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Motivation
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• Metamaterials are heterogeneous materials microscopically engineered 
to exhibit properties that cannot be found in homogeneous materials

• Study wave propagation in metamaterials: photonic bandgap

waveguide splitter

applications        waveguides, fibers, cavities...

photonic crystal



Motivation: Photonic Bandgap
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Remove rod +15% permittivity -3% radius

Highly sensitive to material properties and geometry variations

Accurate simulations are required



Problem statement
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Consider the Helmholtz equation in 2d

�r · (⇢(x)ru)� k2(x)u = f

where                  represent material properties⇢(x), k2(x)

✓ Time-harmonic solutions of scalar wave equation
✓ 2d Maxwell’s equations for TE and TM polarizations

Wave propagation is considered for structured materials

⌦
Material 1

Material 2

⇢(x), k2(x)
piecewise constant

⇢(x), k2(x)

TE: u = Hz

TM: u = Ez

+ B.C.

⌦ =
M[

m=1

⌦m



Objectives
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Simulate wave propagation in structured media

• Wave equation is non-coercive, need high accuracy
• Complex geometries, repeated patterns, mismatch in length scales

Stochastic simulation of wave propagation

Develop methods for robust design of 
heterogeneous materials to control wave propagation

• Framework to deal with geometry variations
• Models are expensive: develop surrogates, use control variates



MultiScale continuous Galerkin (MSCG) method
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Identify repeated geometries in domain

Discretize subdomains and global skeleton

Local problem

High-order CG 
discretization

Capture small features

Global problem

Lagrange polynomial for 
solution on global faces
Capture frequencies on 
large scale

two classes of subdomains



MultiScale CG - Local problem
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For every subdomain     , solve Helmholtz equation ⌦m

1. Source problem

2. Inhomogeneous Dirichlet given by 

Auf = f

'j , 1  j  J Au'j = d'j

'

u'j

1

0

1

-1

uf



MultiScale CG - Global problem
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The contribution of each subdomain to the global problem is

On the subdomain level we apply linearity 
and superposition 

Solve the global problem                

u = uf +
JX

j=1

�ju'j

Ki j = uT'iAu'j , 1  i , j  J

Fi = u
T
'i f, 1  i  J

K⇤ = F



Simulation of waveguide bends
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Photonic crystals are expensive to simulate given the complexity of the 
geometry

Subdomain dof

Skeleton dof   15K

415 x 1K = 0.5M
320 x 17K = 5.4M

MSCG solution in < 3s

 PML

Bandgap

Results for 

1

-1

! a

2⇡c
2 [0.42, 0.456]

! a

2⇡c
= 0.454



Reference domain formulation
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Reformulate governing equations [Persson et.al. 09]  with deformation mapping 
parametrized by y

reference physical

�r · (⇢(x)ru)� k2(x)u = f�rr · (⇢(X)gG�1G�Trru)
�k2(X)u g = f g

X x

x = G(X, y)
NdS

nds

Ωr
Ω

G = ∇rG
g = detG



MSCG for geometry variations
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Analyze response of a structured medium under geometry variations

reference radius

dilation nonhomogeneous
manufacturing
errors

modeled with 
random field

uniform r.v.

variance and 
correlation length

Nanogaps of Al2O3 on gold substrate
[Yoo et al. 2016]

r ! r + �r = r + r

 

1 + y1
p
�0 +

DX

d=1

p
�d (y2d sin ✓d + y2d+1 cos ✓d)

!

✓



Stochastic simulation of waveguide
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✓ Radius of rods modeled with 15 r.v. (90% energy)
✓ Relative radius perturbation             
✓ Independent realizations of errors for each rod

1

-1

|�r |/r < 0.05

no longer capitalize repetition of subdomains



Reduced basis for MSCG (1/2)
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Reduced basis for multiscale CG and geometry parameters

✓ Empirical interpolation [Barrault et al. 04] for parameter dependent 
mapping             

✓ RB for each type of subdomain [Huynh et al. 13]

Develop an accurate surrogate efficient to evaluate
• Proper orthogonal decomposition [Sirovich 87]
• Reduced basis method [Noor et al. 80, Rozza et al. 08,...]

