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e Metamaterials are heterogeneous materials microscopically engineered
to exhibit properties that cannot be found in homogeneous materials

e Study wave propagation in metamaterials: photonic bandgap
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photonic crystal waveguide splitter

applications —> wavequides, fibers, cavities...
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Motivation: Photonic Bandgap
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+15% permittivity

Accurate simulations are required

Highly sensitive to material properties and geometry variations
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Problem statement

Consider the Helmholtz equation in 2d

~V - (p(x)Vu) = k*X)u=f + B.

where p(x), k%(X) represent material properties

v/ Time-harmonic solutions of scalar wave equation

v 2d Maxwell’'s equations for TE and TM polarizations —>

Wave propagation i1s considered for structured mate

Material 1 p(x), k%(x)
Material 2 p(x), k7 (x)

M
Q=[]Q"
m=1

C.

TE: u=H,
TM: u=E,

rials

plecewise constant



Objectives

Develop methods for robust design of
heterogeneous materials to control wave propagation

Simulate wave propagation in structured media

e \Wave equation is non-coercive, need high accuracy
o Complex geometries, repeated patterns, mismatch in length scales

Stochastic simulation of wave propagation

e Framework to deal with geometry variations
e Models are expensive: develop surrogates, use control variates



MultiScale continuous Galerkin (MSCG) method

ldentify repeated geometries in domain

two classes of subdomains

olojo[poe|e[e|e|e]e

Local problem Global problem

High-order CG
discretization

Lagrange polynomial for

T solution on global faces

Capture frequencies on

Capture small features T
large scale




MultiScale CG - Local problem

For every subdomain Q™ solve Helmholtz equation

1. Source problem > Aur = f
2. Inhomogeneous Dirichlet given by ¢, 1 <j < J > Auy, = dy,
ur Uy,

e
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MultiScale CG - Global problem

On the subdomain level we apply linearity P H—H—H——H—H—H—X
N B N e e

and superposition ARSI EANNUTIIE |
: \//I\\// | : \// \\// I

J Xr-+r-r-kr~'"Xr-y-r-g-'X%
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The contribution of each subdomain to the global problem is

Kij = uLAu(pj, 1<1,y<J

Fi=u,f, 1<i/<J

Solve the global problem KA =F



Simulation of waveguide bends

Photonic crystals are expensive to simulate given the complexity of the
| geometry

LA ; PML 777777 j:? j{éﬁj’ Subdomain dof
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Reference domain formulation

Reformulate governing equations [Persson et.al. 09] with deformation mapping
parametrized by y

reference physical
y NdS / \ nas
x=G(X,y)
G=V, (G
g =detG
T—X' Q, TY’ 2
~Vr - (p(X)9G GV u) V- (p(x)Vu) — K2(x)u = f
—k*(X)ug = fg

- -
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MSCG for geometry variations

Analyze response of a structured medium under geometry variations

nonhomogeneous
manufacturing

errors
—_—

modeled with
random field

variance and
correlation length

r—r+0r=r-+r 1+y1\/>\o+Z\/>\d(ygdsin9d+y2d+1c059d)
d=1

Nanogaps of Al203 on gold substrate
[Yoo et al. 2016]
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v/ Radius of rods modeled with 15 r.v. (90% energy)

v Relative radius perturbation |0r|/r < 0.05

v Independent realizations of errors for each rod

e s

S

HREIRE:

—> no longer capitalize repetition of subdomains
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Reduced basis for MSCG (1/2)

Develop an accurate surrogate efficient to evaluate

e Proper orthogonal decomposition [Sirovich 87]
e Reduced basis method [Noor et al. 80, Rozza et al. 08,.. ]

