Simulation-Based Statistics: Introduction to Google Resampling

Tim Hesterberg, Google Inc. July 2018

Google

Outline

- Case Study / Basics
 - 1-sample bootstrap
 - Idea behind bootstrap
 - 2-sample bootstrap
 - Permutation test
- Accuracy
- Bootstrap Regression
- Bootstrap Sampling Methods
- Permutation Tests

Meta goals:

Understand basic procedures

Useful for communication

Why Resample

- Easier to understand
 - Communicate to clients
- Easier
 - Same procedure for many statistics
 - Don't need to derive formulas
- More accurate
 - Depending on procedure

Skewed Data- Verizon

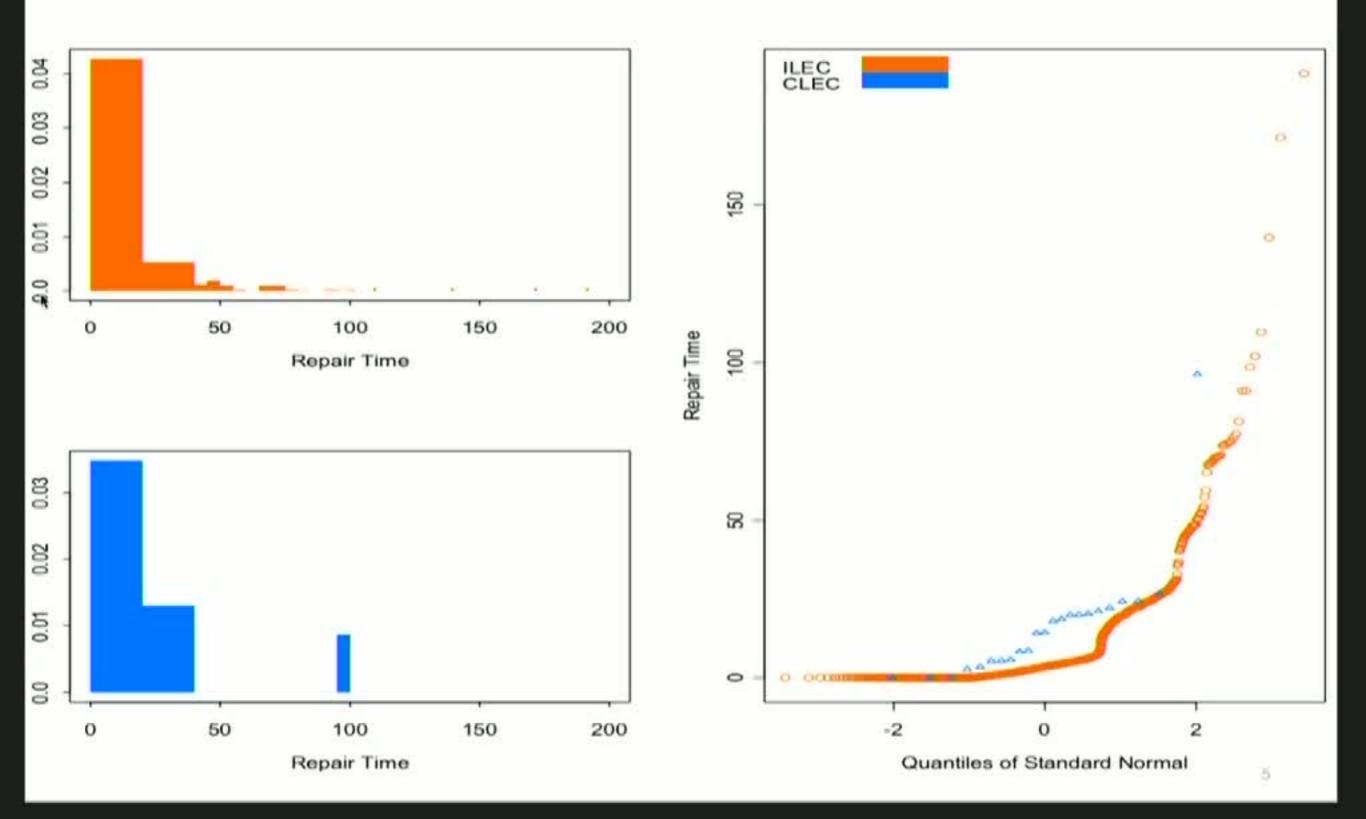
	Number of	Average Repair
	Observations	Time
ILEC (Verizon)	1664	8.4
CLEC (other carrier)	23	16.5

Is the difference statistically significant?

