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Goal is to understand the dynamics associated with
perturbations of (small) spatially 27-periodic waves to
Klein-Gordon-like (KG) equations:

N
Ofu+ Mu+f(u)=0, M= ady, and |f(u)| = O(u?).
j=0
|deas also applicable to:
o KdV-like: du + dy (Mu + f(u, dcu, 32U, . . . )) —0
@ NLS-like



In traveling coordinates, z = x — ct, KG becomes

02U —2c05u+ (M +c?0u+f(u)=0, M= Za, o3

To understand the spectrum of the linearization use a
Bloch-wave decomposition of the eigenfunctions:

- 1 1
u(z, t) = Y(2)e*2e;  Y(z + 2rn) = P(2), —3 <K<z



KG spectrum with wave amplitude ~ 0.16:
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KG spectrum as a function of Bloch-wave parameter ;. with
wave amplitude ~ 0.11:
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In traveling coordinates, z = x — ct, KG becomes

02U —2c05u+ (M +c?0u+f(u)=0, M= Za, o7

To understand the spectrum of the linearization use a
Bloch-wave decomposition of the eigenfunctions:

- 1 1
u(z, t) = Y(2)e*2e;  Y(z + 2r) = P(2), —5 <H<s3
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Goal is to understand the dynamics associated with
perturbations of (small) spatially 27-periodic waves to
Klein-Gordon-like (KG) equations:

N
Ofu+ Mu+f(u)y=0, M= ady, and |f(u)| = O(L?).
j=0
ldeas also applicable to:
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@ NLS-like



In traveling coordinates, z = x — ct, KG becomes
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To understand the spectrum of the linearization use a
Bloch-wave decomposition of the eigenfunctions:
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KG spectrum as a function of Bloch-wave parameter ;. with
wave amplitude ~ 0.11:
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In addition to the unstable spectra emanating from the origin,
there are three bubbles of unstable specira.

Big question

Can an upper bound be placed on the total number of bubbles |
of unstable spectra for (at least) small waves? If so, under what
conditions? ’

Miller/Marangell showed that superliminal waves have an
infinite number of instability bubbles if the wave corresponds to
an infinite-gap potential of a corresponding Hill's equation.



Under reasonable assumptions the spectrum of the polynomial
operator,

Pa(A) = Ag + NA1 + p
satisfies:

@ the polynomial eigenvalues have the Hamiltonian spectral
symmetry {\, —\}

©@ point spectra only
© each polynomial eigenvalue has finite multiplicity
Q@ the only possible accumulation point is infinity.

For our purposes, the coefficients are smooth functions of the
Bloch-wave parameter, .



We are first concerned with determining the number of
(potentially) unstable polynomial eigenvalues in terms of the
coefficient operators. Set

@ k.: total number of real positive polynomial eigenvalues

Q@ k.: total number of complex polynomial eigenvalues with
positive real part and nonzero imaginary part.

The negative Krein index of a purely imaginary polynomial
eigenvalue, A\, with associated eigenspace, E,, is

k™ (%) =0 (=XoPs(N0)ly, )

The total negative Krein index, k., is the sum of k() for
each polynomial eigenvalue g € iR.

The Hamiltonian-Krein index is Kyam = K + k. + k.




The Hamiltonian-Krein index is Kyam = K + ke + k.

For Po(\) = Ag + A4 + N\2Z with Ay invertible,
Kiam = 1 (AO)

(Pelinovsky et al., Kapitula et al., Grillakis et al., others).

Under suitable (quite generic) assumptions, an underlying wave
Is orbitally stable if Ky.m = 0 (Grillakis et al.).




We wish to graphically locate those purely imaginary
polynomial eigenvalues with negative Krein signature. The
Krein matrix for a polynomial operator,

Pa(A) = Ag + A\Aq + p

for A\ =iz is:

+ZPQ(iZ)PSL(PS—’P2(iZ)PS—)1PS—P2(iZ)|S'

Here S is the finite-dimensional negative subspace for Ag (or
an approximation). For the problems at hand,

dim[S] = Kiam.

