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Two kinds of cognitive neuroscience questions

1. What are the neural correlates of mental process X? 

2. What does area Z do?
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Neural correlates

working memory 
maintenance

Manipulate some 
mental process

Observe associated 
brain activation

working memory is sufficient to activate ACC 
working memory is necessary to activate ACC 

ACC is necessary or sufficient for working memory
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What does the ACC do?

errorsconflictdifficulty

maintenance pain phonology interference

attention

forward inference Z estimated using neurosynth.org
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Some alternatives

• There is some confound driving all of these (such as 
autonomic arousal or breathing) 

• These are all truly distinct functions performed by subsets of 
neurons in the ACC 

• These are all truly distinct functions subserved by ACC in 
different neural contexts 

• These are not truly distinct functions 

• We are chopping up mental function in the wrong way 

• Thought experiment: What if the phrenologists had fMRI?
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What if the phrenologists had fMRI?

Neural Evidence for Suavity-
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Mapping cognition

• What are the 
atoms of the 
mind? 

• How are they 
related to one 
another?

Perception Attention Memory

Working 
memory

Declarative 
memory

Procedural 
memory

Familiarity Recollection Skill 
learning

Habit 
learning

Perception Attention Memory

Working 
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memory
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memory

Familiarity Recollection Skill 
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Habit 
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learning

Habit 
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Mental Conceptsexecutive function

Response 
inhibition

Working memory 
updating Set shifting

is-ais-ais-a

Task set 
reconfiguration

Response 
suppression

part-ofpart-of

precedes

part-of

cognitive control has-
synonym

Mental Tasks

Stop-signal task

Stop trial

Go trial

Experimental 
conditions Contrasts

SSRT

Response time

Indicators

Accuracy

Mean Go RT

has-condition

has-condition

Choice RT
task

derived-from

is-measured-by

Response inhibition

Suppression of actions that 
are inappropriate in a given 
context and that interfere with 
goal-driven behavior.
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Stop-signal task

A task in which an external 
stimulus signals the 
participant to interrupt an 
already-initiated motor 
response.
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Current state of the Cognitive Atlas

• 771 mental constructs 

• 610 tasks 

• 214 disorders (inherited from Disease Ontology) 

• 22 collections 

• Formal ontology (OWL) available via BioPortal
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Annotating data using the Cognitive Atlas
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An initial proof of concept

• Obtain brain imaging data from a broad range of 
mental tasks 

• In this case, 130 people doing one of 8 different 
tasks 

• Code the the tasks using a preliminary cognitive 
ontology 

• Map the brain systems onto the ontology
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Task coding 
by ontology

Poldrack, Halchenko, & Hanson, 2009

Present

Absent



Artificial neural network classifier

...

...
Input: brain 

activity at ~2000 
locations

6 hidden units

Output: Which of the 
8 tasks was the 

person performing?

Use hidden unit patterns
as low-dimensional 

representation
for each subjectPoldrack, Halchenko, & Hanson, 2009
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Task chosen by classifier

 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 
Task 1 87.5 6.0 0.0 0.0 6.0 0.0 0.0 0.0 
Task 2 0.0 90.0 0.0 0.0 0.0 0.0 5.0 5.0 
Task 3 8.0 23.0 61.5 0.0 0.0 8.0 0.0 0.0 
Task 4 0.0 0.0 0.0 82.4 0.0 0.0 0.0 18.0 
Task 5 0.0 38.0 0.0 0.0 43.8 18.2 0.0 0.0 
Task 6 0.0 28.0 0.0 0.0 0.0 71.4 0.0 0.0 
Task 7 0.0 11.0 0.0 0.0 0.0 0.0 84.0 5.0 
Task 8 0.0 0.0 7.0 0.0 0.0 0.0 27.0 63.0 
 

Task chosen by classfier
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Analysis Crossvalidated 
accuracy

# of voxels 
included

Union of all in-mask voxels across 
subjects (one-vs-one)

74% 417,231

Intersection of in-mask voxels across 
subjects (one-vs-many)

80.8% 214,940

Positively activated voxels only 
(across all 130 subjects, t > 3, p<.
002) (one-vs-many)

74.6% 83,825

Deactivated voxels only 
 (t < -3, p<.002) (one-vs-many)

