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Two kinds of cognitive neuroscience questions

1. What are the neural correlates of mental process X?

2. What does area Z do?
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Neural correlates

Manipulate some Observe associated
mental process brain activation

working memory
maintenance

working memory is sufficient to activate ACC
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What does the ACC do?

maintenance pain phonology interference

difficulty conflict errors

forward inference Z estimated using neurosynth.org
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Some alternatives

e There is some confound driving all of these (such as
autonomic arousal or breathing)

e These are all truly distinct functions performed by subsets of
neurons in the ACC

e These are all truly distinct functions subserved by ACC in
different neural contexts

e These are not truly distinct functions
e We are chopping up mental function in the wrong way

e Thought experiment: What if the phrenologists had fMRI?
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Mapping cognition

e What are the

e How are they

atoms of the
mind?
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Welcome to Cognitive Atlas

The Cognitive Atlas is a collaborative knowledge building project that aims to develop a
knowledge base (or ontology) that characterizes the state of current thought in cognitive
science. The project is led by Russell Poldrack, Professor of Psychology at Stanford

University. Development of the project was supported by grant RO1MH082795 from the

National Institute of Mental Health.
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Response inhibition

Suppression of actions that
are inappropriate in a given
context and that interfere with
goal-driven behavior.

Bibliography
On the ability to inhibit thought and

action: A theory of an act of control.
Psychological Review, 91, 295-327.

Logan, G. D. & Cowan, W. B. (1984).

has-
synonym

Mental Concepts

executive function

cognitive control

is-a is-a is-a

Response
inhibition

Working memory
updating

part-of part-of part-of

Task set
reconfiguration

Response

recedes .
p suppression

Stop-signal task

A task in which an external
stimulus signals the
participant to interrupt an
already-initiated motor
response.

Bibliography
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active maintenance and flexible updating of goaltask relevant information (items, goals, strategies, etc.) in a form that resists
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Current state of the Cognitive Atlas

e 771 mental constructs

e 610 tasks

e 214 disorders (inherited from Disease Ontology)
e 22 collections

e Formal ontology (OWL) available via BioPortal
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Annotating data using the Cognitive Atlas
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Freedom to Share

OpenfMRILorg is a project dedicated to the free and open sharing of

functional magnetic resonance imaging (fMRI) datasets, including raw
LOGIN data.

Create new account
Request new password
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Probabilistic classification task K3

Sublects are presented with a set of stimuli and must classify those stimuli into one of two categories. In a common version
Known &8s the “weaather preadichion 1ask™ the stmuli are cards with geomeatnc shapes on thy ] the ¢ g4 v

ve sunny woeather. The feedback is probabilstic, and perdformance is measured by the proportion of statistically optima
Syn 5. probabvishc classihcation loaming task, woathor prodicbon lask

o

Classification learning

Detrax OAMDeS by DO WO yours aQe

Submitted DY mOOﬂetti on ThU. 100672011 - 1136 Probabilistic classification task has boen asserted 1o measwre the DISORDERS associated with Probabiistic classification task
foliowing CONCEPTS

Subjects performed a classification learning task with two different problems (across different runs), using

a "weather prediction” task. In one (probabilistic) problem, the labels were probabilistcally related 10 15 Measures by ¢ st 0 < ‘ spores wcrons "
each set of cards. In another (deterministic) problem, the labels were deterministically related to each set N
of cards. Aher leaming, subjects participated in an event-related block of judgment only (no feedback) in
which they were presented with simuli from both of the training problems.
Tasks and Conditions:
IMPLEMENTATIONS of Probabiistio classification task EXTERNAL DATASETS for Probabilistio classification task

-----

« 001 Probabilistic classification trials | Shanng e

001 Probabilistic classification task
e 002 feedback

CONDITIONS CONTRASTS INDICATORS

Probabilistic classification trials

e 001 Deterministic classification trials

002 deterministic classification
e 002 feedback

001 Classification trials: Probabilistic
¢ 002 Classification trials: Deterministic

003 classification probe without feedback




An initial proof of concept

e (Obtain brain imaging data from a broad range of
mental tasks

e |n this case, 130 people doing one of 8 different
tasks

e (Code the the tasks using a preliminary cognitive
ontology

e Map the brain systems onto the ontology
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Task coding
by ontology