Polynomial eigenvalues are those values for which the Krein
matrix is singular.



The Krein eigenvalues, rj(z), for j=1,...,dim[S], are the
eigenvalues of the Krein matrix. The Krem eigenvalues satisfy:

@ if A =iz is an eigenvalue, then for some j, rj(z) = 0 with

: <0, Kk (iz)
fj(Zo){>O. K- (izo)

9 rj’(z) > 0 near poles (eigenvalues of Pg. P>(iz)Pg.)

@ each pole of the Krein matrix is a removable singularity for
all but one of the Krein eigenvalues.
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We wish to graphically locate those purely imaginary
polynomial eigenvalues with negative Krein signature. The
Krein matrix for a polynomial operator,

Pa(A) = Ag + A\Aq + \°T.

for A\ =iz is:

Ks(z) = —zPs(iz)|s - - -
+ZPQ(iZ)PSL(PS—’P2(iZ)PS—)A1PS—P2(iZ)|S'

Here S is the finite-dimensional negative subspace for Ag (or
an approximation). For the problems at hand,

dim[S] = Kitam.

Polynomial eigenvalues are those values for which the Krein
matrix is singular.



The Krein eigenvalues, rj(z), for j = 1,...,dim[S], are the
eigenvalues of the Krein matrix. The Krem eigenvalues satisfy:

@ if A =iz is an eigenvalue, then for some j, rj(z) = 0 with

: <0, Kk (iz)
G(Zo){>0‘ k- (izo)

@ ri(z) > 0 near poles (eigenvalues of Pg.P(iz)Ps.)

@ each pole of the Krein matrix is a removable singularity for
all but one of the Krein eigenvalues.
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Krein eigenvalue for small waves (~ 0.05) to KG:

04 03 02 -0l 0 0.1 0.2 0.3

0.01[
0
—0.01

0.15 0.16 0.17 0.18 0.19 0.2 0.21
z

= 0.2435



The number of instability bubbles for small waves is bounded
above by the number of (Krein eigenvalue) zero/pole collisions
for the unperturbed problem.

The Hamiltonian-Krein index:
@ determines the size of the Krein matrix

© gives an upper bound for the number of unstable
polynomial eigenvalues for a fixed value of L.

However, the index does not necessarily bound the total
number of instability bubbles.



Krein eigenvalue for small waves (~ 0.11) to KG:

04 03 02 =01 0 0.1 0.2 0.3
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Krein eigenvalue for small waves (~ 0.05) to KG:

04 -03 02 -0.1 0 0.1 0.2 0.3
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Krein eigenvalue for small waves (~ 0.11) to KG:

-04 -03 02 -0.1 0 0.1 0.2 0.3

0.02
0.01F
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Conclusion

The number of instability bubbles for small waves is bounded
above by the number of (Krein eigenvalue) zero/pole collisions
for the unperturbed problem.

The Hamiltonian-Krein index:
@ determines the size of the Krein matrix

© gives an upper bound for the number of unstable
polynomial eigenvalues for a fixed value of ..

However, the index does not necessarily bound the total
number of instability bubbles.



Krein eigenvalue for unperturbed KG:

-04 -03 02 -0.1 0

0.02
0.01F

—0.01}
—0.02

0.13 0.14 0.15 0.16 0.17 0.18 0.19
z

= 0.2725
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Krein eigenvalue for unperturbed KG (Kgam = 3):

-04 -03 02 -0.1 0 0.1 0.2 0.3

0.01F
0
—0.01}

0.15 0.16 0.17 0.18 0.19 0.2 0.21
z

n = 0.2435



The Krein eigenvalues, rj(z), for j=1,...,dim[S], are the
eigenvalues of the Krein matrix. The Kreln eigenvalues satisfy:

@ if A =iz is an eigenvalue, then for some j, rj(z) = 0 with

: <0, Kk (iz)
G(Zo){>0. K~ (izo)

@ ri(z) > 0 near poles (eigenvalues of Pg.P>(iz)Ps.)

@ each pole of the Krein matrix is a removable singularity for
all but one of the Krein eigenvalues.
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