Regularization Parameter Estimation: Stabilization of LSQR Algorithms by Iterative Reweighting for Inversion of 3D Gravity Data

Rosemary Renaut¹ Saeed Vatankhah²

1: School of Mathematical and Statistical Sciences, Arizona State University

2: University of Tehran

SIAM Imaging Sciences: May 2016

Outline

Motivation: Large Scale Gravity Inversion

Parameter estimation on the projected problem UPRE is a good estimator [RVA15] Identifying the weight parameter in the GCV [CNO08]

Identifying the optimal Subspace

Appearance of Noise in the Subspace [HPS09] Minimization of the GCV for the truncated SVD [CKO15]

Simulations: Two dimensional Examples

Iteratively Reweighted Regularization [LK83]

Inversion of undersampled gravity data

Conclusions

Observation point $\mathbf{r} = (x, y, z)$ Vertical gravitational attraction $g(\mathbf{r})$

$$g(\mathbf{r}) = \Gamma \int_{d\Omega} \varrho(\mathbf{r}') \frac{\mathbf{r}' - \mathbf{r}}{|\mathbf{r}' - \mathbf{r}|^3} d\Omega'$$

Density $\rho(\mathbf{r}')$ at $\mathbf{r}' = (x', y', z')$ Newton gravitational constant: Γ

Aim: Given surface observations g_{ij} find volume density ϱ_{ijk}

Gravity Measurements g_{ij} b on surface at m cells. Density ϱ_{ijk} x on volume of n cells. Projection matrix $A \in \mathbb{R}^{m \times n}$ Linear System $A\mathbf{x} \approx \mathbf{b}$:

- \blacktriangleright Severely Underdetermimed: $m \ll n$
- Noise contamination $\mathbf{b} = \mathbf{b}_{\mathsf{true}} + \boldsymbol{\eta}$
- Ill-posed: cond(A) large
- Relatively Large: e.g. m = 4588, n = 100936

Tikhonov Regularization:

$$\mathbf{x}(\lambda) = \operatorname*{argmin}_{\mathbf{x} \in \mathbb{R}^n} \{ \|A\mathbf{x} - \mathbf{b}\|_{W_{\eta}}^2 + \lambda^2 \|L(\mathbf{x} - \mathbf{x}_0)\|_2^2 \}$$

Mapping *L* defines basis for **x** with prior \mathbf{x}_0 Weighting $W_{\boldsymbol{\eta}} = C_{\boldsymbol{\eta}}^{-1}$, $\|\mathbf{y}\|_{W_{\boldsymbol{\eta}}} = \mathbf{y}^T W_{\boldsymbol{\eta}} \mathbf{y}$. Whitens noise in b.

Requires automatic estimation of λ^{opt}

Large Scale Problems use Iterative Solve (Notation)

LSQR Let $\beta_1 := \|\mathbf{b}\|_2$, and $\mathbf{e}_1^{(t+1)}$ first column of I_{t+1} Generate, lower bidiagonal $B_t \in \mathcal{R}^{(t+1) \times t}$, column orthonormal $H_{t+1} \in \mathcal{R}^{m \times (t+1)}$, $G_t \in \mathcal{R}^{n \times t}$

$$AG_t = H_{t+1}B_t, \quad \beta_1 H_{t+1}\mathbf{e}_1^{(t+1)} = \mathbf{b}.$$

Projected Problem on projected space:

$$\mathbf{w}_t(\boldsymbol{\zeta}_t) = \operatorname*{argmin}_{\mathbf{w} \in \mathcal{R}^t} \{ \|B_t \mathbf{w} - \beta_1 \mathbf{e}_1^{(t+1)}\|_2^2 + {\boldsymbol{\zeta}_t}^2 \|\mathbf{w}\|_2^2 \}.$$

Projected Solution depends on ζ_t^{opt}

$$\mathbf{x}_t(\boldsymbol{\zeta}_t^{\text{opt}}) = G_t \mathbf{w}_t(\boldsymbol{\zeta}_t^{\text{opt}})$$

Generally: $\zeta_t^{\text{opt}} \neq \lambda^{\text{opt}}$

 (i) Determine optimal t The choice of the subspace impacts the regularizing properties of the iteration: For large t noise due to numerical precision and data error enters the projected space.

(ii) Determine optimal ζ_t How do regularization parameter techniques translate to the projected problem?

