Inferring mental states from imaging data: OpenfMRI and the Cognitive Atlas

Russell Poldrack

Department of Psychology

Stanford University

Two kinds of cognitive neuroscience questions

- 1. What are the neural correlates of mental process X?
- 2. What does area Z do?

Neural correlates

Manipulate some mental process

working memory maintenance

Observe associated brain activation

working memory is sufficient to activate ACC -working memory is necessary to activate ACC -ACC is necessary or sufficient for working memory

What does the ACC do?

maintenance

pain

phonology

interference

difficulty

conflict

errors

attention

forward inference Z estimated using neurosynth.org

Some alternatives

- There is some confound driving all of these (such as autonomic arousal or breathing)
- These are all truly distinct functions performed by subsets of neurons in the ACC
- These are all truly distinct functions subserved by ACC in different neural contexts
- These are not truly distinct functions
 - We are chopping up mental function in the wrong way
 - Thought experiment: What if the phrenologists had fMRI?

What if the phrenologists had fMRI?

Mapping cognition

- What are the atoms of the mind?
- How are they related to one another?

Perception

Welcome to Cognitive Atlas

The Cognitive Atlas is a collaborative knowledge building project that aims to develop a knowledge base (or ontology) that characterizes the state of current thought in cognitive science. The project is led by Russell Poldrack, Professor of Psychology at Stanford University. Development of the project was supported by grant RO1MH082795 from the National Institute of Mental Health.

Registered users may edit and Cognitive Atlas	i contribute to the
your email address	

Keep me logged in 🗐	SIGN IN
Forgotte	n password? >
Request a contril	butor account >

Recently updated COLLECTIONS

Computerized Neurocognitive

NIH Toolbox Sensation and

NIH Toolbox Motor Battery

Battery ((CNB), Penn

Neuropsych Battery)

Pain Battery

Recently updated mental CONCEPTS

defiance

irritability

reward valuation

- default mode network
- defensive aggression
- Reception of non-facial communication
- Semantic network
- lethargy

Recently updated experimental TASKS

Children's Psychiatric Rating

Aberrant Behavior Checklist -

Developmental Test of Visual-

Differential Ability Scales

Scale

Test

Community

Beery-Buktenica

Motor Integration

Conners 3rd Edition

 Social Communication Questionnaire

Recently updated DISORDERS

- central sleep apnea
- depersonalization disorder
- seasonal affective disorder
- amnestic disorder specific developmental
 - disorder
 - agoraphobia
 - amusia
 - avoidant personality disorder

Baddeley's model of working memory RDoC Working Memory Matrix RDoc Social Processes Matrix

BROWSE ALL 214 DISORDERS

BROWSE ALL 20 COLLECTIONS

BROWSE ALL 695 CONCEPTS

BROWSE ALL 512 TASKS

Kaufman Brief Intelligence

Current state of the Cognitive Atlas

- 771 mental constructs
- 610 tasks
- 214 disorders (inherited from Disease Ontology)
- 22 collections
- Formal ontology (OWL) available via BioPortal

Annotating data using the Cognitive Atlas

OpenfMRI

View Data Sets Home

A

Classification learning

Submitted by picchetti on Thu, 10/06/2011 - 11:36

Subjects performed a classification learning task with two different problems (across different runs), using a "weather prediction" task. In one (probabilistic) problem, the labels were probabilistically related to each set of cards. In another (deterministic) problem, the labels were deterministically related to each set of cards. After learning, subjects participated in an event-related block of judgment only (no feedback) in which they were presented with stimuli from both of the training problems.

Tasks and Conditions:

Probabilistic classification task

Subjects are presented with a set of stimuli and must classify those stimuli into one of two categories. In a common version known as the "weather prediction task" the stimuli are cards with geometric shapes on them and the outcomes are rainy versus sunny weather. The feedback is probabilistic, and performance is measured by the proportion of statistically optimal responses.

Synonyms: probabilistic classification learning task, weather prediction task

Definition contributed by RPoldrack about two years ago

No relations have yet been associated.

Probabilistic classification task has been asserted to measure the following CONCEPTS

as measured by the contrast: 0 proportion of correct responses across all trials minus proportion correct on early trials

DISORDERS associated with Probabilistic classification task No associations have been added.

IMPLEMENTATIONS of Probabilistic classification task

No implementations have been added.

EXTERNAL DATASETS for Probabilistic classification task

Classification learning

Classification learning and stopsignal (1 year test-retest)

INDICATORS Proportion optimal responses

response time

An indicator is a specific quantitative or qualitative variable that is recorded for analysis. These may include behavioral variables (such as response time, accuracy, or other measures of performance) or physiological variables (including genetics, psychophysiology, or brain imaging data).

An initial proof of concept

- Obtain brain imaging data from a broad range of mental tasks
 - In this case, 130 people doing one of 8 different tasks
- Code the the tasks using a preliminary cognitive ontology
- Map the brain systems onto the ontology

Task coding by ontology

Orthography Phonology Semantics Speech Memory Working Memory Implicit Memory Reasoning Emotion **Positive Emotion** Audition Vision Color Vision Shape Vision Action Execution Speech Execution Action Inhibition Economic Decision Making Decision Making without Reward Spatial Processing Number Processing

Artificial neural network classifier

Output: Which of the 8 tasks was the person performing?

