\frac{\omega}{c} \frac{x + h(x)}{|x + h(x)|} \right), \tag{1}$$

where the error on the receivers location satisfies $\|h\|_{L^{\infty}(\Gamma)} \leq \varepsilon L$ and $\|h\|_{Lip(\Gamma)} \leq \varepsilon$. Fix a positive real number η and suppose that the sparse selector E satisfies

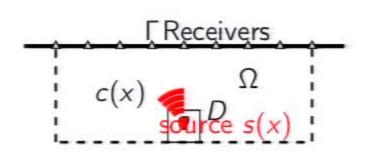
$$E_{i,j} = 1 \Rightarrow \max(\omega_i, \omega_j)|x_i - x_j| \leq \eta c$$
 and $L|\omega_i - \omega_j| \leq \eta c$.

Then the true source s satisfies

$$|F_h[s](F_h[s])^* - dd^*|_{E,2}^2 \le C\varepsilon^2\eta^2$$

000

Sparse filter for horizontal setting



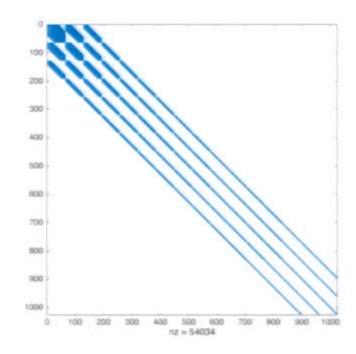


Figure: Sparse filter E for an horizontal array for 64 receivers and 16 frequencies for a receivers location error configuration.

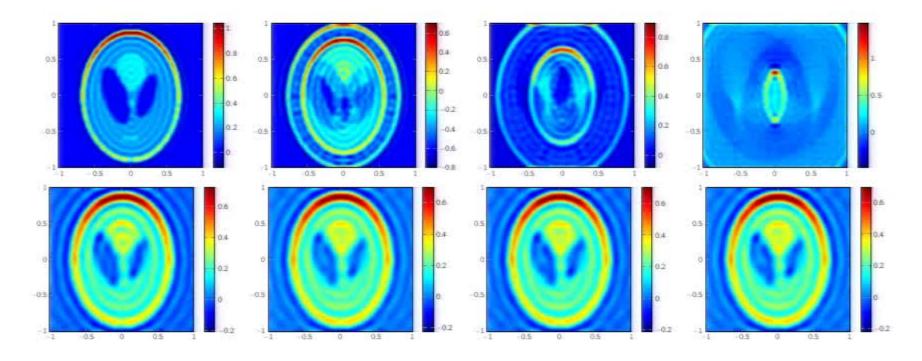


Figure: Least squares solutions and interferometric solution with constant error on the wave speed. From top to bottom, $\varepsilon=0,\ 0.1\%,\ 0.2\%,\ 0.5\%$ and 1%. Tested with 128 receivers on C(0,100), 128 frequencies from 2 to 64 and with $\eta=1$.

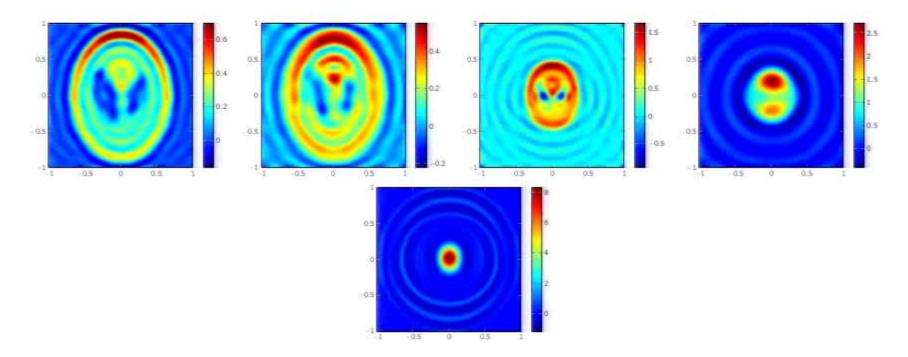
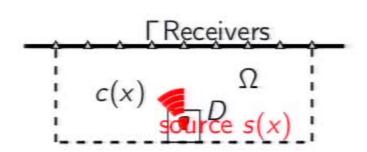


Figure: Interferometric solution with constant error on the wave speed. From top to bottom, $\varepsilon=0,\ 2\%,\ 5\%,\ 100\%,\ 200\%$ and 500%. Tested with 128 receivers on C(0,100), 128 frequencies from 2 to 64 and with $\eta=1$.

