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Projected Data Assimilation — Introduction

Inverse Problem
Consider a discrete time stochastic model

un+1 = Fn(un) + ωn, n = 0, 1, ... (1)

where un ∈ IRN are the state variables at time n and, e.g.,
ωn ∼ N (0,Σ), i.e., drawn from a normal distribution with mean
zero and model error covariance Σ.

Let the sequence {ut0, ut1, . . . } denote the unknown “truth.”

As each time tn is reached we collect an observation yn related to
utn via

yn = Hutn + ηn, yn ∈ IRM (2)

where H : IRN → IRM , M ≤ N , is the observation operator, and,
e.g., ηn ∼ N (0,R).

In general the observation operator can be nonlinear.
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Projected Data Assimilation — Projected DA

Projected Physical Model

Consider a nonlinear evolution equation (solution operator of a
model)

un+1 = Fn(un;α), n = 0, 1, ..., N

where

I un are the state variables at time n,

I α are adjustable model parameters, e.g., global in time.

Write un = u
(0)
n + δn.

If we can decompose the time dependent tangent space into slow
variables and fast variables, then we write δn = Πnδn + (I −Πn)δn.

Rewrite original nonlinear evolution approximately as two
subsystems ...
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Projected Data Assimilation — Projected DA

For k = 0, 1, 2, ... (k like Newton iterate)

P System: [u
(k)
n and u

(k)
n+1 known (d+n := Πnδn,∀n)]

u
(k)
n+1 + d+n+1 = Πn+1Fn(u(k)n + d+n ),

Update: u
(k+ 1

2
)

n = u
(k)
n + d+n , n = 0, 1, ..., N − 1,

I-P System: [u
(k+ 1

2
)

n and u
(k+ 1

2
)

n+1 known (d−n := (I −Πn)δn,∀n)]

u
(k+ 1

2
)

n+1 + d−n+1 = (I −Πn+1)Fn(u
(k+ 1

2
)

n + d−n ),

Update: u
(k+1)
n = u

(k+ 1
2
)

n + d−n , n = 0, 1, ..., N − 1.

Πn can be Π
(k)
n or also Π

(k+1/2)
n .
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Projected Data Assimilation — Projected DA

Forming time dependent projections

Discrete QR algorithm for determining Lyapunov exponents,
Sacker-Sell spectrum, local in time stability information, etc.:

For Q0 ∈ IRN×p random such that QT
0Q0 = I,

Qn+1Rn = F ′n(un)Qn ≈
1

ε
[Fn(un + εQn)− Fn(un)], n = 0, 1, ...

where QT
n+1Qn+1 = I and Rn is upper triangular with positive

diagonal elements.

Orthogonal Projections:

Πn = QnQ
T
n , I −Πn = I −QnQ

T
n
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Projected Data Assimilation — Projected DA

Roughly speaking the first subsystem contains the slow variables
(positive, zero, and slightly negative Lyapunov exponents) and the
second subsystem contains the fast variables (strongly negative).

Importance of observations rich in unstable subspace

I Assimilation in the Unstable Subspace (AUS) [Carrassi, Trevisan, Uboldi

’07 Tellus, Carrassi, Ghil, Trevisan, Uboldi ’08 Chaos, Trevisan, D’Isidoro, Talagrand ’10 Q.J.R. Meteorol.

Soc., Palatella, Carrassi, Trevisan ’13 J. Phys A, ...]

I Error analysis in DA for hyperbolic system [González-Tokman, Hunt ’13

Phys D]

I Adaptive observation operators and unstable subspace [K.J.H. Law,

D. Sanz-Alonso, A. Shukla, A.M. Stuart ’16 Phys D, ...]

I Filter stability, convergence of covariances matrices in
unstable subspace [Bosquet etal. ’17 SIAM UQ, Grudzien etal. ’18 SIAM UQ, Frank and

Zhuk ’18 Nonlin, ...]
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Projected Data Assimilation — Projected DA

Example: AUS

Consider a linear (or linearized) physical model

un+1 = Anun + ωn, ωn ∼ N (0,Σ)

together with a linear data model yn = Hun + ηn, ηn ∼ N (0,R).