Language
Orthography
Phonology
Semantics

Speech

Memory

Working Memory
Implicit Memory
Reasoning
Emotion

Positive Emotion
Audition

Vision

Color Vision

Shape Vision
Action Execution
Speech Execution
Action Inhibition
Economic Decision Making
Decision Making without Reward
Spatial Processing
Number Processing

Poldrack, Halchenko, & Hanson, 2009

Present

B Absent




Artificial neural network classifier

Output:Which of the
8 tasks was the

person performing? \ \\/ (

\" \\"
6 hidden units

// \

actlwty at ~2000 O O O

locations

Use hidden unit patterns
as low-dimensional
representation
Poldrack, Halchenko, & Hanson, 2009 for each subject



Analysis Crossvalidated | # of voxels
accuracy included

Union of all in-mask voxels across 74% 417,231
subjects (one-vs-one)
Intersection of in-mask voxels across | 80.8% 214,940
subjects (one-vs-many)
Positively activated voxels only 74.6% 83,825
(across all 130 subjects, t > 3, p<.
002) (one-vs-many)
Deactivated voxels only 50.8% 23,736
(t < -3, p<.002) (one-vs-many)

Accuracy above 18.5% is significant at p<.05 by randomization

Task chosen by classfier

Tosk 1 | Task2 | Task3 | Task4 | Taskd | Task6 | Task7 | Task§

Task I 87.5 0.0 0.0 0.0 6.0 0.0 0.0 0.0

« Tusk? 00 @ 900 0.0 0.0 0.0 0.0 5.0 5.0
§ Task 3 8.0 23.0 | 61.5 0.0 0.0 8.0 0.0 0.0
% Task 4 0.0 0.0 0.0 82.4 0.0 0.0 0.0 18.0
= Task$ 0.0 36.0 0.0 0.0 438 | 18.2 0.0 0.0
Task 6 0.0 28.0 0.0 0.0 0.0 7.4 0.0 0.0
Task 7 0.0 11.0 0.0 0.0 0.0 0.0 84.0 5.0
Task § 0.0 0.0 7.0 0.0 0.0 0.0 210 | 63.0

Poldrack, Halchenko, & Hanson, 2009




Hidden Units

| .Iﬂl I |

READ RHYME  SEM RISK

Hierarchical clustering on hidden unit values

Poldrack, Halchenko, & Hanson, 2009




Mapping neural data into a cognitive ontology

nl

Task X dimension

Concept X task Concept X dimension

Poldrack, Halchenko, & Hanson, 2009

poldracklab.org



audition

68888
d6680
[CXCXORORe

Poldrack, Halchenko, & Hanson, 2009



decisionmaking

‘

‘.QO@®00®0

oooooooooooooooooooooooooooooooo



Larger-scale decoding
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OpenfMRI.org is a project dedicated to the free and open sharing of ‘
functional magnetic resonance imaging (fMRI) datasets, including raw data.
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26 tasks, 482 images from 338 subjects
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Larger-scale decoding

26 tasks, 482 images from 338 subjects
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Larger-scale decoding: Clustering

[ ]

ds017A (2): Conditional stop signal: go
ds008 (1): Stop signal: successful stop
ds011 (1): Tone counting

ds003 (1): Ryme judgment
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ds052 (2): Classification: negative feed
ds052 (1): Classification: positive feedk
ds110 (1): Memory encoding: subseque
ds005 (1): Gamble decisions: paramett
ds051 (1): Abstract/concrete decisions:
ds102 (1): Flanker task: incongruent vs

ds101 (1): Simon task: incorrect vs corl
ds001 (1): BART: pumps vs. control (de
ds002 (2): Classification:feedback

dsO006A (1): Mirror-reading: mirror vs. p
ds109 (1): False belief task: false belie
ds011 (4): Classification decision (no fe