Reduced basis for multiscale CG and geometry parameters

v/ RB for each type of subdomain [Huynh et al. 13]
v/ Empirical interpolation [Barrault et al. 04] for parameter dependent

mapping G(y)
A(y)u%‘ — d(Pj (y)

|

Q Q
Y oq(y)Aquy, =Y 0q(y)dg,
g=1 g=1
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Reduced basis for MSCG (2/2)

v For each Dirichlet BC ¢;, compute snapshots
sampling y

v Single RB Z compressing snapshots for all
Dirichlet BC ¢;, 1 << J

N .
u, = Z¢

v Linear system with multiple RHS

@ Q
Y 04 ZhgZej =) aq(y)Z'dy,
g=1

g=1
v RB approximation to local contribution to stiffness matrix

Q
KY =) oqy)clZlAgZe;, 1<ij<J
g=1

14



Model and variance reduction method

Combine high-fidelity solver with one (or multiple) low-fidelity models
Multilevel MC [Giles 08], Multifidelity MC [Ng et al. 12]
RB control variate [Boyaval 12]

Exploit statistical correlation: reduce variance in estimates

Use reduced basis as low-fidelity model

Model and variance reduction method [Vidal-Codina 15]

Output s as a functional of the solution of stochastic PDE

E(s] = E[s — sn| + E|[sn]

l
EMO,Ml [S] — EM1 [S — S/V] + EMO [S/\/]

! !

Variance reduction + Model reduction

(statistical correlation) (cheaper output evaluation)
15



Estimate of expectation

Choose N; < N < ... < N; and define [-MVR estimator

output evaluation complexity

[—1 >
EMo ----- M, [S] — EMo [SNl] T Z EMe [S/Ve+1 _ S/Ve] T EML [5 — SNL]
=1
<
# samples M,

For 1.1.d. samples between levels, we apply the central limit theorem

a
' ' — < — —_— >
MLITOO' . MlLIE;]oo Pr(|E[s] — Emo,...m.[S]| < Ag) = erf (\/§>  Ya>0
obtain a posteriori sampling error estimates
L—1
Ar — Vo [5/\/1] | Vv, [5/\/13+1 B SNe] , Vi, [s — SNL]
53 .
\ Mo p My M

Similar estimators for the variance
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Robust design of photonic slab
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v Silicon slab on triangular lattice 0.2} :
with air holes g
v TE polarization, solve for H, T
v/ Output s is optical power at outlet
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Computational domain and subproblem selection

Subdomain #1 (optimization) Subdomain #?2

v/ Develop RB for

geometry and frequency 18K dof
v/ Lagrange polynomial p=2
18K dof of order 10 Subdomain #3

CNONONININENINENENINININENINON

ININININININININININININININGN/
INONININININININININININININN/

eVAV VeVAVAV NANNNANNNY
/NINININININININ/N % eveve AY,

/ 1K dof
p=2

AV VAVAV#V NANNNANNININGY/
INONININININININININININININGN/
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v Optimize radius of holes to maximize

transmission [NLOPT-Johnson 10]
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Power

Robust shape optimization for range of frequencies

S =maxEg,[s] — ”Y\/Vg,w[S] —> MVR to approximate statistics
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v/ Robust design guarantees lower

performance degradation
v MVR replaces expensive MSCG

simulations for cheaper RB simulations

103:

10°}

— MSCG

Model solutions
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Conclusions

Multiscale model and variance reduction method for wave propagation
In heterogeneous materials

v Multiscale CG exploits repeated patterns in domain
v Develop RB for geometry variations at the subdomain level
v Combine MSCG and RB on a multilevel estimator of output statistics

v ldeal for stochastic simulation and robust design of structured materials

22



e Multiscale CG method e RB for MSCG

e Deformable domains e Multilevel variance reduction

e Helmholtz

Advanced wave

t' Stochastic
opagatio . :
p.r P g. on simulation
simulation
Robust design of o Waveguides, splitters

structured materials ® Nanogaps

Thanks for your attention

A

"laCaixa’

Questions?
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MultiScale CG - Spaces

Wy ={we L2(Q):wel’(Qm), wlr e PP"(T),VYT € T™, 1< m< M},
W™ = {w e c%(Q™), w|r € PP"(T),VT € T,"},

My ={u € L2(0Q™ : Q" c T,): ulaam = wlaam, w € Wy},

Vi, = {v € CO(F) : vl € PP (), Vf € )