50.8% 23,736

Accuracy above 18.5% is significant at p<.05 by randomization

Poldrack, Halchenko, & Hanson, 2009
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Poldrack, Halchenko, & Hanson, 2009

Hierarchical clustering on hidden unit values
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Mapping neural data into a cognitive ontology

Concept X task

Task X dimension

Concept X dimension

Poldrack, Halchenko, & Hanson, 2009



Poldrack, Halchenko, & Hanson, 2009



Poldrack, Halchenko, & Hanson, 2009
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Larger-scale decoding

26 tasks, 482 images from 338 subjects 
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Larger-scale decoding

2 10 20 50 100 200

Whole-brain: 
47% accuracy

Poldrack et al., submitted

26 tasks, 482 images from 338 subjects 
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Larger-scale decoding: Clustering 
ds017A (2): Conditional stop signal: go-critical

ds008 (1): Stop signal: successful stop

ds011 (1): Tone counting

ds003 (1): Ryme judgment

ds011 (3): Classification: dual-task 

ds052 (2): Classification: negative feedback

ds052 (1): Classification: positive feedback

ds110 (1): Memory encoding: subsequent hits vs. misses 

ds005 (1): Gamble decisions: parametric gain effect

ds051 (1): Abstract/concrete decisions: novel vs repeat

ds102 (1): Flanker task: incongruent vs congruent

ds108 (1): Emotion regulation: Regulate vs. look (negative)

ds101 (1): Simon task: incorrect vs correct

ds001 (1): BART: pumps vs. control (demeaned)

ds002 (2): Classification:feedback

ds006A (1): Mirror-reading: mirror vs. plain

ds109 (1): False belief task: false belief vs. false picture story

ds011 (4): Classification decision (no feedback)

ds011 (2): Classification : single-task 

ds008 (2): Conditional stop signal task: go-noncritical

ds007 (1): Stop signal task: go

ds107 (1): One-back: objects vs scrambled

ds002 (3): Classification decision (no feedback)

ds002 (1): Classification: single-task

ds007 (3): Stop signal task: pseudoword naming

ds007 (2): Stop signal task: letter naming
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Decoding cognitive functions across subjects

A B C D E F G H I J K L M N O P Q R S T U V0.0
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SVM
Logistic
Ridge
Popularity

• Multilabel classifier trained using OpenfMRI 
data and Cognitive Atlas labels 

• 26 task contrasts, 482 images from 338 
subjects 

• annotated with Cognitive Atlas 

A Vision  
B Action Execution  
C Decision Making  
D Orthography  
E Shape Vision  
F Audition  
G Phonology 
H Conflict 
I Semantics  
J Reinforcement Learning 
K Working Memory  
L Feedback  
M Response Inhibition  
N Reward  
O Stimulus-driven Attention 
P Speech  
Q Emotion Regulation  
R Mentalizing  
S Punishment 
T Error Processing  
U Memory Encoding  
V Spatial Attention

Koyejo & Poldrack, 2013
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Ontology-based decoding

Experimental conditions

Ontology
terms

Terms maps
Fo

rw
ar

dReverse

Schwartz et al., in prep
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Mining text using topic modeling

© 2006 Nature Publishing Group 

 

Cortical substrates for exploratory decisions in
humans
Nathaniel D. Daw1*, John P. O’Doherty2*†, Peter Dayan1, Ben Seymour2 & Raymond J. Dolan2

Decision making in an uncertain environment poses a conflict
between the opposing demands of gathering and exploiting infor-
mation. In a classic illustration of this ‘exploration–exploitation’
dilemma1, a gambler choosing between multiple slot machines
balances the desire to select what seems, on the basis of accumu-
lated experience, the richest option, against the desire to choose a
less familiar option that might turn out more advantageous (and
thereby provide information for improving future decisions). Far
from representing idle curiosity, such exploration is often critical
for organisms to discover how best to harvest resources such as
food and water. In appetitive choice, substantial experimental
evidence, underpinned by computational reinforcement learning2