Sparse filter for horizontal setting



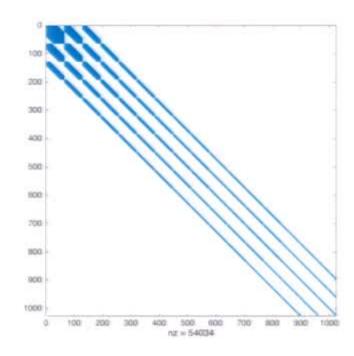


Figure: Sparse filter E for an horizontal array for 64 receivers and 16 frequencies for a receivers location error configuration.

Error on receivers location

Filter for receivers location error

Suppose that the hypothetic linear forward operator F_h is given by

$$F_h s(x,\omega) = G_c(x + h(x), \omega) \widehat{s} \left(\frac{\omega}{c} \frac{x + h(x)}{|x + h(x)|} \right), \tag{1}$$

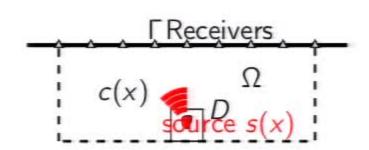
where the error on the receivers location satisfies $\|h\|_{L^{\infty}(\Gamma)} \leq \varepsilon L$ and $\|h\|_{Lip(\Gamma)} \leq \varepsilon$. Fix a positive real number η and suppose that the sparse selector E satisfies

$$E_{i,j} = 1 \Rightarrow \max(\omega_i, \omega_j)|x_i - x_j| \leq \eta c$$
 and $L|\omega_i - \omega_j| \leq \eta c$.

Then the true source s satisfies

$$|F_h[s](F_h[s])^* - dd^*|_{E,2}^2 \le C\varepsilon^2\eta^2$$

Sparse filter for horizontal setting



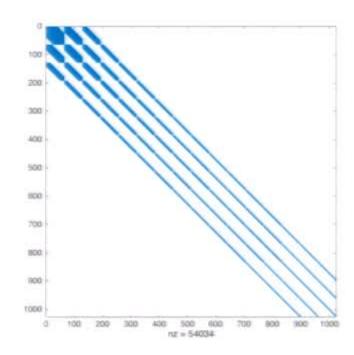


Figure: Sparse filter E for an horizontal array for 64 receivers and 16 frequencies for a receivers location error configuration.

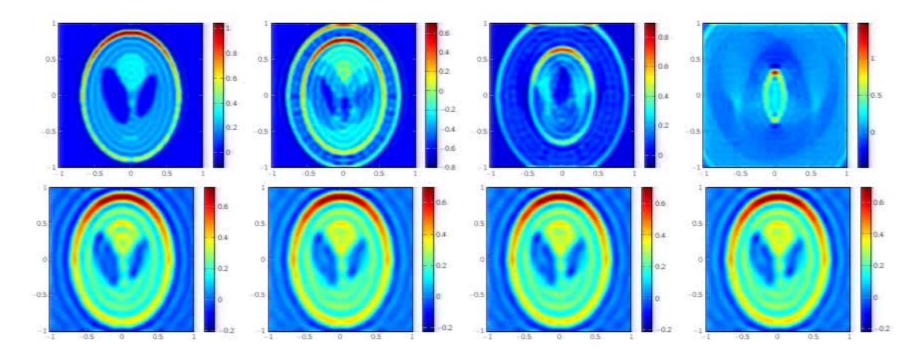
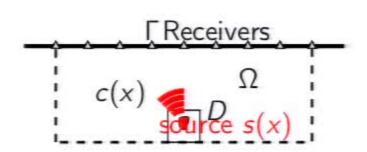


Figure: Least squares solutions and interferometric solution with constant error on the wave speed. From top to bottom, $\varepsilon=0,~0.1\%,~0.2\%,~0.5\%$ and 1%. Tested with 128 receivers on C(0,100),~128 frequencies from 2 to 64 and with $\eta=1$.