G(y)
A(y)u'j = d'j (y)

QX

q=1

�q(y)Aqu'j =
QX

q=1

�q(y)dq,'j



Reduced basis for MSCG (2/2)
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✓ Single RB  Z  compressing snapshots for all 
    Dirichlet BC           

'✓ For each Dirichlet BC    , compute snapshots 
    sampling y          

'j

QX

q=1

�q(y)Z
†AqZcj =

QX

q=1

�q(y)Z
†dq,'j

'j , 1  j  J

KNij =
QX

q=1

�q(y)c
†
jZ
†Aq Zcj , 1  i , j  J

uN'j = Zcj

✓ Linear system with multiple RHS

✓ RB approximation to local contribution to stiffness matrix 



Model and variance reduction method
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Exploit statistical correlation: reduce variance in estimates

Variance reduction 
(statistical correlation)

Model reduction 
(cheaper output evaluation)

+

Model and variance reduction method [Vidal-Codina 15]# #

E[s] = E[s � sN ] + E[sN ]

Output s  as a functional of the solution of stochastic PDE

Multilevel MC [Giles 08], Multifidelity MC [Ng et al. 12] 
RB control variate [Boyaval 12]

Combine high-fidelity solver with one (or multiple) low-fidelity models

Use reduced basis as low-fidelity model

EM0,M1 [s] = EM1 [s � sN ] + EM0 [sN ]



Estimate of expectation
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Choose# # # #           and define L-MVR estimator # # # #

# samples

output evaluation complexity

For i.i.d. samples between levels, we apply the central limit theorem

obtain a posteriori sampling error estimates

M`

lim
M0!1

. . . lim
ML!1

Pr
���E[s]� EM0,...,ML [s]

��  �E
�
= erf

✓
ap
2

◆
, 8a � 0

N1 < N2 < . . . < NL

EM0,...,ML [s] = EM0 [sN1 ] +
L�1X

`=1

EM` [sN`+1 � sN` ] + EML [s � sNL ]

�E = a

vuutVM0 [sN1 ]
M0

+
L�1X

`=1

VM` [sN`+1 � sN` ]
M`

+
VML [s � sNL ]
ML

Similar estimators for the variance



Robust design of photonic slab

✓ Silicon slab on triangular lattice 
with air holes 
✓ TE polarization, solve for 
✓ Output s is optical power at outlet

Frequency
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17

PML
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Computational domain and subproblem selection
Subdomain #1 (optimization)

Subdomain #3

Subdomain #2

Subdomain #4

1K dof
p = 2

1K dof
p = 2

18K dof
p = 2

18K dof
p = 2

✓ Develop RB for 
geometry and frequency 
✓ Lagrange polynomial 
of order 10

18



Shape optimization at discrete frequencies

✓ Optimize radius of holes to maximize 
transmission [NLOPT-Johnson 10]

✓ Replace CG for RB on optimization 
subdomains: speedup 
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Shape optimization for range of frequencies
Objective function 
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Frequency
0.26 0.27 0.28 0.29 0.3 0.31

Po
w
er

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

optimized
non-optimized

range
discrete

Range

Discrete

s⇤ = max
✓
E![s]� �

p
V![s]



Robust shape optimization for range of frequencies
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✓ Robust design guarantees lower 
performance degradation 
✓ MVR replaces expensive MSCG 
simulations for cheaper RB simulations

RB
MSCG

MVR to approximate statistics

EG,![s
⇤]± �E

EG,![bs ]± �E

bs = max
✓
EG,![s]� �

p
VG,![s]

s⇤



Conclusions
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Multiscale model and variance reduction method for wave propagation
in heterogeneous materials

✓ Multiscale CG exploits repeated patterns in domain

✓ Develop RB for geometry variations at the subdomain level

✓ Combine MSCG and RB on a multilevel estimator of output statistics

✓ Ideal for stochastic simulation and robust design of structured materials
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Advanced wave 
propagation
simulation

Stochastic 
simulation

Robust design of
structured materials

• RB for MSCG
• Multilevel variance reduction

• Multiscale CG method

• Helmholtz

• Waveguides, splitters
• Nanogaps

• Deformable domains

Thanks for your attention

Questions?
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MultiScale CG - Spaces
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Wh = {w 2 L2(⌦) : w 2 C0(⌦m), w |T 2 Pp
m

(T ),8T 2 T mh , 1  m  M},
Wmh = {w 2 C0(⌦m), w |T 2 Pp

m

(T ),8T 2 T mh },
Mh = {µ 2 L2(@⌦m : ⌦m 2 Th) : µ|@⌦m = w |@⌦m , w 2 Wh},

Vh = {v 2 C0(Ff) : v |f 2 Pp
f
(f),8f 2 Ff}

Ff = {fi , 1  i 
LX

`=1

N`}
fi

fj

F⌦1
r

⌦2
r

⌦4
r

⌦3
r

⌦5
r

⌦2
r



MultiScale CG - Formulation
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Introduce auxiliary variable      approximating the flux, with              the 
normal component

qh

Seek (uh,�h,qh) 2 Wh ⇥ Vh(uD)⇥Mh

for all  (w, v) 2 Wh ⇥ Vh(0)