(RL) theory, indicates that a dopaminergic3,4, striatal5–9 andmedial
prefrontal network mediates learning to exploit. In contrast,
although exploration has been well studied from both theoretical1

and ethological10 perspectives, its neural substrates are much less
clear. Here we show, in a gambling task, that human subjects’
choices can be characterized by a computationally well-regarded
strategy for addressing the explore/exploit dilemma. Furthermore,
using this characterization to classify decisions as exploratory
or exploitative, we employ functional magnetic resonance
imaging to show that the frontopolar cortex and intraparietal
sulcus are preferentially active during exploratory decisions. In
contrast, regions of striatum and ventromedial prefrontal cortex
exhibit activity characteristic of an involvement in value-based
exploitative decision making. The results suggest a model of
action selection under uncertainty that involves switching
between exploratory and exploitative behavioural modes, and
provide a computationally precise characterization of the contri-
bution of key decision-related brain systems to each of these
functions.
Exploration is a computationally refined capacity, demanding

careful regulation. Two possibilities for this regulation arise. On
the one hand, we might expect the involvement of cognitive,
prefrontal control systems11 that can supervene12 over simpler
dopaminergic/striatal habitual mechanisms. On the other hand,
theoretical work on optimal exploration1,13 indicates a more unified
architecture, according to which actions can be assessed with the use
of a metric that integrates both primary reward and the informa-
tional value of exploration, even in simple, habitual decision systems.
We studied patterns of behaviour and brain activity in 14 healthy

subjects while they performed a ‘four-armed bandit’ task involving
repeated choices between four slot machines (Fig. 1; see Supplemen-
taryMethods). The slots paid off points (to be exchanged for money)
noisily around four different means. Unlike standard slots, the mean
payoffs changed randomly and independently from trial to trial, with
subjects finding information about the current worth of a slot only

through sampling it actively. This feature of the experimental design,
together with a model-based analysis, allowed us to study explora-
tory and exploitative decisions under uniform conditions, in the
context of a single task.
We asked subjects in post-task interviews to describe their choice

strategies. The majority (11 of 14) reported occasionally trying the
different slots to work out which currently had the highest payoffs
(exploring) while at other times choosing the slot they thought had
the highest payoffs (exploiting). To investigate this behaviour quan-
titatively, we considered RL (ref. 2) strategies for exploration. These
strategies come in three flavours, differing in how exploratory actions
are directed. The simplest method, known as ‘1-greedy’, is undir-
ected: it chooses the ‘greedy’ option (the one believed to be best)
most of the time, but occasionally (with probability 1) substitutes a
random action. A more sophisticated approach is to guide explora-
tion by expected value, as in the ‘softmax’ rule. With softmax, the
decision to explore and the choice of which suboptimal action to take
are determined probabilistically on the basis of the actions’ relative
expected values. Last, exploration can additionally be directed by
awarding bonuses in this latter decision towards actions whose
consequences are uncertain: specifically, to those for which explora-
tion will be most informative. The optimal strategy for a restricted
class of simple bandit tasks has this characteristic1, as do standard
heuristics14 for exploration in more complicated RL tasks such as
ours, for which the optimal solution is computationally intractable.
We compared the fit of three distinct RL models, embodying the

aforementioned strategies, to our subjects’ behavioural choices. All the
models learned the values of actionswith the use of a Kalman filter (see
Supplementary Methods), an error-driven prediction algorithm that
generalizes the temporal-difference learning algorithm (used in most
RL theories of dopamine) by also tracking uncertainty about the
value of each action. The models differed only in their choice rules.
We compared models by using the likelihood of the subjects’ choices
given their experience, optimized over free parameters. This com-
parison (Supplementary Tables 1 and 2) revealed strong evidence for
value-sensitive (softmax) over undirected (1-greedy) exploration.
There was no evidence to justify the introduction of an extra
parameter that allowed exploration to be directed towards uncer-
tainty (softmax with an uncertainty bonus): at optimal fit, the bonus
was negligible, making the model equivalent to the simpler softmax.
We conducted additional model fits (see Supplementary Information)
to verify that these findings were not an artefact of our assumptions
about the yoking of free parameters between subjects.
Having characterized subjects’ behaviour computationally, we

used the best-fitting softmaxmodel to generate regressors containing
value predictions, prediction errors and choice probabilities for each
subject on each trial. We used statistical parametric mapping to
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Nucleus Accumbens D2/3 Receptors
Predict Trait Impulsivity and
Cocaine Reinforcement
Jeffrey W. Dalley,1,2* Tim D. Fryer,1,3 Laurent Brichard,1† Emma S. J. Robinson,1‡
David E. H. Theobald,1,2 Kristjan Lääne,1,2 Yolanda Peña,1§ Emily R. Murphy,1,2 Yasmene Shah,4
Katrin Probst,1,3 Irina Abakumova,1,3 Franklin I. Aigbirhio,1,3 Hugh K. Richards,1,5 Young Hong,1,3
Jean-Claude Baron,1,6 Barry J. Everitt,1,2 Trevor W. Robbins1,2