Page 4 of 137

1-4

Example Data



Bootstrap Procedure

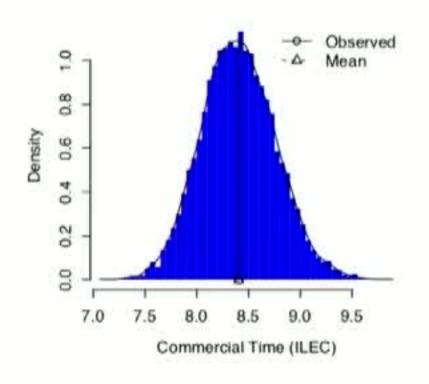
Repeat 10000 times

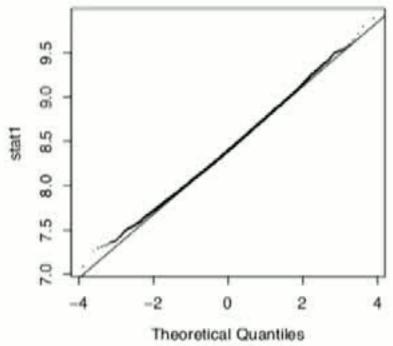
- Draw a sample of size n with replacement from the original data ("bootstrap sample", or "resample")
- Calculate the sample mean for the resample

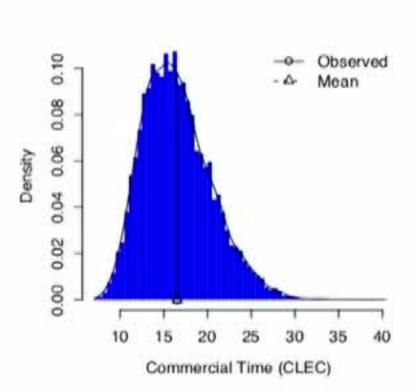
The 10000 bootstrap sample means comprise the "bootstrap distribution".

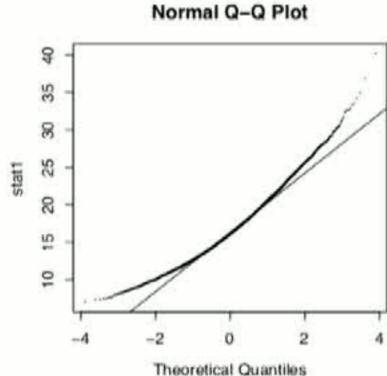
Bootstrap Distns for Verizon

Normal Q-Q Plot









Bootstrap Standard Error

Bootstrap standard error =

Standard deviation of the sampling distribution

Bootstrap bias =

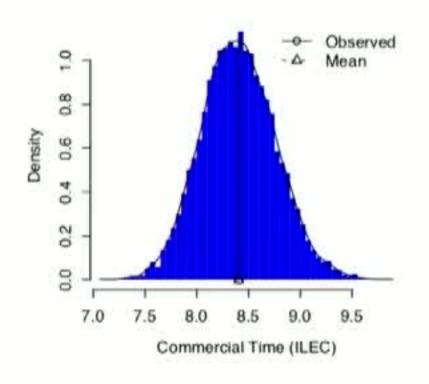
Mean of the sampling distribution – Observed

