A geometric approach to stationary defect
solutions 1 one space dimension
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Structure of the talk

e PDE with jump-type heterogeneity
— non-autonomous, discontinuous
ODE.

e Trivial, local & global defect
solutions.

e Small effects: persistence of
heteroclinic connections.

twist conditions or countably many defects.

e n > 3: general results on the existence of local defects.
e n = 4: kinks in the extended Fisher-KPP equation.

e n = 6: (multi-)fronts in a FitzHugh-Nagumo model.

e Discussion.



Some definitions ‘

PDE model with small jump-type spatial heterogeneity,
in one spatial dimension,

oU

0, 2<0

/ . + N
G(U). >0, U(x,t) : RxR™ - R

Existence of stationary patterns — spatial ODE (z < t),

N=1/n=2,Fisher-KPP-type



Trivial, local & global defect solutions ‘

A defect solution = a heteroclinic I'.(t) from P~ — P =
e a trivial defect solution if P~ = P™ and

lim |T.(¢) — P || = 0;
e—0 N
e a local defect solution if either
lim ||T-(t) =P || sor+ = 0, or lim ||T:(t)— P~ ||sor- =0,
e—0 ) e—0 |
¢ a global defect solution if
lir% IT-(t)— P || sor+ > 0, and liné IT-(8)—P || or- > 0.
A A [N
P* =0 = tjzlu J t:=U E t:=U

trivial defect local near P~ local near P global defect



Trivial and global defects

e Trivial defects: ‘too easy’
= Unique existence result under generic conditions.

e Global defects, n > 3: ‘too hard’ (in general)
N=1/n=2,Fisher-KPP-type

t=20

W*(P™)

e Singularly perturbed systems ([vHeijster et al.|,n = 6)



‘Basic assumptions ‘

e There exists an unperturbed heteroclinic connection
['(t) e WYP™)NW?*(PT).

Note: T' corresponds to a (stationary) ‘localized struc-
ture’ in the underlying homogeneous PDE.

e [' is minimally non-transversal:

— if dim(W"(P7)) + dim(W*(P*)) < n, then dim(W"(P~) N W*(P")) =1

~ if dim(W*(P~)) + dim(W*(P*)) = m > n, then dim(W"(P~)nW*(P*)) = m—n.
e P~ are hyperbolic fixed points
with only simple eigenvalues.

e g(u) is a generic perturbation.




‘Dimensions ‘

o dAim(W"*(P7)) < dim(W*(P7)) = n — dim(W?*(P™)):
(generically) no local defects.

o dAim(W*(P7)) > dim(W*(P")) = n — dim(W?*(P™")):

continuous families of local defects.

o dim(W*(P~)) =2 > 1 = dim(W*(P™))

WY (P™)




Most interesting/relevant: dim(W*(P~)) = dim(W"(P™)).

e P~ = P": Homoclinic orbits <+ pulses.
e Fronts/pulses in extended Fisher-KPP (n = 4).
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e Fronts/pulses in FitzHugh-Nagumo model (n = 6).
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dim(WH(P7)) = dim(W*(P*)) =

in general no local defects.

global defect? a non-generic perturbation
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n=3, real eigenvalues: a twist condition ‘

Assumptions on P=, T & g(u) + € small enough =

Theorem. If dim(W"(P~)) = dim(W"(P™)) = 2, P~
has two unstable real eigenvalues and some non-tangency
conditions hold, then there exists a unique local defect so-
lution near P™ if and only if a twist condition holds.

nd(t) \VH

VV"(I’_)

L {z =4}
%T)/V;gi ;La/

T e SN
7 t
Pj}'/l" /W PY)

IJVU(P- ) Yo

»— U1

p* i
0(0‘03—32)/'\1)

The cone-type
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encodes the
global twist
of W“(P™)
around I' as it

travels from
P~ to PT.



n=3, complex eigenvalues: countably many defects

Assumptions on P=, T' & g(u) + € small enough =
Theorem. If dim(W*(P~)) = dim(W"“(P")) = 2 and
P™ has a complex conjugate pair of unstable eigenvalues,

then there exists countably many local defect solutions
near PT.

A'l:i(f) \\\':— b, [’ :

yi {.l‘ = ()} Tl‘fd(—T-_)))

w(Ls)

n

Proofs.

Normal forms
_|_
flows dominated

7(via(—71))

7(774(0))

by linear
approximations.




‘ n>3: generalizations ‘

Definition. The leading (unstable) eigenvalue(s) = the
(unstable) eigenvalue(s) closest to the Im-axis.

Assumptions on P=, T' & g(u), € small enough &
dim(W*(P7)) = dim(W*(P")) > 2 =

Theorem. If P has a real leading unstable eigenval-
ues, some non-tangency conditions and a twist condition
hold, then there exists at least one local defect solution.

Theorem. If PT has a complex conjugate pair of leading
unstable ergenvalues and some non-tangency conditions
hold, then there are countably many local defect solutions.



n>3, the impact of the strong eigenvalues ‘

W“(P‘) Y2
dim(W*(PT)) = 2: ) JT
leading and strong T
eigenvalues are real sehal=—)] 7(Ls)
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Assumptions on P=, T & g(u), € small enough &
dim(W"(P7)) =dim(W“(P")) =k >2 =

Theorem. P has a real leading unstable eigenvalue.
A.If P has k real unstable eigenvalues (...), then there
are open regions in ‘parameter space’ in which there are
exactly 9 = 0,1, ... up to k — 1 local defect solutions.

B. If P™ has a complex conjugate pair of unstable eigen-
values (...), then there are open regions in ‘parameter
space’ in which there are 3 = 0,1, ... up to K, where K
15 arbitrarily la'rge but finite, local defect solutions.
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Example: the extended Fisher-KPP equation ‘

Existence problem heterogeneous extended Fisher-KPP,

d*u B——u+u-{ 0, £ <0,
dgt T T de eg(u, ug, uge, Ugge), § > 0,

Im

B e (—\/g, 0),e = 0: critical points . .
P* = (£1,0,0,0) are saddle-foci. X S
Theorem. [Peletier & Troy, 95]

c (—/8,0): existence ‘kinks’ in homogeneous limit.
Theorem. [ € (—v8,0), ¢(1,0,0,0) # 0, € small
enough: there are countably many local defects.
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Example: the 3-component FitzHugh-Nagumo model

U = AU+ U —U? —e(aV + W + v(x))

N - L M <0

oW, = D2AW+U—-W, ()= =
o >4

[Purwins et al. |, [Nishiura et al. |, [van Heijster et al.

Existence ODE is 6-dimensional and has critical points
P= = (#£1,0,+1,0, +1,0) + O(e) with,

Ao Xs < Xgh=ll= 2 < X5 <A
Theorem. [D, van Heijster, Kaper, 09|
Let v(x) = v, and let («, 3,7y, D) be such that
aA + BAD = Y1

has K solutions with A € (0,1). If K > 0 and € is small
enough, then there are K homoclinic pulse, or 2-front,

orbits I'i.(§) to P~ (and/or to P™).
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Question.
What is the twist condition (that | f
settles the existence of local defect °5;
solutions) and can it be satisfied? |
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Theorem.

a, >0 (..):

there 1s a
local defect.
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