Stimulant addiction is often linked to excessive risk taking, sensation seeking, and impulsivity,
but in ways that are poorly understood. We report here that a form of impulsivity in rats predicts
high rates of intravenous cocaine self-administration and is associated with changes in dopamine
(DA) function before drug exposure. Using positron emission tomography, we demonstrated that
D2/3 receptor availability is significantly reduced in the nucleus accumbens of impulsive rats that
were never exposed to cocaine and that such effects are independent of DA release. These data
demonstrate that trait impulsivity predicts cocaine reinforcement and that D2 receptor dysfunction
in abstinent cocaine addicts may, in part, be determined by premorbid influences.

Accumulating evidence suggests that cer-
tain personality traits, including sensa-
tion (or novelty) seeking, impulsivity,

and antisocial conduct disorder, may predispose
humans to drug abuse and addiction (1–4).
However, from studies of human drug addicts
alone, it is difficult to determine whether comor-
bid impulsivity and cognitive dysfunction (5, 6)
pre-date the onset of drug use or emerge as a con-
sequence of chronic drug use. Current hypotheses
suggest that long-term drug use impairs inhibitory
control functions mediated by the prefrontal
cortex and the associated limbic brain circuitry,
leading to a loss of inhibition or to impulsivity
(7, 8). However, there is little evidence to date that
chronic exposure to cocaine and other psycho-
stimulant drugs leads to long-term increases in
impulsive behavior in animals (9–11).

The view that individual differences in drug
abuse reflect distinct behavioral and physiologi-
cal traits is richly supported by studies in animals
(12–17). Rats that are selected for high novelty-
induced locomotor activity more readily acquire

intravenous amphetamine and cocaine self-
administration at lower doses than do rats that
show reduced levels of activity (12,13). In addition,
rats that are impulsive on a delay-of-reward task,
choosing a small immediate reward over a large
but delayed reward, show an increased propensity
to self-administer cocaine, as compared to low-
impulsive rats (18). Finally, the existence of trait
variables related to drug-abuse vulnerability is
encouraged by studies in nonhuman primates in
which cocaine is more readily self-administered by
subordinate, rather than dominant, monkeys (19).

A key neural substrate underlying individual
differences in drug vulnerability is thought to

involve the brain dopamine (DA) systems, in
particular the mesolimbic and mesocortical DA
pathways innervating the nucleus accumbens and
prefrontal cortex (19–22). Positron emission
tomography (PET) studies in nonhuman primates
have indicated a role for DA D2 receptors in
determining individual differences in intravenous
cocaine self-administration (19, 20). Specifically,
low D2 receptor availability in the striatum
inversely predicts subsequent levels of intra-
venous cocaine self-administration in rhesus
monkeys (20), a result apparently similar to that
seen in studies of human cocaine abusers (23).

However, it is not clear how individual
differences in D2 receptor availability relate to a
specific behavioral endophenotype or behavioral
process that confers vulnerability to drug addic-
tion. In addition, there have been few, if any,
studies where DA release in vivo has been
combined with PET estimates of D2 receptor
availability. This is important because D2
receptor availability is influenced by both recep-
tor density and competing DA release (24, 25).
Thus, there is a need to conduct analogous PET
studies in animals to investigate the predictive
relationship between D2 receptor availability
and trait behavioral markers of drug-abuse
vulnerability.

We investigated the relevance of a spontane-
ously occurring form of impulsivity in outbred
Lister hooded (LH) rats to intravenous cocaine
self-administration and to underlying changes
in striatal DA function, as measured by micro-
PET and in vivo microdialysis (26). We de-
fined impulsivity as high levels of anticipatory
responses made before the presentation of a
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2Department of Experimental Psychology, University of
Cambridge, Downing Street, Cambridge CB2 3EB, UK.
3Wolfson Brain Imaging Centre, Department of Clinical
Neurosciences, University of Cambridge, Addenbrooke’s
Hospital, Cambridge CB2 2QQ, UK. 4Sir Peter Mansfield
Magnetic Resonance Centre, School of Physics and
Astronomy, University of Nottingham, Nottingham NG7
2RD, UK. 5Neurosurgery Unit, Department of Clinical
Neurosciences, University of Cambridge, Addenbrooke’s Hos-
pital, Cambridge CB2 2QQ, UK. 6Neurology Unit, Depart-
ment of Clinical Neurosciences, University of Cambridge,
Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK.