(iii) Relation optimal ζ_t and optimal λ Given t how well does optimal ζ_t for projected space yield optimal λ for full space, or when is this the case? Residual: $\mathbf{R}^{\text{full}}(\mathbf{x}_t) = A\mathbf{x}_t - \mathbf{b}.$ Influence Matrix $A(\lambda) = A(A^TA + \lambda^2 I)^{-1}A^T$ UPRE : Full problem

$$\lambda^{\text{opt}} = \underset{\lambda}{\operatorname{argmin}} \{ \| \mathbf{R}^{\text{full}}(\mathbf{x}_t(\lambda)) \|_2^2 + 2 \operatorname{Tr}(A(\lambda)) - m \} = \underset{\lambda}{\operatorname{argmin}} \{ U^{\text{full}}(\lambda) \}.$$

Using the projected solution for parameter λ and $\operatorname{Tr}((AG_t)(\lambda)) = \operatorname{Tr}(B_t(\lambda))$

$$U^{\text{full}}(\lambda) = \| ((AG_t)(\lambda) - I_m) \mathbf{b} \|_2^2 + 2 \operatorname{Tr} ((AG_t)(\lambda)) - m$$

= $\| \beta_1 (B_t(\lambda) - I_{t+1}) \mathbf{e}_1^{t+1} \|_2^2 + 2 \operatorname{Tr} (B_t(\lambda)) - m$

 λ^{opt} for $U^{\mathrm{full}}(\lambda)$ can be estimated for projected problem

Is λ^{opt} relevant to ζ_t^{opt} for the projected problem?

Noise in the right hand side For $\mathbf{b} = \mathbf{b}^{true} + \boldsymbol{\eta}, \, \boldsymbol{\eta} \sim \mathbb{N}(0, I_m)$

$$\beta_1 \mathbf{e}_1^{t+1} = H_{t+1}^T \mathbf{b} = H_{t+1}^T \mathbf{b}^{\mathsf{true}} + H_{t+1}^T \boldsymbol{\eta}.$$

Noise in projected right hand side $\beta_1 \mathbf{e}_1^{t+1}$, satisfies $H_{t+1}^T \boldsymbol{\eta} \sim \mathbb{N}(0, I_{t+1})$

Immediately

 $U^{\text{proj}}(\zeta_t) = \|\beta_1(B_t(\zeta_t) - I_{t+1})\mathbf{e}_1^{(t+1)}\|_2^2 + 2\operatorname{Tr}(B_t(\zeta_t)) - (t+1)$ = $U^{\text{full}}(\zeta_t) + m - (t+1).$

Minimizer of $U^{\text{proj}}(\zeta_t)$ is minimizer of $U^{\text{full}}(\zeta_t)$

 ζ_t^{opt} calculated for projected problem may not yield λ^{opt} on full problem

 ζ_t^{opt} depends on *t*, λ^{opt} depends on $m^* =: \min(m, n)$

Trace Relations By linearity and cycling.

$$\operatorname{Tr}(A(\lambda)) = \operatorname{Tr}(A(A^T A + \lambda^2 I_n)^{-1} A^T) = m^* - \lambda^2 \sum_{i=1}^{m^*} (\sigma_i^2 + \lambda^2)^{-1}$$
$$\operatorname{Tr}(B_t(\zeta_t)) = t - \zeta_t^2 \sum_{i=1}^t (\gamma_i^2 + \zeta_t^2)^{-1}.$$

 $\begin{array}{l} \text{Approximate Singular Values IF } \sigma_i \approx \gamma_i, \ 1 \leq i \leq t^* \leq t, \\ \sigma_{t^*}^2/(\sigma_{t^*}^2 + \lambda^2) >> \sigma_i^2/(\sigma_i^2 + \lambda^2) \approx 0, \ i > t^*, \end{array}$

$$\operatorname{Tr}(A(\lambda)) \approx \operatorname{Tr}(B_{t^*}(\lambda)) + \sum_{i=t^*+1}^{m^*} \sigma_i^2 (\sigma_i^2 + \lambda^2)^{-1} \approx \operatorname{Tr}(B_{t^*}(\lambda)).$$

If t^* approx numerical rank A, $\zeta_t^{\text{opt}} \approx \lambda^{\text{opt}}$ for $\mathcal{K}_{t^*}(A^T A, A^T \mathbf{b})$

GCV: [CNO08] weighted GCV is introduced for $\omega > 0$.