Sparse filter for horizontal setting



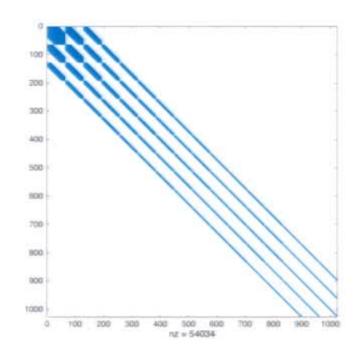


Figure: Sparse filter E for an horizontal array for 64 receivers and 16 frequencies for a receivers location error configuration.

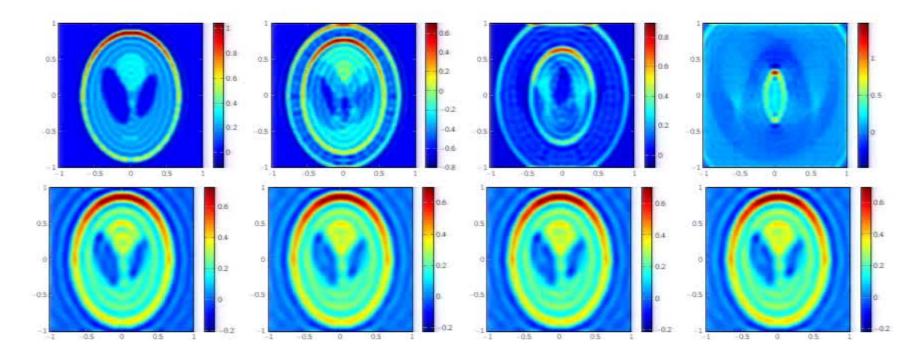


Figure: Least squares solutions and interferometric solution with constant error on the wave speed. From top to bottom, $\varepsilon=0,~0.1\%,~0.2\%,~0.5\%$ and 1%. Tested with 128 receivers on C(0,100),~128 frequencies from 2 to 64 and with $\eta=1$.

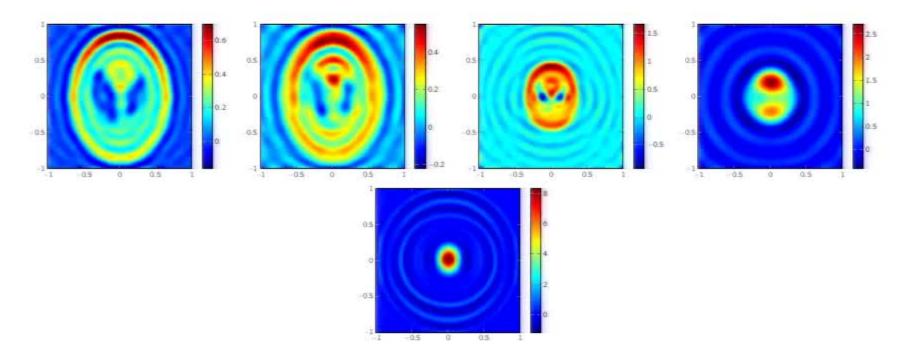


Figure: Interferometric solution with constant error on the wave speed. From top to bottom, $\varepsilon=0,\ 2\%,\ 5\%,\ 100\%,\ 200\%$ and 500%. Tested with 128 receivers on C(0,100), 128 frequencies from 2 to 64 and with $\eta=1$.

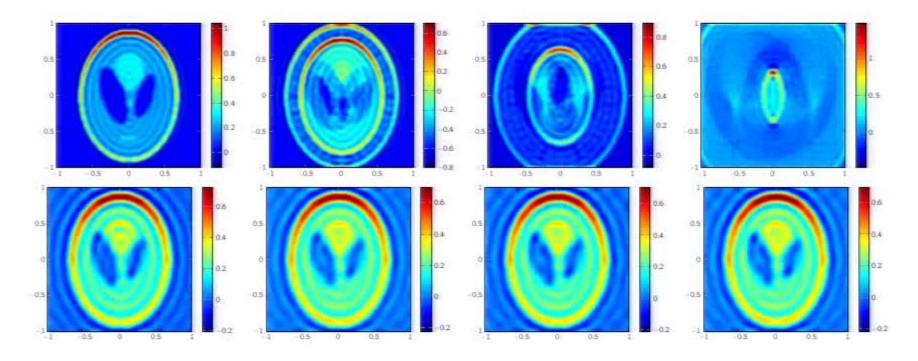


Figure: Least squares solutions and interferometric solution with constant error on the wave speed. From top to bottom, $\varepsilon=0,~0.1\%,~0.2\%,~0.5\%$ and 1%. Tested with 128 receivers on C(0,100),~128 frequencies from 2 to 64 and with $\eta=1$.

