A geometric approach to stationary defect solutions in one space dimension

Arjen Doelman (Leiden U), Peter van Heijster (Queensland UT), Feng Xie (Donghua U) 250 Spatial heterogeneities 200 150 100 50 -10 10 'Pinned' defect patterns Fluxons in Josephson Fronts in a 3junctions component FitzHugh-0 Nagumo model [G. Derks, C.J.K. Knight, H. Susanto [P.J.A. van Heijster, T. & AD, '12,'13] Kaper, Y. Nishiura, K.-I. Ueda & AD, '11] 10

Structure of the talk

- PDE with jump-type heterogeneity
- \rightarrow non-autonomous, discontinuous ODE.
- Trivial, local & global defect solutions.
- Small effects: persistence of heteroclinic connections.
- In a n = 3-dimensional phase space:

twist conditions or countably many defects.

- $n \geq 3$: general results on the existence of local defects.
- n = 4: kinks in the extended Fisher-KPP equation.
- n = 6: (multi-)fronts in a FitzHugh-Nagumo model.
- Discussion.

[Valentin '99] → Rademacher '10

Some definitions

PDE model with small jump-type spatial heterogeneity, in one spatial dimension,

$$\frac{\partial U}{\partial t} = \mathcal{L}U + \mathcal{N}(U) + \begin{cases} 0, & x \le 0, \\ \varepsilon \mathcal{G}(U), & x > 0, \end{cases} U(x, t) : \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}^N$$

Existence of stationary patterns \rightarrow spatial ODE $(x \leftrightarrow t)$,

$$\dot{u} = \begin{cases} f(u), & t \leq 0, \\ f(u) + \varepsilon g(u), & t > 0, \end{cases} u(t) : \mathbb{R} \to \mathbb{R}^{n}.$$

$$P_{\varepsilon}^{+} \downarrow t = 0 \qquad V^{s}(P_{\varepsilon}^{+}) \qquad V^{u}(P_{\varepsilon}^{-}) \qquad V^{u}(P_{\varepsilon}^{+}) \qquad V^{u}(P_$$

Trivial, local & global defect solutions

A defect solution = a heteroclinic $\Gamma_{\varepsilon}(t)$ from $P^- \to P_{\varepsilon}^+ =$

• a trivial defect solution if $P^- = P^+$ and

$$\lim_{\varepsilon \to 0} \|\Gamma_{\varepsilon}(t) - P_{\varepsilon}^{+}\|_{\infty} = 0;$$

• a local defect solution if either

$$\lim_{\varepsilon \to 0} \|\Gamma_{\varepsilon}(t) - P_{\varepsilon}^{+}\|_{\infty, \mathbb{R}^{+}} = 0, \quad \text{or} \quad \lim_{\varepsilon \to 0} \|\Gamma_{\varepsilon}(t) - P^{-}\|_{\infty, \mathbb{R}^{-}} = 0,$$

• a global defect solution if

$$\lim_{\varepsilon \to 0} \|\Gamma_{\varepsilon}(t) - P_{\varepsilon}^{+}\|_{\infty, \mathbb{R}^{+}} > 0, \quad \text{and} \quad \lim_{\varepsilon \to 0} \|\Gamma_{\varepsilon}(t) - P^{-}\|_{\infty, \mathbb{R}^{-}} > 0.$$

$$P^{+} = 0 \qquad t = 0$$

trivial defect

local near P^- local near P_{ε}^+

global defect

Trivial and global defects

- Trivial defects: 'too easy'
- \Rightarrow Unique existence result under generic conditions.

• Global defects, $n \ge 3$: 'too hard' (in general)

N=1/n=2, Fisher-KPP-type

• Singularly perturbed systems ([vHeijster et al.],n = 6)

Basic assumptions

• There exists an unperturbed heteroclinic connection $\Gamma(t) \in \mathcal{W}^u(P^-) \cap \mathcal{W}^s(P^+)$.

Note: Γ corresponds to a (stationary) 'localized structure' in the underlying homogeneous PDE.

• Γ is minimally non-transversal:

- if $\dim(\mathcal{W}^u(P^-)) + \dim(\mathcal{W}^s(P^+)) \le n$, then $\dim(\mathcal{W}^u(P^-) \cap \mathcal{W}^s(P^+)) = 1$

 $-\operatorname{if} \dim(\mathcal{W}^u(P^-)) + \dim(\mathcal{W}^s(P^+)) = m > n, \text{ then } \dim(\mathcal{W}^u(P^-) \cap \mathcal{W}^s(P^+)) = m - n.$

• P^{\pm} are hyperbolic fixed points with only simple eigenvalues.

• g(u) is a generic perturbation.

Dimensions

- $\dim(\mathcal{W}^u(P^-)) < \dim(\mathcal{W}^u(P^+)) = n \dim(\mathcal{W}^s(P^+))$: (generically) no local defects.
- $\dim(\mathcal{W}^u(P^-)) > \dim(\mathcal{W}^u(P^+)) = n \dim(\mathcal{W}^s(P^+))$: continuous families of local defects.
- $\bullet \dim(\mathcal{W}^u(P^-)) = 2 > 1 = \dim(\mathcal{W}^u(P^+))$

Most interesting/relevant: $\dim(\mathcal{W}^u(P^-)) = \dim(\mathcal{W}^u(P^+))$.

- $P^- = P^+$: Homoclinic orbits \leftrightarrow pulses.
- Fronts/pulses in extended Fisher-KPP (n = 4).