✓ Enforce continuity of the normal component of the flux across interfaces
✓ Uniqueness of solution can be proved

Jqh · nK

(qh,rw)⌦ � (k2uh, w)⌦ �
MX

m=1

hqh · n, wi@⌦m = (f , w)⌦

uh = P
Wmh
(�h), on Ff

hJqh · nK, viFf = hgN , vi



MultiScale CG - Formulation

27

Seek 

(⇢GrXufh ,rXw)⌦m � (k2ufh , w g)⌦m = (f , w g)⌦m , 8w 2 Wmh (0),
(⇢GrXu⌘h ,rXw)⌦m � (k

2u⌘h , w g)⌦m = 0, 8w 2 Wmh (0)

(ufh |⌦m , u
⌘
h |⌦m) 2 W

m
h (0)⇥Wmh (⌘)

Applying linearity and superposition we have uh = ufh + u
�h
h

and the Lagrange multipliers                    satisfy  

(⇢GrXu�hh ,rXu
µ
h )⌦ � (k

2u�hh , u
µ
h g)⌦ = (f , u

µ
h g)⌦ + hgN , µi⌦N , 8µ 2 Vh(0)

�h 2 Vh(uD)

Vh Wm
h



MultiScale CG - Implementation
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For each subdomain                         for BCAmumf = fm

Amum'i = A
m
'i

' = {'i}Nmi=1

Assemble the elementary global matrices

Kmij =
�
um'i

�T Amum'j , 1  i , j  Nm

Fmi =
�
um'i

�T
fm + gmi , 1  i  Nm

Solve the global problem                where K⇤ = F �h =
NX

i=1

⇤i'i

Recover the solution at each subdomain 

um = umf +
NmX

i=1

⇤iu
m
'i



MultiScale CG - Reduced basis and DEIM
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Weak formulation for the Dirichlet problem

(⇢GrXu⌘h ,rXw)⌦m � (k
2u⌘h , w g)⌦m = 0, 8w 2 Wmh (0)

Approximate geometry quantities using DEIM

QX

q=1

�q(y)(�
G
q ⇢rXu

⌘
h ,rXw)⌦m�

Q0X

q=1

�0q(y)(k
2 u⌘h , w �

g
q)⌦m = 0, 8w 2 Wmh (0)

Develop a single RB with POD for all possible BC. The RB solution is
QX

q=1

�q(y)(�
G
q ⇢rXu

'i
N ,rXw)⌦m�

Q0X

q=1

�0q(y)(k
2u'iN , w �

g
q)⌦m = 0, 8w 2 WmN (0)

Approximate the elementary global matrix

Kmij ⇡
QX

q=1

�q(y)(�
G
q ⇢rXu

'j
N ,rXu

'i
N )⌦m �

Q0X

q=1

�0q(y)(k
2u
'j
N , u

'i
N �

g
q)⌦m



MultiScale CG - Reduced basis implementation
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Empirical interpolation of mapping
QX

q=1

�q(y)Amq um'i = 'i

POD basis with all possible Dirichlet BC � = {⇣1, . . . , ⇣N}

Galerkin projection to compute coefficients

Approximate global elementary matrix

Kmij ⇡
QX

q=1

�q(y)c
T
i �
TAmq �cj , 1  i , j  Nm

Fmi ⇡ cTi �T fm + gmi , 1  i  Nm

QX

q=1

�q(y)�
TAmq �ci = �T'i

um'i = �ci



Contribution #2: Reduced basis for HDG
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Reduced basis for hybridizable discontinuous Galerkin method

Global problem

Local problem

buh

In [158] we propose a new weak formulation               

⇢, k2, ⌫

✓ Approximate only           by setting  uh, buh

✓ Retain affine parametric dependence of 

✓ Solve a system with global variables      onlybuh

q�ru = 0 x 2 ⌦
�r · (⇢q) + k2u = f x 2 ⌦

⇢q · n+ ⌫u = g x 2 @⌦ qh, uh

qh(uh, buh)

qh, uh

ûh

RB projection



Wave Propagation - HDG formulation
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• Recover local DOF          element-wise

Helmholtz equation

• Solve for global DOF              (Schur complement)TbU = R
Q, U

• High order approximations
• Low dispersion (irregular grids)
• Solve for reduced DOF problem

Why HDG?