*To whom correspondence should be addressed. E-mail:
jwd20@cam.ac.uk
†Present address: Laboratoire d’Imagerie Moléculaire et
Fonctionnelle: de la Physiologie à la Thérapie, ERT CNRS/
Université Victor Segalen Bordeaux 2, Bordeaux, France.
‡Present address: Department of Pharmacology, University
of Bristol, Bristol BS8 1TD, UK.
§Present address: Departament de Psiquiatria i de Medicina
Legal, Universita Autònoma de Barcelona, Barcelona, Spain.

Fig. 1. Behavioral
attributes of trait impul-
sivity on the 5-CSRT task.
(A) Impulsive rats exhib-
it high levels of prema-
ture responding on days
when visual targets are
presented either 5 s after
trial initiation (days 1, 2,
4, and 5) or 7 s after trial
initiation (day 3), as com-
pared to non-impulsive
rats. Two-way analysis of
variance (ANOVA) of pre-
mature responses revealed
a significant main effect
of day [F(4,40) = 144.9,
P < 0.01] and a signifi-
cant main effect of group
[F(1,10) = 26.1, P <
0.01]. However, there
were no significant effects
on other measures of task
performance, including
(B) attentional accuracy
[F(1,10) = 1.17, P = 0.306], (C) latency to collect food reward [F < 1, not significant (ns)], (D) omissions
(F < 1, ns), (E) latency to respond correctly [F(1,10) = 3.0, P = 0.113], and (F) the time required to
complete both standard and challenge (long-ITI) sessions (F < 1, ns). Black circles, high-impulsive rats;
white circles, non-impulsive rats.
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Neural computations underlying action-based decision
making in the human brain
Klaus Wunderlicha,1, Antonio Rangela,b, and John P. O’Dohertya,b,c

aComputation and Neural Systems Program, California Institute of Technology, Pasadena, CA; bDivision of Humanities and Social Sciences, California
Institute of Technology, Pasadena, CA; and cInstitute of Neuroscience and School of Psychology, Trinity College, Dublin, Ireland
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February 4, 2009)

Action-based decision making involves choices between different
physical actions to obtain rewards. To make such decisions the brain
needs to assign a value to each action and then compare them to
make a choice. Using fMRI in human subjects, we found evidence for
action-value signals in supplementary motor cortex. Separate brain
regions, most prominently ventromedial prefrontal cortex, were
involved in encoding the expected value of the action that was
ultimately taken. These findings differentiate two main forms of
value signals in the human brain: those relating to the value of each
available action, likely reflecting signals that are a precursor of choice,
and those corresponding to the expected value of the action that is
subsequently chosen, and therefore reflecting the consequence of the
decision process. Furthermore, we also found signals in the dorso-
medial frontal cortex that resemble the output of a decision compar-
ator, which implicates this region in the computation of the decision
itself.

acc ! action value ! reinforcement learning ! sma ! vmpfc

Consider a goalkeeper trying to stop a soccer ball during a
penalty kick. Within a brief amount of time he needs to choose

between jumping to the left or right goal posts. Repeated play
against the same opponents allows him to learn about their scoring
tendencies, which can be used to compute the values of a left and
a right jump before making a decision. It is a long-established view
in economics, psychology, and computational neuroscience that the
brain makes choices among actions by first computing a value for
each possible action, and then selecting one of them on the basis of
those values (1–3). This raises two fundamental questions in
decision neuroscience: (1) where in the brain are the values of
different types of actions encoded? and (2) how and where does the
brain compare those values to generate a choice?

An emerging theme in decision neuroscience is that organisms
need to make a number of value-related computations to make
even simple choices (4). Consider the case of action-based choice
exemplified by the goalkeeper’s problem. First, he needs to assign
a value to each action under consideration. These signals, known as
action values, encode the value of each action before choice and
regardless of whether it is subsequently chosen or not, which allows
them to serve as inputs into the decision-making process (5–7).
Second, these action values are compared to generate a choice.
Third, the value of the option that is selected, known as the chosen
value, is tracked to be able to do reinforcement learning. In
particular, by comparing the value of the outcome generated by the
decision to the chosen value, the organism can compute a predic-
tion-error signal that can be used to update the action value of the
chosen option. Note that while the action values are computed
before the decision is made, the chosen value and outcome of the
comparator process signals are computed afterward.