Y—>¢ > 3¢ . *——% > > *I'
¢ ¢ 3 JI< Q? >I<
0Ol r Fl1 |f7, L
¢ d ¢ % S )
: ! Ff:{f,lglggl\/}
i i
( ( k X =1
F—¢ » ¢ » )I< k
¢ ¢ 1 X >If
il ¥
¢ X ¢ X
|
|
¢ X ¢ X
H—¢ K—3¢ K—3¢ ” X
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MultiScale CG - Formulation

Introduce auxiliary variable qp approximating the flux, with [d; - n] the
normal component

Seek (Uh, Ah,qh) c W, x Vh(UD) X M,

M
(an, Vw)a — (K2up, w)a — Y (a0, w)agn = (f, w)g

m=1

up = PV (), on Fs
(lan - n], V)7 = (gn, V)
for all (w,v) € Wp x V4(0)

v/ Enforce continuity of the normal component of the flux across interfaces
v/ Uniqueness of solution can be proved

26



MultiScale CG - Formulation

Seek (uflam, upllam) € WT(0) x Wi (n)
(pGqu};, VXW)Qm — (kQU;:, Wg)Qm — (f, Wg)Qm, Yw € W/T(O),
(pGVx U}, Vxw)an — (k°ull, w g)am =0, VYw € W[ (0)

Applying linearity and superposition we have up = u,’; + u;"’

and the Lagrange multipliers Ap € Vi (up) satisfy

(0GVxup", Vg — (K2up', Ul 9)a = (f, uff 9)a + (gn, )ay, Vi € V4(0)

27



MultiScale CG - Implementation

T . \
For each subdomain " - forBC = {oit
A u<P/ — A‘Pi

Assemble the elementary global matrices
K,-J- — (“wi) A Uy, . 1 <1, <N,

FP=(u?) f"+g", 1<i<N,

N
Solve the global problem KA =TF where Ap = Z N\ ;
=1

Recover the solution at each subdomain
N
m __ ..m E : am
=1

28



MultiScale CG - Reduced basis and DEIM

Weak formulation for the Dirichlet problem

(pGVxu), Vxw)an — (k*u]l, w g)am =0, VYw € W["(0)

Approximate geometry quantities using DEIM

@
> () (@5 pVxul, Vxw)an—Y oL (y)(K ufl, w¢d)an =0,  VYw € W/(0)
Develop a single RB with POD for all possible BC. The RB solution s

@ @
Y aq()(@5 pVxuf, Vxw)an—> ol (y)(Kuf, w¢d)an =0, Vw € W (0)

Approximate the elementary global matrix

@
KT~ Y oq(y)(@SoVxun, Vxuf an — Z ol () (KU, uf) ¢9)ar
qg=1

29



MultiScale CG - Reduced basis implementation

Empirical interpolation of mapping
ZUCI(Y)A? Uy, =

POD basis with all possible Dirichlet BC & = {(1, ..., (vt —>  u, = P

Galerkin projection to compute coefficients

Q
Z aq(y)¢TAg7d>c,- = d/ p;

q=1

Approximate global elementary matrix

30



Contribution #2: Reduced basis for HDG

Reduced basis for hybridizable discontinuous Galerkin method

q—VUZO XEQ o o o o o
—V'(QQ)+k2U:f XEQ o qh’OUh o o
oqg-n+vrvu=g xe&ofl o o o om0

Global problem 1/},

Local problem Qp, Up

In [158] we propose a new weak formulation
Vv Approximate only up, U, by setting dn(up, Up) —> RB projection
v Retain affine parametric dependence of p, k?, v

v Solve a system with global variables u, only

31



Wave Propagation - HDG formulation

Hybridizable Discontinuous Galerkin (HDG) method

Helmholtz equation

g—Vu=0 xe€
V- -(pq)+ku=f x€Q
oq-n+vrvu=g xé&€of

Global problem 1/},

Local problem Qp, Up

Why HDG? HDG solution

e High order approximations blTOCk diagonal

e Low dispersion (irregular grids) A B _C1lO-" -0 0

e Solve for reduced DOF problem W D _F Ul=|T
N —-E* M || U G

* Solve for global DOF TU =R (Schur complement)
» Recover local DOF Q, U element-wise