$$G^{\text{proj}}(\zeta_t, \omega) = \frac{\|\mathbf{R}^{\text{proj}}(\mathbf{w}_t(\zeta_t))\|_2^2}{\left(\operatorname{Tr}(\omega B_t(\zeta_t) - I_{t+1})\right)^2}, \quad G(\lambda) = G^{\text{proj}}(\lambda, 1).$$

Optimal Analysing as for UPRE: $\omega = \frac{t+1}{m} < 1$. Discrepancy Principle Seek λ such that $\|\mathbf{R}^{\text{full}}(\mathbf{x}(\lambda))\|_2^2 = \delta \approx m$. To avoid over smoothing: $\delta = vm, v > 1$

Discrepancy for the Projected Problem Seek ζ_t such that

$$\|\mathbf{R}^{\mathrm{proj}}(\mathbf{w}_t(\boldsymbol{\zeta}_t))\|_2^2 \approx \delta^{\mathrm{proj}} = \upsilon(t+1).$$

We do not obtain in these cases $\zeta_t^{\mathrm{opt}} \approx \lambda^{\mathrm{opt}}$

Noise revealing function: [HPS09] suppose θ_j and β_j on diagonal and sub diagonal of B_t

$$\rho(t) = \prod_{j=1}^{t} (\theta_j / \beta_{j+1})$$

Optimal t is given by (for user determined t^{\min})

$$t^{\text{opt}-
ho} = \min\{\underset{t > t^{\min}}{\operatorname{argmax}}(
ho(t))\} + \mathsf{step}$$

step= 2 is to assure that noise has entered the entries in $\rho(t)$ and hence the basis.

 t^{\min} is chosen based on examination of $\rho(t)$.

Only useful if discrete Picard condition holds [HPS09].

Minimization of the GCV for the truncated SVD of B_{t^*} [CKO15] Projected subspace size is defined to be t^*

$$\mathcal{G}(t, t^*) = \frac{t^*}{(t^* - t)^2} \sum_{t+1}^{t^*} |\mathbf{u}_i^T \mathbf{b}|^2.$$

Optimal t is given by

$$t^{\text{opt}-\mathcal{G}} = \operatorname*{argmin}_{t} \mathcal{G}(t,t^*)$$

Does not require Picard condition, but $t^{\text{opt}-\mathcal{G}}$ depends on t^*

Application for Two Dimensional Examples

(a) Data

(b) Data

Figure: Data for grain and satellite images with blur and noise level 10%.

Noise Revealing Function $\rho(t)$: comparing $t^{\text{opt}-\rho}$, $t^{\text{opt}-\mathcal{G}}$, $t^{\text{opt}-\min}$

Figure: $\rho(t)$ using $t^{\min} = 25$. Dashed-dot $t^{\text{opt}-\rho}$, magenta $t^{\text{opt}-\mathcal{G}}$ and black $t^{\text{opt}-\min}$, location of minimum for $\rho(t)$ plus step.

Figure: Relative error (RE) with increasing t. Solid line in each case is solution with projection and without regularization.

UPRE, WGCV and PMDP outperform GCV

Solutions for different t^{opt} : (MIN, $t^{\text{opt}-\min}$, $t^{\text{opt}-\mathcal{G}}$, $t^{\text{opt}-\rho}$) Noise level 10%

(e) MIN 42 (f) 71 (g) 69 (h) 27

Figure: UPRE to find ζ . Solutions obtained for $t^{\text{opt}-\rho}$, $t^{\text{opt}-\min}$ and $t^{\text{opt}-\mathcal{G}}$ and MIN.

Solutions inadequate

Minimum Support Stabilizer Regularization operator $L^{(k)}$.

$$(L^{(k)})_{ii} = ((\mathbf{x}_i^{(k-1)} - \mathbf{x}_i^{(k-2)})^2 + \beta^2)^{-1/2} \quad \beta > 0$$

Parameter β ensures $L^{(k)}$ invertible Invertibility use $(L^{(k)})^{-1}$ as right preconditioner for A

$$(L^{(k)})_{ii}^{-1} = ((\mathbf{x}_i^{(k-1)} - \mathbf{x}_i^{(k-2)})^2 + \beta^2)^{1/2} \quad \beta > 0$$

Initialization $L^{(0)} = I$, $\mathbf{x}^{(0)} = \mathbf{x}_0$. (might be 0) Reduced System When $\beta = 0$ and $\mathbf{x}_i^{(k-1)} = \mathbf{x}_i^{(k-2)}$ remove column *i*, \hat{A} is AL^{-1} with columns removed.