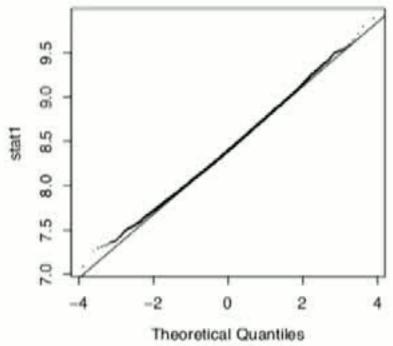
Summary Statistics:

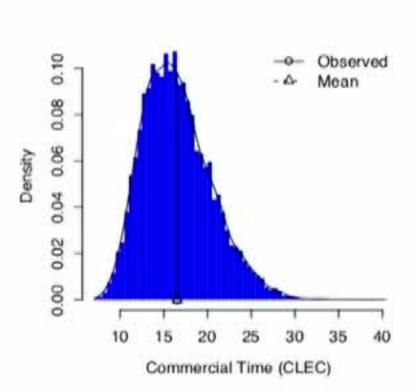
	Observed	SE	Mean	Bias
mean	16.50913	3.961816	16.53088	0.0217463
mean	8.41161	0.357599	8.40410	-0.0075031

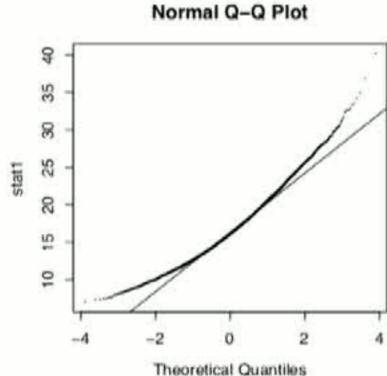
Bootstrap Distns for Verizon

Normal Q-Q Plot









Bootstrap Standard Error

Bootstrap standard error =

Standard deviation of the sampling distribution

Bootstrap bias =

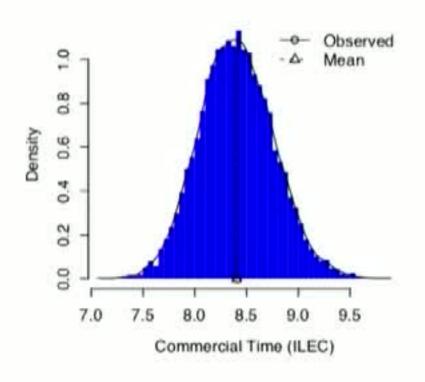
Mean of the sampling distribution – Observed

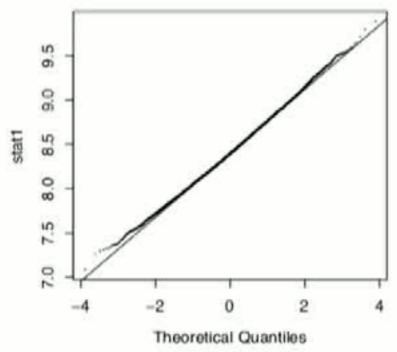
Summary Statistics:

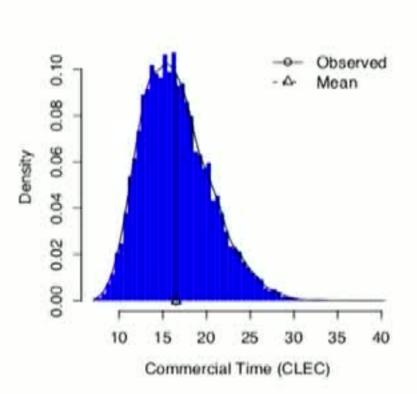
	Observed	SE	Mean	Bias
mean	16.50913	3.961816	16.53088	0.0217463
mean	8.41161	0.357599	8.40410	-0.0075031