Hybridizable Discontinuous Galerkin (HDG) method 

HDG solution
block diagonal

2

4
A B �C
W D �E
N �E⇤ M

3

5

2

4
Q
U
bU

3

5 =

2

4
0
F
G

3

5

Global problem

Local problem

buh

q�ru = 0 x 2 ⌦
�r · (⇢q) + k2u = f x 2 ⌦

⇢q · n+ ⌫u = g x 2 @⌦ qh, uh

qh, uh

ûh



Projection for RB with HDG
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• Projection using all degrees of freedom ⇣ =

2

4
Q
U
bU

3

5 Large offline computational cost

• Projection using numerical traces Lose affine dependency⇣ =
h
bU
i

TbU = R

✓ Projection using ⇣ =


U
bU

�
HDG natural norm, retain affine dependency

Eliminate      with first equationQ

Which DOF should we use to parametrize snapshot    ? ⇣

2

4
A B �C
W D �E
N �E⇤ M

3

5

2

4
Q
U
bU

3

5 =

2

4
0
F
G

3

5

T = M+ [N � E⇤]


A B
W D

��1  C
E

�
R = G� [N � E⇤]


A B
W D

��1 
0
F

�

Q = A�1
⇣
CbU� BU

⌘ 
D�WA�1B WA�1C� E
�E⇤ � NA�1B M+ NA�1C

� 
U
bU

�
=


F
G

�

q�ru = 0 x 2 ⌦
�r · (⇢q) + k2u = f x 2 ⌦

⇢q · n+ ⌫u = g x 2 @⌦



HDG formulation
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• Approximation spaces

• Find                                          such that

• Define numerical traces
Th

Local

Global

Block-diagonal and invertible

Solve for global dof TbU = R

Recover local dof Q, U

W ph = {w 2 L
2(D) : w |K 2 Pp(K),8K 2 Th}

V ph = {v 2 [L
2(D)]d : v |K 2 [Pp(K)]d ,8K 2 Th}

Mph = {µ 2 L
2(Eh) : µ|F 2 Pp(F ),8F 2 Eh}

bqh = qh � ⌧(uh � buh)n, on @K

(qh, uh, buh) 2 V ph ⇥W
p
h ⇥M

p
h 8(v , w, µ) 2 V ph ⇥W

p
h ⇥M

p
h

K

Eh

2

4
A B �C
W D �E
N �E⇤ M

3

5

2

4
Q
U
bU

3

5 =

2

4
0
F
G

3

5


A B
W D

�

(qh, v)Th + (uh,r · v)Th � hbuh, v · ni@Th = 0,
(⇢qh,rw)Th � h⇢qh · n, wi@Th � (k2uh, w)Th + h⇢⌧(uh � buh), wi@Th = (f , w)Th
h⇢qh · n, µi@Th � h⇢⌧uh, µi@Th + h⇢⌧ buh, µi@Th + h⌫ buh, µi@D = (g, w)@D



A posteriori error estimate for expectation
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E[s] = E[s � sN1 ] + E[sN1 ]Control variates

MVR estimator EM0,M1 [s] = EM0 [s � sN1 ] + EM1 [sN1 ]

i.i.d samples

Central limit theorem to establish confidence bounds
�2MV R

lim
M0!1

lim
M1!1

Pr
���E[s]� EM0,M1 [s]

��  a �MV R
�
= erf

✓
ap
2

◆
, 8a � 0

Z0 = E[s � sN1 ]� EM0 [s � sN1 ] ⇠ N
✓
0 ;
V [s � sN1 ]
M0

◆

Z1 = E[sN1 ]� EM1 [sN1 ] ⇠ N
✓
0 ;
V [sN1 ]

M1

◆

Z0 + Z1 = E[s]� EM0,M1 [s] ⇠ N
✓
0 ;
V [s � sN1 ]
M0

+
V [sN1 ]

M1

◆



Optimal weights (I)
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✓ Precompute MSCG-RB outputs                                  for M  samples

✓ Approximate                     (a posteriori) with                     (a priori)VM` [sN` � sN`+1 ] VM [sN` � sN`+1 ]

✓ Surrogate online cost can be expressed as

bCL-MV R =
LX

`=0

bC`

w`
=
a2

�2E

"

(ts + tN1)
VM [s � sN1 ]
w0

+ tNL
VM [sNL ]

wL

+
L�1X

`=1

�
tN` + tN`+1

� VM [sN` � sN`+1 ]
w`

#

s, sN` , 1  N`  Nmax



Optimal weights (II)

37

(N1, . . . , NL)

w ⇤` =

q
bC`/ bC0

LX

`0=0

q
bC`0/ bC0

, ` = 0, . . . , L.