Projecting the physical model we have

Πn+1un+1 = Πn+1AnΠnun + Πn+1ωn

Using Qn+1Rn = AnQn, letting vn = Πnun, xn = QT
nvn = QT

nun,

vn+1 = Qn+1RnQ
T
nvn + Πn+1ωn, xn+1 = Rnxn +QT

n+1ωn

[Πn+1ωn ∼ N (0,Πn+1ΣΠn+1), QT
n+1ωn ∼ N (0, QT

n+1ΣQn+1)]
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Projected Data Assimilation — Projected DA

EKF-AUS
For the unprojected physical and data models, the extended
Kalman filter calculates the exact posterior un|yn ∼ N (uan, P

a
n ),

where the analysis variables are

uan =ufn + Kn(yn −Hufn) , (3)

P a
n = (I−KnH)P f

n . (4)

The matrix Kn is the Kalman gain

Kn = P f
nHT

(
HP f

nHT + R
)−1

. (5)

The superscript f is used for forecast mean and covariance,

ufn = An−1u
a
n−1 + ωn−1 ,

P f
n = An−1P

a
n−1A

T
n−1 + Σ .

EKF-AUS is obtained by forming ũfn = Πnu
f
n, P̃ f

n = ΠnP
f
n Πn,

etc..
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Projected Data Assimilation — Projected DA

Example: Projected DA
Techniques for P System:

I Particle filters,

I Residual correction (Pseudo Orbit DA (PDA) [Du & Smith I & II, ’14 J.

Atmos. Sci. 2014],

I Shadowing refinement [Grebogi, Hammel, Yorke, and Sauer, Phys Rev Lett (1990)]

I Strong model constraint G(u) = 0 where
G(u)n ≡ un+1 − Fn(un;α), n = 0 : N ,

I Solve BVP with no BCs (more unknowns than constraints),
I Small Gauss-Newton updates δ = −DG(u)†G(u),
I Dimension reduction with projection (Πn = QnQ

T
n ).

Techniques I-P System:

I Techniques such as ETKF, LETKF, No DA, ...
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Projected Data Assimilation — Projected DA

Shadowing Refinement and Parameter Estimation

In [B. de Leeuw, S. Dubinkina, J. Franks, A. Steyer, X. Tu, EVV, “Projected Shadowing Based Data

Assimilation,” (2018) SIAM J. Appld. Dyn. Sys. ]
developed an interval sequential/smoothing technique where

all observations over each subinterval are employed simultaneously,
using

I P: Shadowing refinement and parameter estimation
I G = G(u,α), augment parameters as variables but don’t add
α̇ = 0 (neutral modes),

I G-N update of parameters using Sherman-Morrison-Woodbury,

I I-P: Insertion synchronization/no DA, enforcing continuity
between subintervals in the I − P components.
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Projected Data Assimilation — Projected Data Model

Projected Data Model (Πn = QnQ
T
n )

Consider linear observation operator H with full row rank.

I [Original]
yn = Hun + ηn, ηn ∼ N (0,R)

I [Map to phase space]

ỹn = H†yn = ΠHun + H†ηn,H
†ηn ∼ N (0,H†R(H†)T )

where H† = HT (HHT )−1, ΠH = HT (HHT )−1H = H†H,
I [Projected]

ypn = ΠnH†yn ≡ Hp
nun + γn, γn ∼ N (0,Rp

n),

where Rp
n = ΠnH†R(H†)TΠn and Hp

n = ΠnH†,
I [Reduced dimensional projected representation]

yqn = QT
nH
†yn ≡ Hq

nun + γn, γn ∼ N (0,Rq
n),

where Rq
n = QnH†R(H†)TQT

n and Hq
n = QT

nH†.
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Projected Data Assimilation — Projected Data Model

Properties

Theorem: p(yq|u) = p(yp|u) (with the observation error
covariances Rq

n and Rp
n).

If HQ̃n is full rank, then the covariance matrix Rq
n of yqn is

invertible and yqn, e.g., has a standard normal distribution.

Convergence: Using Bayes’ rule and p(u|y, yq) = p(u|y),

p(u|yq) = p(u|y)
p(y|yq)
p(y|u, yq)

.
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Projected Data Assimilation — Projected Data Model

Examples

I Projected Physical Model (EKF-AUS)
Kalman gain

Kn =ΠnP
f
n ΠnHT

[
HΠnP

f
n ΠnHT + R

]−1
, (6)

Innovation: yn −Hufn.

I Projected Data Model (Proj-EKF)
Kalman gain

Kn = P f
n ΠHΠn

[
ΠnH†

(
HP f

nHT + R
)

(H†)TΠn

]†
, (7)

Innovation: ypn −ΠnΠHu
f
n.
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Projected Data Assimilation — Proj-PF

Example: Projected Data PF

Basic Particle Filter: Suppose that at time n− 1 we have the
posterior distribution (uin−1, w

i
n−1), i = 1, ..., L, supported on

uin−1 with weights wi
n−1 (wi

n−1 ≥ 0 and
∑L

i=1w
i
n−1 = 1).