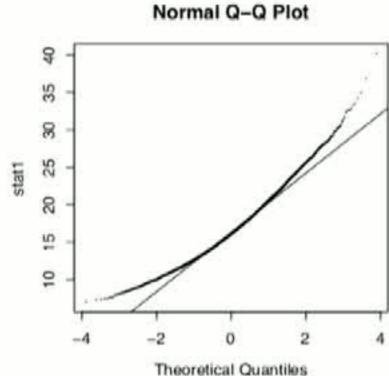
Bootstrap Distns for Verizon

Normal Q-Q Plot









Bootstrap Standard Error

Bootstrap standard error =

Standard deviation of the sampling distribution

Bootstrap bias =

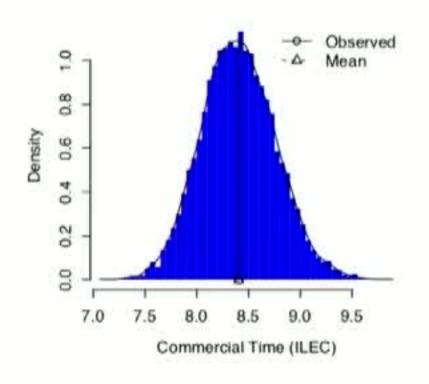
Mean of the sampling distribution – Observed

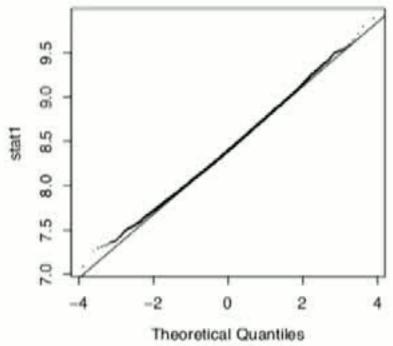
Summary Statistics:

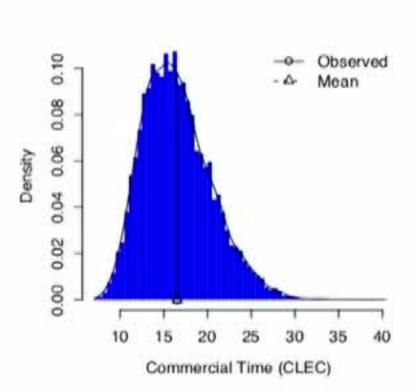
	Observed	SE	Mean	Bias
mean	16.50913	3.961816	16.53088	0.0217463
mean	8.41161	0.357599	8.40410	-0.0075031

