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Motivation: 3D Gravity Inversion

Observation point r = (x, y, z)

Vertical gravitational attraction g(r)

g(r) = Γ

∫
dΩ
%(r′)

r′ − r

|r′ − r|3
dΩ′

Density %(r′) at r′ = (x′, y′, z′)

Newton gravitational constant: Γ

Aim: Given surface observations gij find volume density %ijk



Discrete Inversion

Gravity Measurements gij b on surface at m cells.
Density %ijk x on volume of n cells.
Projection matrix A ∈ Rm×n

Linear System Ax ≈ b:
I Severely Underdetermimed: m� n
I Noise contamination b = btrue + η
I Ill-posed: cond(A) large
I Relatively Large: e.g. m = 4588, n = 100936

Tikhonov Regularization:

x(λ) = argmin
x∈Rn

{‖Ax− b‖2Wη
+ λ2‖L(x− x0)‖22}

Mapping L defines basis for x with prior x0

Weighting Wη = C−1
η , ‖y‖Wη = yTWηy. Whitens noise in b.

Requires automatic estimation of λopt



Large Scale Problems use Iterative Solve (Notation)

LSQR Let β1 := ‖b‖2, and e
(t+1)
1 first column of It+1

Generate, lower bidiagonal Bt ∈ R(t+1)×t, column
orthonormal Ht+1 ∈ Rm×(t+1) , Gt ∈ Rn×t

AGt = Ht+1Bt, β1Ht+1e
(t+1)
1 = b.

Projected Problem on projected space:

wt(ζt) = argmin
w∈Rt

{‖Btw − β1e
(t+1)
1 ‖22 + ζt

2‖w‖22}.

Projected Solution depends on ζtopt

xt(ζt
opt) = Gtwt(ζt

opt)

Generally: ζtopt 6= λopt



Regularization of the LSQR solution: Questions

(i) Determine optimal t The choice of the subspace impacts the
regularizing properties of the iteration: For large t
noise due to numerical precision and data error
enters the projected space.

(ii) Determine optimal ζt How do regularization parameter
techniques translate to the projected problem?

(iii) Relation optimal ζt and optimal λ Given t how well does
optimal ζt for projected space yield optimal λ for
full space, or when is this the case?



Calculating Unbiased Predictive Risk using wt(λ)[RVA15]

Residual: Rfull(xt) = Axt − b.
Influence Matrix A(λ) = A(ATA+ λ2I)−1AT

UPRE : Full problem

λopt = argmin
λ
{‖Rfull(xt(λ))‖22 + 2 Tr(A(λ))−m} = argmin

λ
{U full(λ)}.

Using the projected solution for parameter λ and
Tr ((AGt)(λ)) = Tr (Bt(λ))

U full(λ) = ‖ ((AGt)(λ)− Im)b‖22 + 2 Tr ((AGt)(λ))−m
= ‖β1(Bt(λ)− It+1)et+1

1 ‖22 + 2 Tr(Bt(λ))−m

λopt for U full(λ) can be estimated for projected problem



Deriving UPRE for the projected problem

Is λopt relevant to ζt
opt for the projected problem?

Noise in the right hand side For b = btrue + η, η ∼ N(0, Im)

β1e
t+1
1 = HT

t+1b = HT
t+1b

true +HT
t+1η.

Noise in projected right hand side β1e
t+1
1 , satisfies

HT
t+1η ∼ N(0, It+1)

Immediately

Uproj(ζt) = ‖β1(Bt(ζt)− It+1)e
(t+1)
1 ‖22 + 2 Tr(Bt(ζt))− (t+ 1)

= U full(ζt) +m− (t+ 1).

Minimizer of Uproj(ζt) is minimizer of U full(ζt)



ζt
opt calculated for projected problem may not yield λopt on full problem

ζt
opt depends on t, λopt depends on m∗ =: min(m,n)

Trace Relations By linearity and cycling.

Tr(A(λ)) = Tr(A(ATA+ λ2In)−1AT ) = m∗ − λ2
m∗∑
i=1

(σ2
i + λ2)−1

Tr(Bt(ζt)) = t− ζt2
t∑
i=1

(γ2
i + ζt

2)−1.

Approximate Singular Values IF σi ≈ γi, 1 ≤ i ≤ t∗ ≤ t,
σ2
t∗/(σ

2
t∗ + λ2) >> σ2

i /(σ
2
i + λ2) ≈ 0, i > t∗,

Tr(A(λ)) ≈ Tr(Bt∗(λ)) +

m∗∑
i=t∗+1

σ2
i (σ

2
i + λ2)−1 ≈ Tr(Bt∗(λ)).

If t∗ approx numerical rank A, ζtopt ≈ λopt for Kt∗(ATA,ATb)



Other Estimation Techniques for the Projected Problem

GCV: [CNO08] weighted GCV is introduced for ω > 0.

Gproj(ζt, ω) =
‖Rproj(wt(ζt))‖22

(Tr(ωBt(ζt)− It+1))2 , G(λ) = Gproj(λ, 1).

Optimal Analysing as for UPRE: ω = t+1
m < 1.