6 hidden units

Input: brain activity at ~2000 locations

> Use hidden unit patterns as low-dimensional representation for each subject

Analysis	Crossvalidated accuracy	# of voxels included
Union of all in-mask voxels across subjects (one-vs-one)	74%	417,231
Intersection of in-mask voxels across subjects (one-vs-many)	80.8%	214,940
Positively activated voxels only (across all 130 subjects, t > 3, p<. 002) (one-vs-many)	74.6%	83,825
Deactivated voxels only (t < -3, p<.002) (one-vs-many)	50.8%	23,736

·) 1)

	Task chosen by classfier									
		Task 1	Task 2	Task 3	Task 4	Task 5	Task 6	Task 7	Task 8	
True task	Task 1	87.5	6.0	0.0	0.0	6.0	0.0	0.0	0.0	
	Task 2	0.0	90.0	0.0	0.0	0.0	0.0	5.0	5.0	
	Task 3	8.0	23.0	61.5	0.0	0.0	8.0	0.0	0.0	
	Task 4	0.0	0.0	0.0	82.4	0.0	0.0	0.0	18.0	
	Task 5	0.0	38.0	0.0	0.0	43.8	18.2	0.0	0.0	
	Task 6	0.0	28.0	0.0	0.0	0.0	71.4	0.0	0.0	
	Task 7	0.0	11.0	0.0	0.0	0.0	0.0	84.0	5.0	
	Task 8	0.0	0.0	7.0	0.0	0.0	0.0	27.0	63.0	

Hierarchical clustering on hidden unit values

Mapping neural data into a cognitive ontology

actionexecution audition colorvision decisionmaking emotion implicitmemory language memory numericprocessing orthography phonology positiveemotion reasoning responseinhibition reward semantics shapevision spatialprocessing Speech vision workingmemory

actionexecution audition colorvision decision and colorosion decision and colorosion memory and colorosion memory numeric processing orthography phonology positive emotion reasoning response inhibition reward semantics shapevision spatial processing speech vision working memory

Larger-scale decoding

Home View Data Sets Add a Dataset FAQs Contact Us

26 tasks, 482 images from 338 subjects

Larger-scale decoding

26 tasks, 482 images from 338 subjects

Larger-scale decoding: Clustering

ds007 (2): Stop signal task: letter namin ds007 (2): Stop signal task: letter namin poldracklab.org

Decoding cognitive functions across subjects

- Multilabel classifier trained using OpenfMRI data and Cognitive Atlas labels
- 26 task contrasts, 482 images from 338 subjects
- annotated with Cognitive Atlas

A Vision

- **B** Action Execution
- C Decision Making
- D Orthography
- E Shape Vision
- **F** Audition
- G Phonology
- H Conflict
- **I** Semantics
- J Reinforcement Learning
- K Working Memory
- L Feedback
- M Response Inhibition
- N Reward
- O Stimulus-driven Attention
- P Speech
- **Q** Emotion Regulation
- R Mentalizing
- S Punishment
- T Error Processing
- U Memory Encoding
- V Spatial Attention

Koyejo & Poldrack, 2013

Ontology-based decoding

Experimental conditions

Schwartz et al., in prep

Mining text using topic modeling

Topic Mapping

- Perform topic modeling using latent Dirichlet allocation with Cognitive Atlas terms
- Each document has a loading on each topic
 - On average, each document loads on ~6.5 topics
- Extract activation coordinates for 5,809 papers in NeuroSynth
- Perform voxelwise chi-square test with FDR correction to examine association between topics and activation

Poldrack et al., 2012, PLOS Comp Biology

Meta-analysis using Cognitive Atlas terms

Topic 61 (442 docs): memory working_memory maintenance visual_working_memory spatial_working_memory manipulation episodic_buffer retention rehearsal retrieval

Poldrack et al., 2012, PLOS Comp Biology

Towards meta-analytic testing of cognitive frameworks

- Cognitive ontologies can provide a more formal definition of cognitive functions
- Ontologies plus meta-analysis may provide the means to test between different conceptual frameworks

Acknowledgments

Jeanette Mumford Sarah Helfinstein **Tom Schonberg** Craig Fox Koji Jimura Sanmi Koyejo Chris Gorgolewski Tyler Davis Tal Yarkoni Jessica Cohen **Robert Bilder** Eliza Congdon Eydie London Tyrone Cannon **Nelson Freimer** Stephen J. Hanson Yaroslav Halchenko **Yannick Schwartz** Gael Varoquaux **Bertrand Thirion**

The Poldrack Lab @ Stanford

Visit: <u>www.openfmri.org</u> <u>www.cognitiveatlas.org</u>

James S. McDonnell Foundation

Acknowledgments

UCLA

Robert Bilder

Don Kalar

UT Austin

Jeanette Mumford

Stanford

Sanmi Koyejo

Fred Sabb

D. Stott Parker

Tal Yarkoni

Carnegie-Mellon

Niki Kittur

Get involved! <u>www.cognitiveatlas.org</u>

James S. McDonnell Foundation