✓ Fix level sizes                           optimize over weights

✓ Optimal weights have closed formula

✓ Exhaustive search        select (L,N,w) with lowest            bCL-EIMV R

(w ⇤0 , w
⇤
1 . . . , w

⇤
L) = argmin bCL�MV R(N1, . . . , NL)

s.t.
LX

`=0

w` = 1, w` � 0



Empirical interpolation applied to MVR 
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Choose# # # #           and define L-EIMVR estimator# # # # # #

For i.i.d. samples between levels, we apply the central limit theorem

N1 > N2 > . . . > NL

and obtain the a posteriori error bound

EM0,..., bML [s] = EM0 [s � sN1 ] +
L�1X

`=1

EM` [sN` � sN`+1 ] + EML [sNL � bsNL ] + E bML [bsNL ]

# samples

output evaluation complexity

M`

lim
M0!1

. . . lim
bML!1

Pr
⇣��E[s]� EM0,..., bML [s]

��  �bE

⌘
= erf

✓
ap
2

◆
, 8a � 0

�bE = a

vuutVM0 [s � sN1 ]
M0

+
L�1X

`=1

VM` [sN` � sN`+1 ]
M`

+
VML [sNL � bsNL ]

ML
+
V bML [bsNL ]

bML



Empirical interpolation applied to MVR 
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Estimator for gradient

Estimator for variance

+ error bounds

Define                                                                        

and reuse multilevel expression                                 

VM0,M1, bM1 [s] = EM0 [⇣ � ⇣N ] + EM1 [⇣N �
b⇣N ] + E bM1 [

b⇣N ]

⇣ =
⇣
s � EM0,M1, bM1 [s]

⌘2
, ⇣N =

⇣
sN � EM0,M1, bM1 [s]

⌘2

b⇣N =
⇣
bsN � EM0,M1, bM1 [s]

⌘2

+ error bounds

EM0,M1, bM1 [rs] = EM0 [rs �rsN ] + EM1 [rsN �rbsN ] + E bM1 [rbsN ]

Extension to arbitrary number of levels is straightforward



Error and cost equation
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Cost of L-MVR estimator

alternatively...

For a prescribed tolerance 

Termination condition MC

Level 0 Level Level L`

�

�2 = a2
VM0 [s � sN1 ]
M0

+
L�1X

`=1

a2
VM` [sN` � sN`+1 ]

M`
+ a2

VML [sNL � bsNL ]
ML

+ a2
V bML [bsNL ]

bML
= w0�

2
= w`�

2 = wL�
2 = bwL�2

Level bL

CL-EIMV R = (ts + tN1)M0 + tNLML +
L�1X

`=1

�
tN` + tN`+1

�
M`

CL-EIMV R =
a2

✏2
tol

"

(ts + tN
1

)
VM

0

[s � sN
1

]

w
0

+ tNL
VML [sNL � bsNL ]

wL

+
L�1X

`=1

�
tN` + tN`+1

� VM` [sN` � sN`+1 ]
w`

#



Optimal weights (I)
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✓ Fix      and precompute EI output at              samples

bCL-EIMV R =
LX

`=0

bC`

w`
=
a2

�2

"

(ts + tN1)
VM [s � sN1 ]
w0

+ tNL
VM [sNL � bsNL ]

wL

+
L�1X

`=1

�
tN` + tN`+1

� VM [sN` � sN`+1 ]
w`

#

NL ML + bML

✓ Precompute HDG-RB outputs                                  for M  samples

✓ Approximate                     (a posteriori) with                     (a priori)VM` [sN` � sN`+1 ]

s, sN` , NL  N`  Nmax

VM [sN` � sN`+1 ]

✓ Surrogate online cost can be expressed as



Optimal weights (II)
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(N1, . . . , NL)

w ⇤` =

q
bC`/ bC0

LX

`0=0

q
bC`0/ bC0

, ` = 0, . . . , L.

bwL =
a2

�2
V bML [bsNL ]

bML
✓ Compute weight for EI level 

✓ Fix level sizes                           optimize over weights

✓ Optimal weights have closed formula

(w ⇤0 , w
⇤
1 . . . , w

⇤
L) = argmin bCL�EIMV R(N1, . . . , NL)

s.t.
LX

`=0

w` = 1� bwL, w` � 0

✓ Exhaustive search        select (L,N,w) with lowest            bCL-EIMV R
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Compare MC with MVR given by 
EM/10,M [s] = EM/10[s � s5] + EM [s5]

�r · (⇢ru) = f x 2 ⌦
⇢ru = 0 x = 1

u = 0 x = 0

⇢ =
10X

q=1

yq1⌦q