Although a rapidly growing number of studies have found neural
responses that are correlated with some form of value signals, little
is known about how the brain encodes action values or about how
it compares them. This is central to understand how the brain makes
action-based choices. For example, a number of chosen value
signals have been found in the orbital and medial prefrontal cortex

(8, 9) and amygdala (10, 11). Note that these signals are quite
distinct from action values, and are not precursors to choice,
because they reflect the value of the actions that were selected in
the decision. For similar reasons, the value signals that have been
found in lateral intraparietal cortex (LIP) during saccadic action-
based choice (12, 13) are also not pure action values since they are
strongly modulated by whether an action is subsequently taken. This
suggests that instead of serving as inputs to the comparison process,
they reflect its output. Several studies found orbitofrontal cortex to
encode the value of different goals (14–16). Although these signals
are precursors of choice, they are not instances of action values since
they are stimulus-based and independent of the action required to
obtain them. To date, only three monkey electrophysiology studies
have found evidence for the presence of action-value signals for
hand and eye movements in the striatum during simple decision-
making tasks (5–7). This study extends their findings in three
directions. First, as of yet no evidence has been presented for the
existence of action-value signals in the human brain. Second, using
fMRI we are able to look for action-value signals in the entire brain,
whereas the previous electrophysiology studies have limited their
attention to the striatum. As a result, no previous study has looked
for action-value signals in the cortex. This is important because, as
discussed below, there are a priori reasons to believe that action
value signals might be found in the motor and supplementary motor
cortices. Finally, we investigate how such signals might be compared
to actually compute the decision itself and where neuronal corre-
lates of the output of this decision process are represented, an issue
about which very little is known.

We studied these questions using fMRI in humans while subjects
performed a variant of a two-armed bandit task to obtain proba-
bilistically delivered monetary rewards (Fig. 1A). A critical feature
of the task was that they had to select a motor response in one of
two distinct response modalities: in every trial, they could choose to
make either a saccade to the right of a fixation cross, or to press a
button with the right hand. This design allowed us to exploit the fact
that different regions of the cortex are involved in the planning of
eye and hand movements (17). We hypothesized that value repre-
sentations for the two actions would be separable within these
cortical areas at the spatial resolution available to fMRI. The
probability of being rewarded on each of the two actions drifted
randomly over time and was independent of the probability of being
rewarded on the other (Fig. 1B). This characteristic ensured that
value estimates for eye and hand movements were uncorrelated,
which gave us maximum sensitivity with which to dissociate the
neural representations of the two action values.
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decision making fMRI basal ganglia

“decision”, “value”, 
“choice”, “risk”Terms

Topics

Documents

“activation”, “scan”, 
“TR”, “EPI”

“nucleus accumbens”, 
“striatum”, “dopamine”
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Topic Mapping
• Perform topic modeling using latent Dirichlet allocation with Cognitive Atlas terms 

• Each document has a loading on each topic 

• On average, each document loads on ~6.5 topics 

• Extract activation coordinates for 5,809 papers in NeuroSynth 

• Perform voxelwise chi-square test with FDR correction to examine association 
between topics and activation

Topic Documents Activation 
Coordinates

“...amygdala...emotion...negative...”emotion 
negative 

unpleasant

Poldrack et al., 2012, PLOS Comp Biology
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Topic 61 (442 docs): memory working_memory 
maintenance visual_working_memory 
spatial_working_memory manipulation episodic_buffer 
retention rehearsal retrieval 

Poldrack et al., 2012, PLOS Comp Biology

Meta-analysis using Cognitive Atlas terms
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Towards meta-analytic testing of cognitive frameworks

SSRT on  
stop signal task

accuracy on tone 
counting task 

2-back versus  
0-back accuracy

accuracy on 
antisaccade task

Model 1 inhibition updating

Model 2 executive function

Observed covariance

!
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Conclusion

• Cognitive ontologies can provide a more formal 
definition of cognitive functions 

• Ontologies plus meta-analysis may provide the 
means to test between different conceptual 
frameworks
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