(
(
ds108 (1): Emotion regulation: Regulat
(
(

ds011 (2): Classification : single-task

ds008 (2): Conditional stop signal task:
ds007
ds107
ds002
ds002
ds007
ds007

1): Stop signal task: go

1): One-back: objects vs scram|
3): Classification decision (no fe
1): Classification: single-task
3): Stop signal task: pseudowor
2): Stop signal task: letter nami
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Decoding cognitive functions across subjects

A Vision

B Action Execution

C Decision Making
| | | | | | | | | | | | | | | | | | | | I I D Orthography
= SVM _ - E Shape Vision
BN Logistic F Audition

BN Ridge _ G Phonology
Bl Popularity |- H Conflict

. I Semantics

J Reinforcement Learning
ABCDEFGHI JKLMNOPQRSTUYV K Working Memory

L Feedback
M Response Inhibition

o Multilabel classifier trained using OpenfMRI N Reward

data and Cognitive Atlas labels S SS;:::;us-dmen Attention

. Q Emotion Regulation
e 26 task contrasts, 482 images from 338 R Mentalizing

Su bj ects S Punishment
T Error Processing

e annotated with Cognitive Atlas U Memory Encoding
V Spatial Attention

Koyejo & Poldrack, 2013
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Ontology-based decoding

s recall === chance
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Mining text using topic modeling
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Neural computations underlying action-based decision

making in the human brain

Klaus Wunderlich®, Antonio Rangel**, and John P. O'Doherty®<

Institute of Technology, Pasadens, CA; and dnstitute of

o, pasadens O Dionof umanites and Sl e Calforia
oot

e e Dub

Edited by Ranuifo Romo, Mexio, 0.

. Mexico, and approved (received for review

February 4, 2009)
Actonbased decilon making involves choces between diferent

oy i val & e st an e compare them to
make a choice. Using fMRI in human subjects, we found evidence for
action-value signals in supplementary motor cortex. Separate brain
rvgons, most promlnatly vertromadial prfronal core. vers
invol coding the expectd valu of the acion that was
Uimately taken, These ﬁnd-»gs differentiate two main forms
value signals i the human brain: those elating t0 the il of uzh

and those corresponding to the expected value of the action that is

(8, 9) and amygdala (10, 11). Note that these signals are quite

ditinet from acion valoes, and. are not precuriom o e,

becausethy efletthe vae o heacons tht were

similar s

found n hteral mlmpmud\ Corex (LIP) during sccadic aci

based choice (12, 13) are also not pure action values since they are
“This

suggests that instcad ofserving
they reflectits output. Several studies found orbitofrontal cortex 0
encode the value of different goals (14-16). Although these signals
theyare not
and

decision process. Furthermore, we also found signals in the dorso-

ator, which implicates this region in the computation of the decision
itself.

ace | action value | reinforcement earning | sma | ympfc

Cunudu a goalkeeper trying to stop a soccer ball during a
pum\ly Kk, Wik bret amount oftime he needs o choose
be mping to the left or right goal posts. Repeated play
Mmq e same opponents allows i o leansbout e scring
endencies, which can be used to comput of a le
a rlg)l\ fump belore making  deciion 11 o hmg nblihed view
holog at o

the action required to
obtin them. To dae, nmly three monkey electrophysiology studics
have found evidence for the presence of action-value signals for
hand and eve movemens inthe stitum during simple deckion
makin (5-7). This study extends their findings in_three
Girctons. i, v of yt no evidenc has been prescned or the
existence of action-value signals in the human brain. Second, using
IMRI for
e he provous clctrophiology st e it el
attention tothe siriatum. As  resul, ed
i i i, T ot e
discussed below, there are a priori reasons (o believe that action