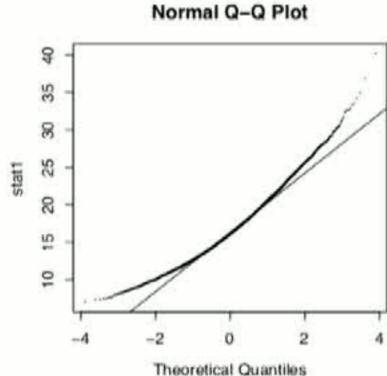
Bootstrap Distns for Verizon

Normal Q-Q Plot









Bootstrap Standard Error

Bootstrap standard error =

Standard deviation of the sampling distribution

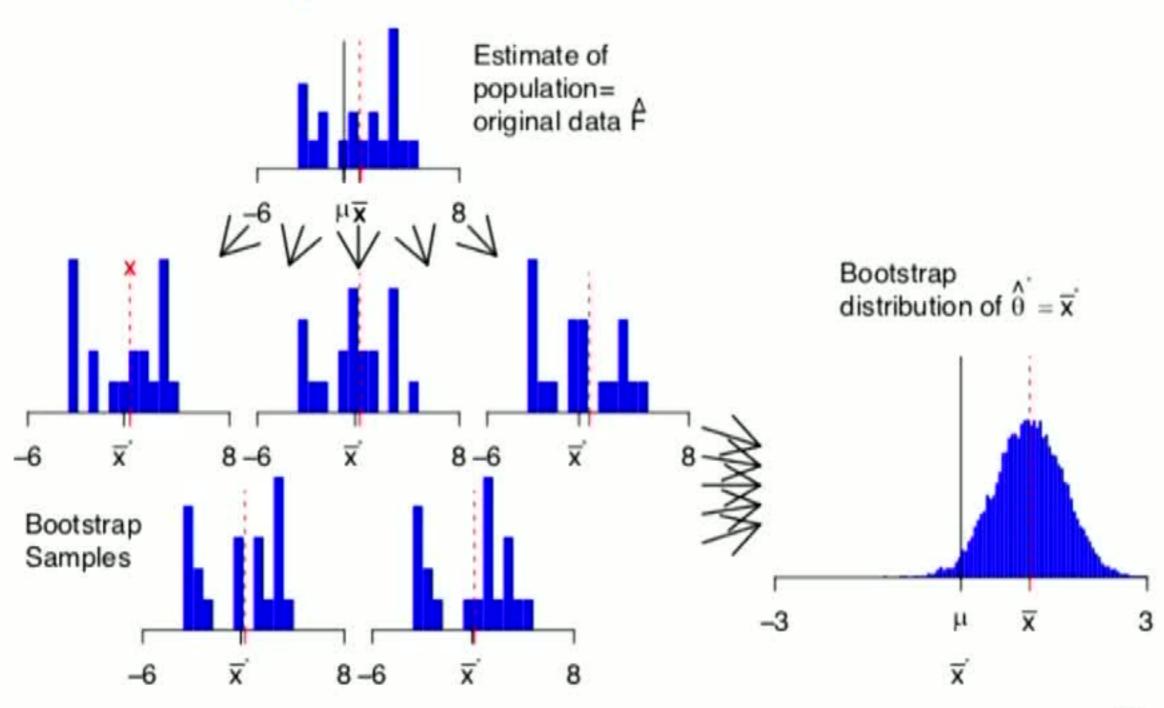
Bootstrap bias =

Mean of the sampling distribution – Observed

Summary Statistics:

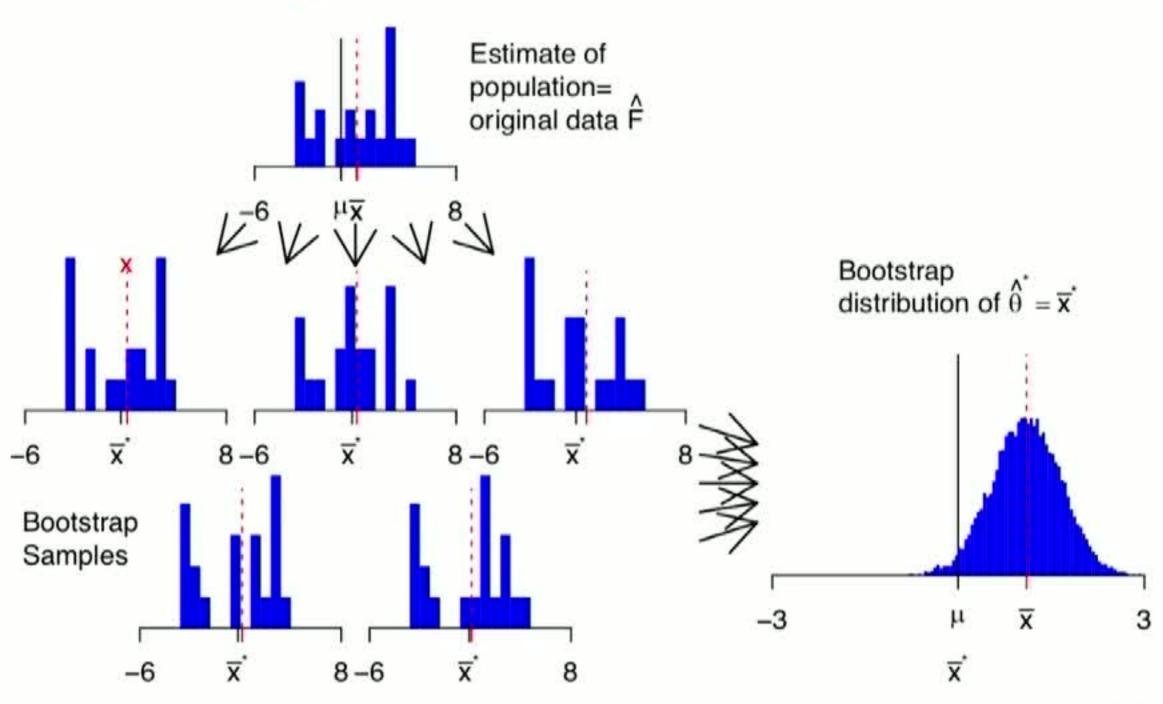
	Observed	SE	Mean	Bias
mean	16.50913	3.961816	16.53088	0.0217463
mean	8.41161	0.357599	8.40410	-0.0075031