Prediction. Propagate uin = Fn−1(u
i
n−1) + ωn−1.

Filtering. Update weights {wi
n−1}Li=1 by wi

n = cwi
n−1p(yn|uin).

Algorithm 1. [Proj-PF]
(Project data only, and discard the orthogonal component):
Apply a standard DA scheme, e.g., particle filter, using the
unprojected forecast model, but replace the standard data model
with the projected data yqn. The observation operator is replaced
by Hq

n, and the covariance matrix of the observations is replaced
by Rq

n.
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Projected Data Assimilation — Proj-PF

Numerical Results: Linear Problem
Suppose that forecasts are made with a physical model of the form

du

dt
= Au+ σẆ ,

where W is a Wiener process. A has w eigenvalues with small real
part Re(λi) ∈ (0, 0.04), the rest have real part Re(λi) ≤ −100.

0 2 4 6 8 10

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
M

S
 e

rr
o
r

PF

PF-AUS

Observation error

(a) Observations of all 100
variables. Mean RMSE: 0.21
PF, 0.04 Proj-PF.
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(b) Observations of 50
variables. Mean RMSE: 0.09
PF, 0.04 Proj-PF.
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Projected Data Assimilation — Proj-PF

Numerical Results: Linear Problem
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(c) Observations of 25
variables. Mean RMSE: 0.15
PF, 0.05 Proj-PF.
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(d) Observations of two
variables. Mean RMSE: 0.03
PF, 0.03 Proj-PF.

Comparison of PF to Algorithm 1 Proj-PF (p = 2).

Proj-PF performs well independent of number of observed
variables.
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Projected Data Assimilation — Proj-PF

Numerical Results: Linear Problem

Collect observations every 0.1 time units with 100 observations.

Small measurement error covariance R = 0.052I and model noise
σ = 0.05.

Both PF algorithms resample if the ESS := 1/(
∑L

i=1(w
i)2) drops

below half the number of particles, which is 1000.

On resampling, noise is added to every variable with a standard
deviation of 0.02.
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Projected Data Assimilation — Proj-OP-PF

Projected Optimal Proposal (Proj-OP-PF)

Algorithm 2. [Proj-OP-PF]

I Employ optimal proposal density p(uin|uin−1, yn) instead of
p(uin|uin−1) ∼ N (Fn−1(u

i
n−1),Σ).

I Compute the weight update using the projected data model.

We make the following modification to resampling in Proj-OP-PF:

Algorithm 3. [Proj-Resamp]
(Resampling in the Unstable Subspace):

I Generate the usual noise after resampling,

I Multiply this random vector by αΠn + (1− α)I, α ∈ [0, 1].
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Projected Data Assimilation — Proj-OP-PF

Numerical Results: Projected OP-PF, Lorenz ’96

Consider for i = 1, ..., 40 and F = 8,

u̇i = (ui+1 − ui−2)ui−1 − ui + F . (8)

≈ 13 positive Lyapunov exponents, Lyapunov dimension ≈ 28.

We implement Algorithms 2 and 3, Proj-OP-PF/Proj-Resamp, and
compare to OP-PF and LETKF.

Localized to 12 variables and with inflation 1.02,
Moderate model noise Σ = (0.3)2I, large data error R = 1I,
Tight ensemble spread of S.D. 0.01 with initial RMSE of 1.5.
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Projected Data Assimilation — Proj-OP-PF

Parameter regime difficult for the OP-PF.

0 0.2 0.4 0.6 0.8

Time

0.5

1

1.5

2

2.5

3

R
M

S
 e

rr
o
r

Optimal Proposal PF

Optimal Proposal PF-AUS

LETKF

Observation error

Compare OP-PF, LETKF, Proj-OP-PF with p = 2
Resampling on 30% of steps (99.5% of steps for OP-PF).
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Projected Data Assimilation — Projections

Sources of Projections

I AUS type projections,

I Dynamically Orthogonal (DO) projections, see, e.g., the
blended particle filter approach of Qi and Majda ’15,

I Coherent structure DA, e.g., Maclean, Santitissadeekorn, and
Jones ’17,

I More generally, projection based dimension reduction
techinques for models and data: Reduced Order Modeling
(ROM), Inertial manifold, PCA, POD, K-L, ...

In general: Different projections may be utilized for the physical
model and for the data model.
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Projected Data Assimilation — Projections

What’s next ...

Chopping up the unstable subspace into bite sized pieces.

I Working with nested subspaces and filtrations.

I Both parallel and serial techniques.

I In P many possible combinations of projections, projected
models and data, and algorithmic development.
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