Is might be compared
on itslf and where neuronal corre-

s. Finally, we investigate how such signal
ally compute the det

(decision making) ( fMRI ] ( basa

‘nature

LETTERS

Vol 44115 June 2006

Cortical substrates for exploratory decisions in

humans

Nathaniel D. Daw'*, John P. O'Doherty’*, Peter Dayan',

Decision making in an uncertain environment poses a conflict
betwe: 'h:nng nd xploiing nfor
xploitation’
ma', a gambler choosing between mu|upk ot machines
e the desire to select what seems, o the basis of accumu-

less hmlhlr opton that might tum out mor advantageous (and

ram egvesenting iie cofoity, sueh explortion s afen st
for organisms to discover how best to harvest resources such as
food and water. In appetitive choice, substantial experimental
evidence, i i

(RL) theory, indicates that a dopaminergic™, striatal * and met
prefrontal network mediates learning to exploit. In contrast

Ben Seymour’ & Raymond J. Dolan®

This feature of
together with a model-based analysis, allowed us 10 study explora-
tory and exploiative decisions under uniform conditions, in the
context of a single tas

We ke sujcs i post-task v o desrbe hei choice
strategies. The majoriy (11 of 14) reported occasionally trying the
illrnt ot to work out which currently had the highst payoffs
(exploring) while at other times choosing the sot they thought had
the highest payoffs (exploiting). To investigate this behaviour quan
titativel, we considered RL (ref. 2) straegies for exploration. These

i

are directed. The simplest method, known as ‘e-greedy’ is undir-
ected: it chooses the ‘greedy’ option (the one believed 1o be best)
mest o the time but occa mmIYv (vithproabilty o) st
random action. A approach is to guide explora

and ethological” perspectives, it neuralsubstrate are much less

we employ functional magnetic resonance

tion by cxpected value, as i the softma rule. Wit softma the

are determined probabilsticaly on the basis of the actions’ reltive
expected values. Last, exploration can additionally be directed by
awarding bonuses in this latter decision towards actions whose
consequences are uncertain: specificaly o those for which explora.

| ganglia )

Nucleus Accumbens D2/3 Receptors
Predict Trait Impulsivity and
Cocaine Reinforcement

Jeffrey W. Dalley,"* Tim

Fryer,* Laurent Brichard 't Emma 5. ). Robinson '
David E. H. Theabald,? Kristjan Line,* Yolanda Per
Katrin Probst," Irina Abakumova,” Frankin 1. Aigbirhi

s Emﬂy " mmpny,“ Yasmene Shah,*
= ** Young Hong,*

Jean-Cloude Baron* Bary 1. Everitt - Trevo W, Robbisl

Stimulant addiction s often linked to excessive risk taking, sensation seeking, and impulsiviy

but in ways that are poorly understood. We report here that a form of impulsivity in rats predicts
high rates of intravenus cocaine self-administration and is associated with changes in dopamine
(DA) function before drug exposure. Using positron emission tomography, we demonstrated that
D213 receptor availability is significantly reduced in the nucleus accumbens of impulsive rats that
were never exposed to cocaine and that such effects are independent of DA release. These data
demonstrate that trait impulsivity predicts cocaine reinforcement and that D2 receptor dysfunction
in abstinent cocaine addicts may, in part, be determined by premorbid influences,

cumulating evidence suggests that cer-
[s tain personality taits, including sensa-
ion (or novelty) secking, impulsivity,

I conduct disorder, may predispose:
humans 1o drug abuse and addiction (/—4).
m studies of human drug addicts

alone, it s difficult to determine whether comor-
bid impulsivity and cognitive dysfunction (5, 6)
re-date the onset of drug use or emerge as a con-
sesuene ofdoni drug o Cuent ypothess

intravenous amphetamine and cocaine self-
administration at lower doses than do_rats that
w reducedlevels of activity (12, /3). In addition,
s that are impulsive on & delay-oFrewand task,
choosi all immediate reward over  large
but delayed reward, show an increased propensity
to slfadminister cosine, s conpered 1 ove
impulsive ras (/). Finally, the existence of trit
variables related to drug-abuse wlnm\xll)ly s
encouraged by studies in nonhuman primates in
by