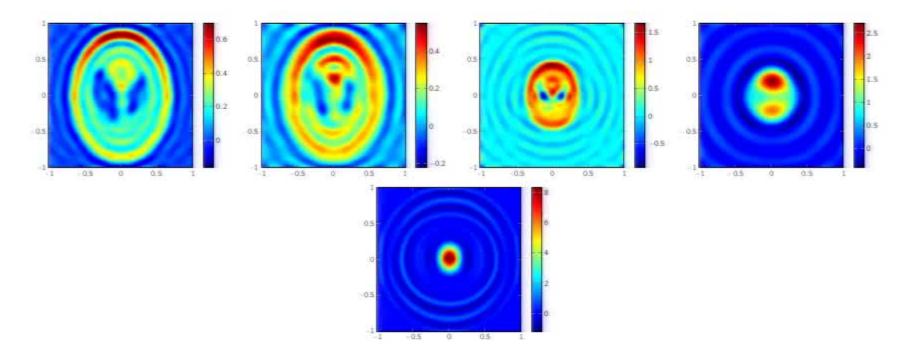
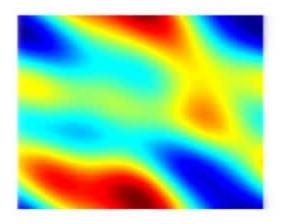


Figure: Interferometric solution with constant error on the wave speed. From top to bottom, $\varepsilon=0,\ 2\%,\ 5\%,\ 100\%,\ 200\%$ and 500%. Tested with 128 receivers on C(0,100), 128 frequencies from 2 to 64 and with $\eta=1$.

Non homogeneous medium

What happens in this medium ?



The phase differences cancellation principle says that we have to choose data pairs such that

$$\Delta_{i,j} = \omega_i T(x_i) - \omega_j T(x_j) - \left(\omega_i \frac{|x_i|}{c_0} - \omega_j \frac{|x_j|}{c_0}\right)$$

remains (bounded and small). And we have similar results than in the other cases.

Numerical Simulations

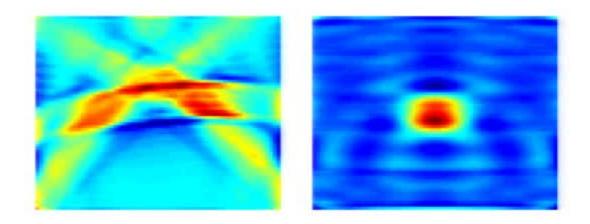
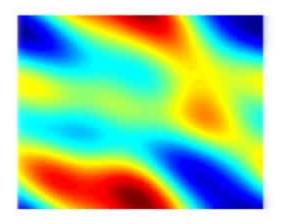


Figure: Reconstruction of a source square, (1) direct Least Squares, (2) interferometric method.

Non homogeneous medium

What happens in this medium ?



The phase differences cancellation principle says that we have to choose data pairs such that

$$\Delta_{i,j} = \omega_i T(x_i) - \omega_j T(x_j) - \left(\omega_i \frac{|x_i|}{c_0} - \omega_j \frac{|x_j|}{c_0}\right)$$

remains (bounded and small). And we have similar results than in the other cases.

Numerical Simulations

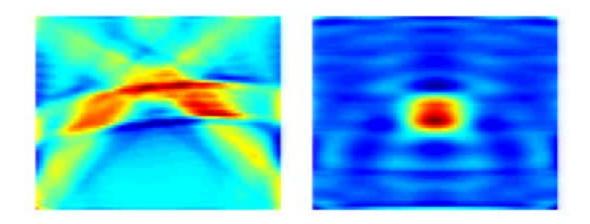
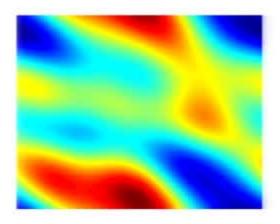


Figure: Reconstruction of a source square, (1) direct Least Squares, (2) interferometric method.

Non homogeneous medium

What happens in this medium ?