32



Projection for RB with HDG

q—Vu=0 xe A B —-C][Q 0
v 2, _ —_— W D -E Ul|l=|TF
V-(pq)+Ku=rFf xeQ B = e

oq-n+vrvu=g xe&€of

Which DOF should we use to parametrize snapshot ¢ ?
h

X Projection using all degrees of freedom (= | U | —— Large offline computational cost

P

U

AN

X Projection using numerical traces ¢ = [U} —>  Lose affine dependency

TU=R
-1 —1
A A B C B A1 A B 0
. . U e
V' Projection using ¢ = [ 3 ] —>  HDG natural norm, retain affine dependency

@:A*(@@-BU) . [D—WA‘lB WA—lc—E”U]:[g]

_E* —NA~'B M+ NA—!C U

Eliminate (Q with first equation 23



HDG formulation

o Approximation spaces . ,5\0-\ s WP

[ e B

WP ={w € L*(D) : w|x € PP(K),VK € Tp} Ente N0 % LN 4
e0 N o/ °

VP ={ve[L?(D)]?: vk € [PP(K)]?,VK € Tp} \\\\\ o ° \ M};Z
| - o) o/ 0O

MP ={u e L*(&) : ulr € PP(F),VF € &y} I ;)'\.oo % KO O.k

: : 19“9\; o\. o(}é O \.Ooo°O \
e Define numerical traces T3 O) \o 000 o )\
o . ©°
dn=qn — T(up — Up)n, on OK Th \.\(:oi)/.o \O/ \

o Find (gp, up, Up) € Vi x WP x M} such that ¥Y(v,w,u) € Vi x WP x M}

(gp, V)7, + (Un, V - V)7, — (Un, v - )T, =0,
(pqn, Vw)7, — (0qp - n, W)ar, — (K*un, W), + (0T(Un — Un), W), = (f, W), Local
<th - n, M>aﬂ, — <PTUh, M>aTh =+ (PTﬁh, M>a¢h =+ <1/ Up, /~">8D = (9, W)aD —>  Global
A B —C 1] Q] 0 ]
W D —KE U | = I R
N —E* M U G Solve for global dof TU = R

i 1 LU _ RRCAN
Recover local dof Q, U

A B
W D | Block-diagonal and invertible
34



A posteriori error estimate for expectation

Control variates — E|[s] = E[s — sy, | + E[sn,]

MVR estimator —— Epn, i [S] = Emyls — sn, ] + Em, [Sh, ]

I.1.d samples
ViIs —
ZO: E[S—SNl]—E/\//O[S—S/\/l] ~ N(O, [S SNl])
Mo
V
L1 = E[SNl] _ EMl [5/\/1] ~ N (O, /[\;Nl]>
1
__ . V[S_SNl] | \/[SNl]
ZO + Zl — E[S] — EMO,Ml[S] ~ N (O, Mo | Ml
!
UﬂVR

Central limit theorem to establish confidence bounds

. . d
MLITOO MLITOO Pr (lE[S] — EMo,M1 [SH < E)O'/\//\/R) — erf (ﬁ) : Va >0

35



Optimal weights (1)

v Precompute MSCG-RB outputs S, sn,, 1 < Np < Npax  for M samples

v Approximate Vi, [sn, — Sn,.,| (a posteriori) with Vivi[sn, — sn,..] (@ priori)

v Surrogate online cost can be expressed as

L = -
~ ct & Vmls — s Vv [sw, |
Cr-mvr = E " =AZ (ts + tn,) " =+ ty, " -
{=0 E L

[—1 ]

_ S
E3 (i g, ) A e

W
=1 ¢ ]

36



Optimal weights (II)

v Fix level sizes (Nl ----- NL) ——> optimize over weights
(Wg, Wik - WZ) — dalg min CL—MVR(Nl ..... NL)
L
S.T Z Wy = wp > 0
¢=0