suggst
ool foncons medised by e, prefon
cortex and the associated limbic brain circuity,
0 a loss of inhibition o to impulsivity
(7, ). However, there sl evidence to dae that

leadi

ol ber o monkeys (19).
ey neural substrate underlying individual
st drug vulnerabilty is thought to

involve the brain dopamine (DA) systems, in
particular the mesolimbic and mesocortical DA
pathways innervating the nucleus accumbens and
prefrontal cortex (/9-22). Positron emission
tomography (PET) studics in nonhuman primates
have indicated a role for DA D2 receptors in
detenmining individua iferences i navenous
administration (19, 20). Specifically,
ow 2 recepor vailabily in th. sisum
inversely predicts subsequent. levels of intra-
ous cocaine self-administration in. thesus
monkeys (20),a result apparently similar o that
seen in studies of human cocaine abusers (23).

However, it is not clear how individual
differences in D2 receptor availability relate to a
specific behavioral endophenotype or behavioral
process that confers vulnerabilit to drug addic-
tion. In addition, there have been few, if any,
studies where DA release in vivo has been
combined with PET estimates of D2 recepor
availability. This is important because D2
rcspor avaabity il b bt -

ind competing DA
Thus, there is aneed to conduct analogous| et
studies in animals to investigate the predictive
relationship between D2 receptor availability
and it behavioral markers of drug-abuse
vulnerability.

We investigated the relevance of a spontane-
ously occuring form of mpulsivity in oubred
Lister hooded (LH) rats o intravenous co
self-administration and to underlying changes
in striatal DA function, as m
PET and in ivo micudlyss ), We o
fined impulsivity as high levels of
esponscs made befoe the presenttion of a

sured by micro-

S ,,N,‘ﬁ",‘,wml',‘,",,,,,{"m,;,‘,‘,,‘m;‘,, lesofthe output o s deciion presened. imaging 1o show that the frontoplar ortex and inraparicil ton Wil be most informative. The ptial ey o  rsricted hinic cxpone o cocaine and bt Mycho-  Flg, 1, Behavioral o o K
values (1-3). This raises tw e studicd thoce quest MRIinh e subjoct sulcus are preferentially active during exploratory decisions. In  class of simple bandit tasks has this characteristic', as do standard stimulant drugs leads 1o long-lem increases in  attrbutes of trait impul- o, - 00
d cision neuroscience: (1) wher c'n ,,‘. amental uesions e studied these questions using IMR1 in humans while subjects contrs,egons ofstiatum and venromedal pefrontlcorex bt fo exploraton in more complicated L. tasks such s impul on the 5-CRT sk, § N
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Topic Mapping

e Perform topic modeling using latent Dirichlet allocation with Cognitive Atlas terms
e Each document has a loading on each topic

e On average, each document loads on ~6.5 topics
e Extract activation coordinates for 5,809 papers in NeuroSynth

e Perform voxelwise chi-square test with FDR correction to examine association
between topics and activation

Topic Documents Activation
P Coordinates
emotion “...amygdala...emotion...negative..”
negative
unpleasant

Poldrack et al., 2012, PLOS Comp Biology
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Meta-analysis using Cognitive Atlas terms
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Topic 61 (442 docs): memory working_memory
maintenance visual_working_memory
spatial_working_memory manipulation episodic_buffer
retention rehearsal retrieval

Poldrack et al., 2012, PLOS Comp Biology
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Towards meta-analytic testing of cognitive frameworks

Model 1 inhibition updating ..

accuracy on SSRT on accuracy on tone 2-back versus
antisaccade task stop signal task counting task 0-back accuracy

Model 2 executive function \/

Observed covariance ﬁ/
"\
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Conclusion

e Cognitive ontologies can provide a more formal
definition of cognitive functions

e Ontologies plus meta-analysis may provide the
means to test between different conceptual
frameworks
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