The phase differences cancellation principle says that we have to choose data pairs such that

$$\Delta_{i,j} = \omega_i T(x_i) - \omega_j T(x_j) - \left(\omega_i \frac{|x_i|}{c_0} - \omega_j \frac{|x_j|}{c_0}\right)$$

remains (bounded and small). And we have similar results than in the other cases.

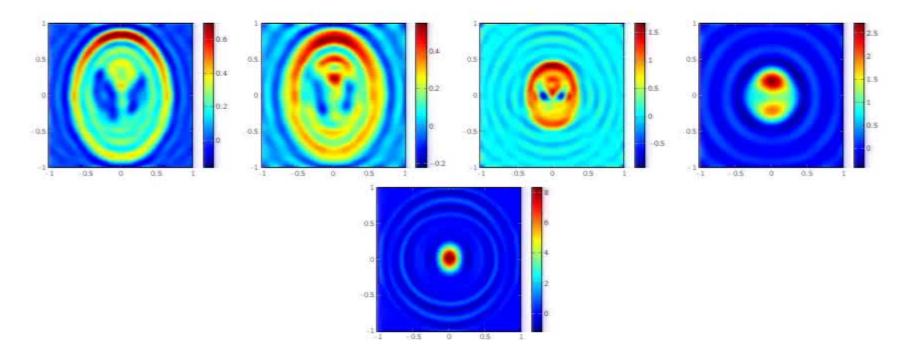
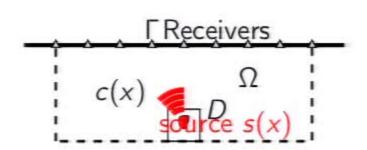


Figure: Interferometric solution with constant error on the wave speed. From top to bottom, $\varepsilon=0,\ 2\%,\ 5\%,\ 100\%,\ 200\%$ and 500%. Tested with 128 receivers on C(0,100), 128 frequencies from 2 to 64 and with $\eta=1$.

Sparse filter for horizontal setting



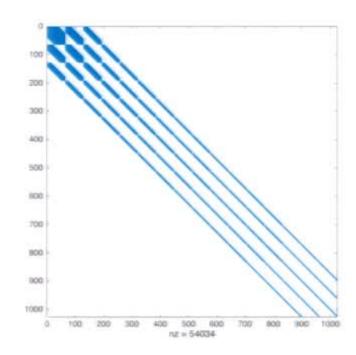


Figure: Sparse filter E for an horizontal array for 64 receivers and 16 frequencies for a receivers location error configuration.

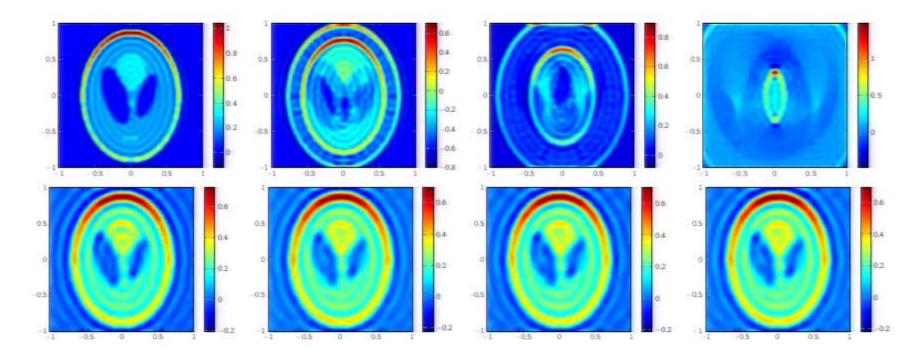


Figure: Least squares solutions and interferometric solution with constant error on the wave speed. From top to bottom, $\varepsilon=0,\ 0.1\%,\ 0.2\%,\ 0.5\%$ and 1%. Tested with 128 receivers on C(0,100), 128 frequencies from 2 to 64 and with $\eta=1$.