• Fronts/pulses in FitzHugh-Nagumo model (n = 6).

$$\dim(\mathcal{W}^u(P^-)) = \dim(\mathcal{W}^u(P^+)) = 1:$$

in general no local defects.

n=3, real eigenvalues: a twist condition

Assumptions on P^{\pm} , $\Gamma \& g(u) + \varepsilon$ small enough \Rightarrow

Theorem. If $\dim(\mathcal{W}^u(P^-)) = \dim(\mathcal{W}^u(P^+)) = 2$, P^+ has two unstable real eigenvalues and some non-tangency conditions hold, then there exists a unique local defect solution near P^+ if and only if a twist condition holds.

The cone-type twist condition encodes the global twist of $W^u(P^-)$ around Γ as it travels from P^- to P^+ .

n=3, complex eigenvalues: countably many defects

Assumptions on P^{\pm} , Γ & $g(u) + \varepsilon$ small enough \Rightarrow **Theorem.** If $\dim(\mathcal{W}^u(P^-)) = \dim(\mathcal{W}^u(P^+)) = 2$ and P^+ has a complex conjugate pair of unstable eigenvalues, then there exists countably many local defect solutions near P^+ .

Proofs.

Normal forms
+
flows dominated
by linear
approximations.

n>3: generalizations

Definition. The leading (unstable) eigenvalue(s) = the (unstable) eigenvalue(s) closest to the Im-axis.

Assumptions on P^{\pm} , $\Gamma \& g(u)$, ε small enough $\& \dim(\mathcal{W}^u(P^-)) = \dim(\mathcal{W}^u(P^+)) \geq 2 \Rightarrow$

Theorem. If P^+ has a real leading unstable eigenvalues, some non-tangency conditions and a twist condition hold, then there exists at least one local defect solution.

Theorem. If P^+ has a complex conjugate pair of leading unstable eigenvalues and some non-tangency conditions hold, then there are countably many local defect solutions.

n>3, the impact of the strong eigenvalues

 $\dim(\mathcal{W}^u(P^+)) = 2$: leading and strong eigenvalues are real

 $\dim(\mathcal{W}^u(P^+)) = 3:$

 $\dim(\mathcal{W}^u(P^+)) = 3$: leading eigenvalue is real, strong eigenvalues are complex

Assumptions on P^{\pm} , $\Gamma \& g(u)$, ε small enough $\& \dim(\mathcal{W}^u(P^-)) = \dim(\mathcal{W}^u(P^+)) = k \geq 2 \Rightarrow$

Theorem. P^+ has a real leading unstable eigenvalue.

A.If P^+ has k real unstable eigenvalues (...), then there are open regions in 'parameter space' in which there are exactly j = 0, 1, ... up to k - 1 local defect solutions.

B. If P^+ has a complex conjugate pair of unstable eigenvalues (...), then there are open regions in 'parameter space' in which there are j = 0, 1, ... up to K, where K is arbitrarily large, but finite, local defect solutions.

Example: the extended Fisher-KPP equation

Existence problem heterogeneous extended Fisher-KPP,

$$\frac{d^4u}{d\xi^4} + \beta \frac{d^2u}{d\xi^2} - u + u^3 = \begin{cases} 0, & \xi < 0, \\ \varepsilon g(u, u_{\xi}, u_{\xi\xi}, u_{\xi\xi\xi}), & \xi > 0, \end{cases}$$

$$\beta \in (-\sqrt{8},0), \varepsilon = 0$$
: critical points $P^{\pm} = (\pm 1,0,0,0)$ are saddle-foci.

Theorem. [Peletier & Troy, '95]

 $\beta \in (-\sqrt{8}, 0)$: existence 'kinks' in homogeneous limit.

Theorem. $\beta \in (-\sqrt{8}, 0), \ g(1, 0, 0, 0) \neq 0, \ \varepsilon \ small enough: there are countably many local defects.$

Example: the 3-component FitzHugh-Nagumo model

$$\begin{cases} U_t = \varepsilon^2 \Delta U + U - U^3 - \varepsilon (\alpha V + \beta W + \gamma(x)) \\ \tau V_t = \Delta V + U - V \\ \theta W_t = D^2 \Delta W + U - W, \end{cases} \qquad \gamma(x) = \begin{cases} \gamma_1 & x \le 0 \\ \gamma_2 & x > 0 \end{cases}$$

[Purwins et al.], [Nishiura et al.], [van Heijster et al.]

Existence ODE is 6-dimensional and has critical points $P^{\pm} = (\pm 1, 0, \pm 1, 0, \pm 1, 0) + \mathcal{O}(\varepsilon)$ with,

$$\lambda_6^{\pm} < \lambda_5^{\pm} < \lambda_4^{\pm} < 0 < \lambda_3^{\pm} < \lambda_2^{\pm} < \lambda_1^{\pm}.$$

Theorem. [D, van Heijster, Kaper, '09] Let $\gamma(x) \equiv \gamma_1$ and let $(\alpha, \beta, \gamma, D)$ be such that

$$\alpha A + \beta A^{\frac{1}{D}} = \gamma_1$$

has K solutions with $A \in (0,1)$. If K > 0 and ε is small enough, then there are K homoclinic pulse, or 2-front, orbits $\Gamma_k(\xi)$ to P^- (and/or to P^+).

Question.

What is the twist condition (that settles the existence of local defect solutions) and can it be satisfied?

Theorem.

 $\alpha, \beta > 0$ (...): there is a local defect.