Discrepancy Principle Seek λ such that
‖Rfull(x(λ))‖22 = δ ≈ m. To avoid over smoothing:
δ = υm, υ > 1

Discrepancy for the Projected Problem Seek ζt such that

‖Rproj(wt(ζt))‖22 ≈ δproj = υ(t+ 1).

We do not obtain in these cases ζtopt ≈ λopt



Identifying optimal subspace size t

Noise revealing function: [HPS09] suppose θj and βj on
diagonal and sub diagonal of Bt

ρ(t) =

t∏
j=1

(θj/βj+1)

Optimal t is given by (for user determined tmin)

topt−ρ = min{argmax
t>tmin

(ρ(t))}+ step

step= 2 is to assure that noise has entered the entries in
ρ(t) and hence the basis.

tmin is chosen based on examination of ρ(t).

Only useful if discrete Picard condition holds [HPS09].



Identifying optimal subspace size t:

Minimization of the GCV for the truncated SVD of Bt∗ [CKO15]
Projected subspace size is defined to be t∗

G(t, t∗) =
t∗

(t∗ − t)2

t∗∑
t+1

|uTi b|2.

Optimal t is given by

topt−G = argmin
t
G(t, t∗)

Does not require Picard condition, but topt−G depends on t∗



Application for Two Dimensional Examples



Two dimensional image deblurring [NPP04] Problem size 256× 256

(a) Data (b) Data

Figure: Data for grain and satellite images with blur and noise level
10%.



Noise Revealing Function ρ(t): comparing topt−ρ, topt−G , topt−min
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Figure: ρ(t) using tmin = 25. Dashed-dot topt−ρ, magenta topt−G and
black topt−min, location of minimum for ρ(t) plus step.



Evaluating Image Quality : Relative error
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Figure: Relative error (RE) with increasing t. Solid line in each case
is solution with projection and without regularization.

UPRE, WGCV and PMDP outperform GCV



Solutions for different topt: (MIN, topt−min, topt−G , topt−ρ) Noise level 10%

(a) MIN 22 (b) 21 (c) 27 (d) 29

(e) MIN 42 (f) 71 (g) 69 (h) 27

Figure: UPRE to find ζ. Solutions obtained for topt−ρ, topt−min and
topt−G and MIN.

Solutions inadequate



Iteratively Reweighted Regularization [LK83]

Minimum Support Stabilizer Regularization operator L(k).

(L(k))ii = ((x
(k−1)
i − x

(k−2)
i )2 + β2)−1/2 β > 0

Parameter β ensures L(k) invertible
Invertibility use (L(k))−1 as right preconditioner for A

(L(k))−1
ii = ((x

(k−1)
i − x

(k−2)
i )2 + β2)1/2 β > 0

Initialization L(0) = I, x(0) = x0. (might be 0)

Reduced System When β = 0 and x
(k−1)
i = x

(k−2)
i remove

column i, Â is AL−1 with columns removed.
Update Equation Solve Âŷ ≈ R = b−Ax(k−1). With correct

indexing set yi = ŷi if updated, else yi = 0.

x(k) = x(k−1) + y

Cost of L(k) is minimal



Solutions topt after two steps IRR: (MIN, topt−min, topt−G , topt−ρ)

(a) 19 k = 3 (b) 21 (c) 27 (d) 29

(e) 35 (f) 71 (g) 69 (h) 27

Figure: IRR k = 2 Grain k = 2 MIN solution is at topt−min, show k = 3.

Solutions are stabilized less dependent on t



Relative error with k: 5% error using UPRE
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Figure: Relative errors decrease initially with k and then increase.
Dashed-dot topt−ρ, magenta topt−G , black topt−min.



Noise revealing function ρ(t) with k 5% error
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Figure: Determining topt with k for 5% noise using ρ(t). Stopping
Critera : Grain k = 4 noise enters, use k = 2. Satellite k = 3 noise
enters, use k = 1.



Solving the Gravity Inversion problem



Undersampled Gravity inversion m = 4900, n = 98000

Figure: (a) The perspective view of the model. Four different bodies
embedded in an homogeneous background. Densities of A and B are
0.8 g cm−3 and C and D are 1 g cm−3; (b) The noise contaminated
gravity anomaly due to the model.



Undersampled Gravity inversion

Figure: The reconstructed model with t = 250 and the L1 stabilizer
with β2 = 1.e−9. Data misfit ?, the regularization term, +,
regularization parameter � with iteration



True Data:

Figure: Residual Anomaly of Mobrun ore body, Noranda, Quebec,
Canada.



Reconstructed Model

Figure: The reconstructed model with t = 300 and the L1 stabilizer
with β2 = 1.e−9. (a) cross-section at y = 285 m and (b) comparison
From Ialango et.al (2014)



3−D perspective

Figure: 3D view of the recovered model, the density cut off is
4 g cm−3.



Conclusions

UPRE/WGCV regularization parameter estimation explained
for projected problem.

ζt
opt, λopt related across levels

Underdetermined problems are also solved.
Iteratively Reweighted Regularization stabilizes the projected

solution
Sensitivity to choice of topt reduced by IRR

topt can be estimated using ρ(t), use topt−min as
independent of other parameters

topt effectively determines a truncation of the SVD for
Bt: use Bt and Gt, but truncated solution.
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