Update Equation Solve $\hat{A}\hat{\mathbf{y}} \approx \mathbf{R} = \mathbf{b} - A\mathbf{x}^{(k-1)}$. With correct indexing set $\mathbf{y}_i = \hat{\mathbf{y}}_i$ if updated, else $\mathbf{y}_i = 0$.

$$\mathbf{x}^{(k)} = \mathbf{x}^{(k-1)} + \mathbf{y}$$

Cost of $L^{(k)}$ is minimal

Solutions t^{opt} after two steps IRR: (MIN, $t^{\text{opt}-\min}$, $t^{\text{opt}-\mathcal{G}}$, $t^{\text{opt}-\rho}$)

(a) 19 k = 3 (b) 21 (c) 27 (d) 29

(e) 35 (f) 71 (g) 69 (h) 27

Figure: IRR k = 2 Grain k = 2 MIN solution is at $t^{\text{opt}-\min}$, show k = 3.

Solutions are stabilized less dependent on t

Figure: Relative errors decrease initially with k and then increase. Dashed-dot $t^{\text{opt}-\rho}$, magenta $t^{\text{opt}-\mathcal{G}}$, black $t^{\text{opt}-\min}$.

Figure: Determining t^{opt} with k for 5% noise using $\rho(t)$. Stopping Critera : Grain k = 4 noise enters, use k = 2. Satellite k = 3 noise enters, use k = 1.

Solving the Gravity Inversion problem

Undersampled Gravity inversion m = 4900, n = 98000

Figure: (a) The perspective view of the model. Four different bodies embedded in an homogeneous background. Densities of A and B are 0.8 g cm^{-3} and C and D are 1 g cm^{-3} ; (b) The noise contaminated gravity anomaly due to the model.

Undersampled Gravity inversion

Figure: The reconstructed model with t = 250 and the L_1 stabilizer with $\beta^2 = 1.e-9$. Data misfit \star , the regularization term, +, regularization parameter \Box with iteration

True Data:

Figure: Residual Anomaly of Mobrun ore body, Noranda, Quebec, Canada.

Reconstructed Model

Figure: The reconstructed model with t = 300 and the L_1 stabilizer with $\beta^2 = 1.e-9$. (a) cross-section at y = 285 m and (b) comparison From lalango et.al (2014)

Figure: 3D view of the recovered model, the density cut off is 4 g cm^{-3} .

UPRE/WGCV regularization parameter estimation explained for projected problem.

 $\zeta_t^{\mathrm{opt}}, \lambda^{\mathrm{opt}}$ related across levels

Underdetermined problems are also solved.

Iteratively Reweighted Regularization stabilizes the projected solution

Sensitivity to choice of t^{opt} reduced by IRR

- t^{opt} can be estimated using ho(t), use $t^{\mathrm{opt}-\mathrm{min}}$ as independent of other parameters
- t^{opt} effectively determines a truncation of the SVD for B_t : use B_t and G_t , but truncated solution.

Some key references

Julianne M. Chung, Misha E. Kilmer, and Dianne P. O'Leary.

A framework for regularization via operator approximation. SIAM Journal on Scientific Computing, 37(2):B332–B359, 2015.

Julianne Chung, James G Nagy, and DIANNE P O'Leary. A weighted GCV method for Lanczos hybrid regularization. Electronic Transactions on Numerical Analysis, 28:149–167, 2008.

Iveta Hnětynková, Martin Plešinger, and Zdeněk Strakoš.

The regularizing effect of the Golub-Kahan iterative bidiagonalization and revealing the noise level in the data.

BIT Numerical Mathematics, 49(4):669-696, 2009.

B. J. Last and K. Kubik.

Compact gravity inversion. GEOPHYSICS, 48(6):713–721, 1983.

James G. Nagy, Katrina Palmer, and Lisa Perrone.

Iterative methods for image deblurring: A Matlab object-oriented approach. *Numerical Algorithms*, 36(1):73–93, 2004.

R. A. Renaut, S. Vatankhah, and V. E. Ardestani.

Hybrid and iteratively reweighted regularization by unbiased predictive risk and weighted gcv for projected systems, 2015.

submitted and at: http://arxiv.org/abs/1509.00096.