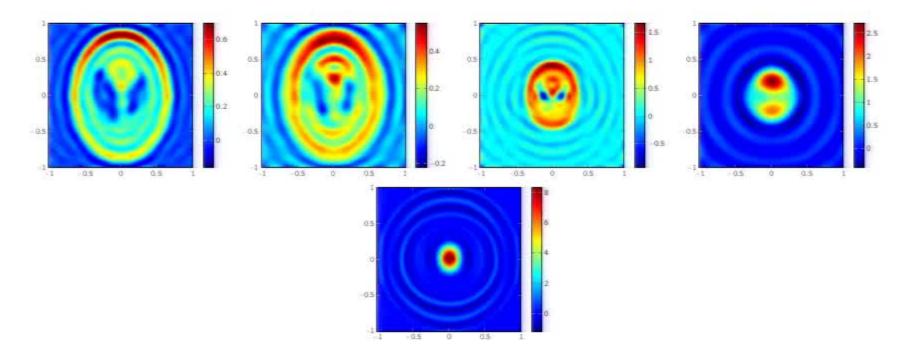
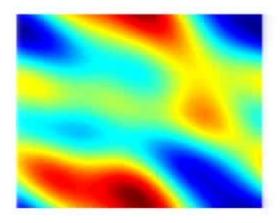


Figure: Interferometric solution with constant error on the wave speed. From top to bottom, $\varepsilon=0,\ 2\%,\ 5\%,\ 100\%,\ 200\%$ and 500%. Tested with 128 receivers on C(0,100), 128 frequencies from 2 to 64 and with $\eta=1$.

Non homogeneous medium

What happens in this medium ?



The phase differences cancellation principle says that we have to choose data pairs such that

$$\Delta_{i,j} = \omega_i T(x_i) - \omega_j T(x_j) - \left(\omega_i \frac{|x_i|}{c_0} - \omega_j \frac{|x_j|}{c_0}\right)$$

remains (bounded and small). And we have similar results than in the other cases.

Numerical Simulations

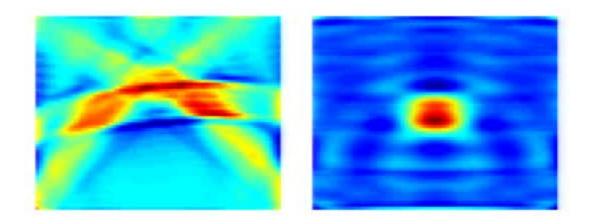


Figure: Reconstruction of a source square, (1) direct Least Squares, (2) interferometric method.

Relative error

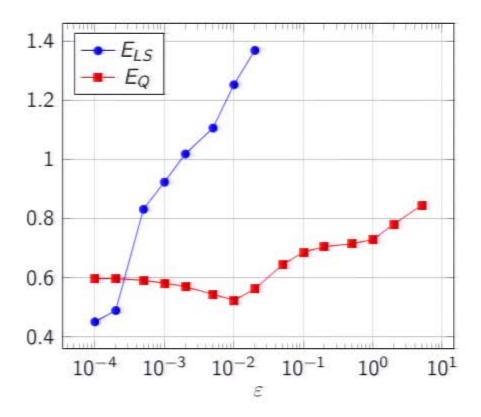


Figure: Relative L^2 -error on the source reconstruction with respect to the slowness error ε .

Numerical Simulations

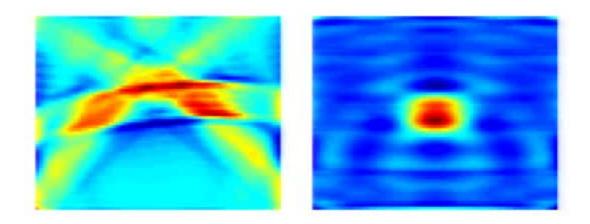


Figure: Reconstruction of a source square, (1) direct Least Squares, (2) interferometric method.

Relative error

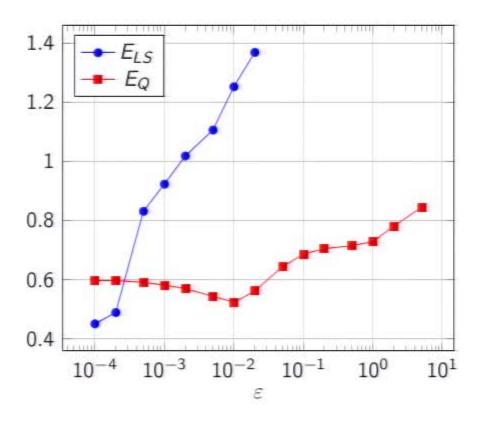


Figure: Relative L^2 -error on the source reconstruction with respect to the slowness error ε .