\/6€/C0
Wy = — {=0,..., L
S yeece
=0

v Exhaustive search —— select (L,N,w) with lowest CA‘L_E/M\/R

37



Empirical interpolation applied to MVR

Choose Ny > N> > ... > N, and define L-EIMVR estimator

# samples M,
[—1 >
EMO ..... M, [S] — EMO [S o SNl] T Z EMZ[SNK o SNe+1] + EML [SNL _ ‘/S\NL] + E/\/ZL [“/S\NL]
/=1

< output evaluation complexity

For 1.1.d. samples between levels, we apply the central Imit theorem

a
im ... Iim Pr(Es — E = [s gAA):erf<_>, Va > 0
Mo— o0 M, =00 ‘ [ ] Mo, ..., ML[ ” E \/§

and obtain the a posteriori error bound

[L—1
Vivi [S — S | | Z Vv, [S/Vz — S/Ve+1]

= \ Mo | = M,

\/ML [SNL _ “/S\NL] , V/\//\IL [SNL]
ML /\/;IL

38



Empirical interpolation applied to MVR

Estimator for variance
2
Define ( = (5 — Epp o o [S])  Cn = (SN — Ewvon i [5])

~ 2
Cn = (SN — EMo,/\/ll,/\7/1 [5])

2

and reuse multilevel expression

\//\40,/\41,/\71 [s] = EmolC = Sl 4 Emny [ — Z/\/] + Ei [Z/\/]

+ error bounds
Estimator for gradient

E v i VS = Enp[Vs = Vsy] + En, [Vsy — Visn] + Eg, [Vsa]
+ error bounds

Extension to arbitrary number of levels is straightforward

39



Error and cost equation

For a prescribed tolerance A

Level O Level /£ Level L Level [
L—1 ~ _[a
A2 L a2 V/\/lo [S - S/\/l] | Z a2 \/Mg [S/\/g _ SNe+1] | a2 V/\/IL [S/\//_ — SNL] | 32 V/\/IL [SNL]
— | | | A
MO I—1 MK ML ML
2 o P
= WoA = wyA\? = w A? = W A°

(Termination condition M C)

Cost of L-MVR estimator

L—1
Cr-eimvr = (ts + tn,) Mo + ty, M + (t/\/e + t/\/m) M, alternatively...
=1
2 B A~
a Vivio [S — S, ] Viv, [Sn, — Sw, ]
Cr-eimvr == | (ts + ty,) — oty ——— L
€tol Wo W,
L—1 -

40



Optimal weights (1)

v Fix N; and precompute El output at M, + /\AﬂL samples

v Precompute HDG-RB outputs s, sp,, Np < Np < Niax for M samples

v Approximate Vi, [sn, — Sn,.,| (a posteriori) with Vivi[sn, — sn,..] (@ priori)

v Surrogate online cost can be expressed as

L A~ B ~
~ Ce 82 V/\// [S — SN ] VM SN, — SN
Cr-EimvR = Z V) (ts + tay ) » =+ ty, | \ﬁv 3

—o Ve i 0 L
L1 7

41



Optimal weights (II)

2 Vo [
. R a N
v' Compute weight for El level w;, = 5 MLA[ 2
A M,
v Fix level sizes (N1 ,,,,, NL) ——> optimize over weights
(WS,WT...,WZ) — dl’g min CL—E/MVR(Nl ..... NL)

L
S.T. ZWZZ]-_V/‘;L, wp > 0
£=0

v Optimal weights have closed formula

\/ Ct/Co
We* - 7 Z — O ..... L
S \/eece
=0

v Exhaustive search —— select (L,N,w) with lowest CA“L_E/M\/R

42



Stochastic simulation: 1d numerical verification

_V(pVU):f x € ) 10
oVu=0 x=1 p=)» yla,
u=0 x=0 =1

Compare MC with MVR given by

Emiomls] = Emyiols — ss] + Emlss]