Bootstrap world



1-51

Bootstrap world



What to substitute?

Plug-in principle

- Underlying distribution is unknown
- Substitute your best guess

What to substitute?

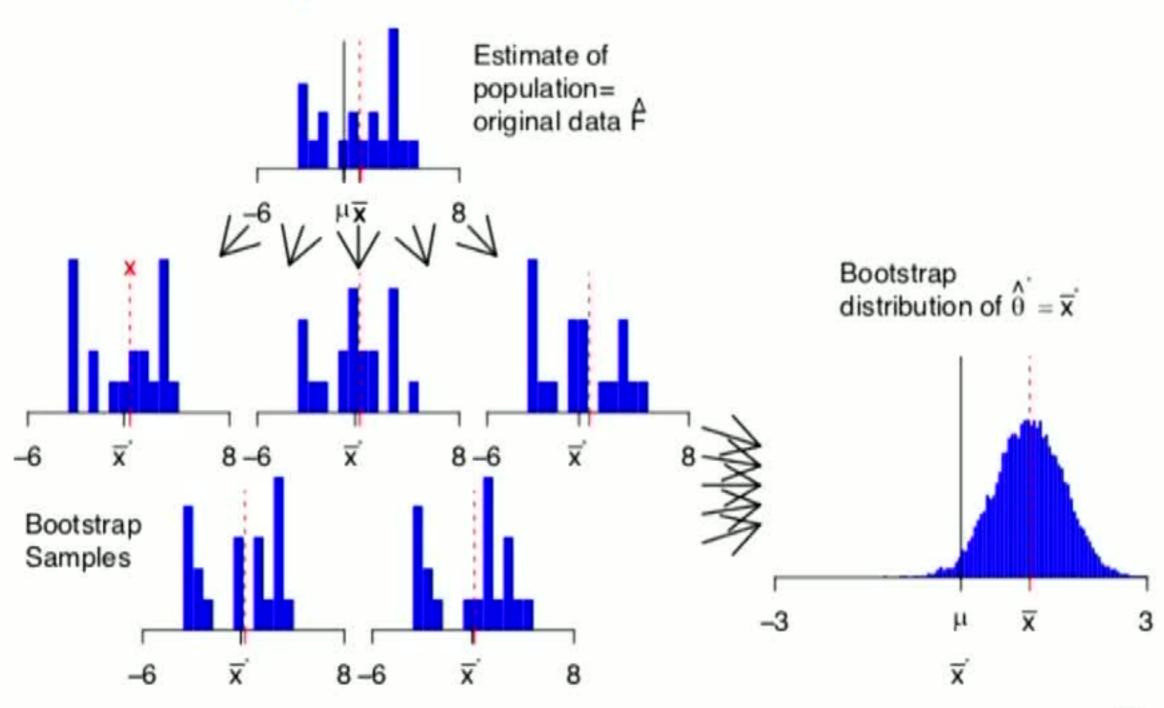
- Empirical distribution ordinary bootstrap
- Smoothed distribution smoothed bootstrap
- Parametric distribution parametric bootstrap
- Satisfy assumptions, e.g. null hypothesis

Fundamental Bootstrap Principle

Plug-in principle

- Underlying distribution is unknown
- Substitute your best guess
- Fundamental Bootstrap Principle
- This substitution works ©
- Not always ⊗
 - Bootstrap distribution centered at statistic, not parameter
 - Too narrow for small n

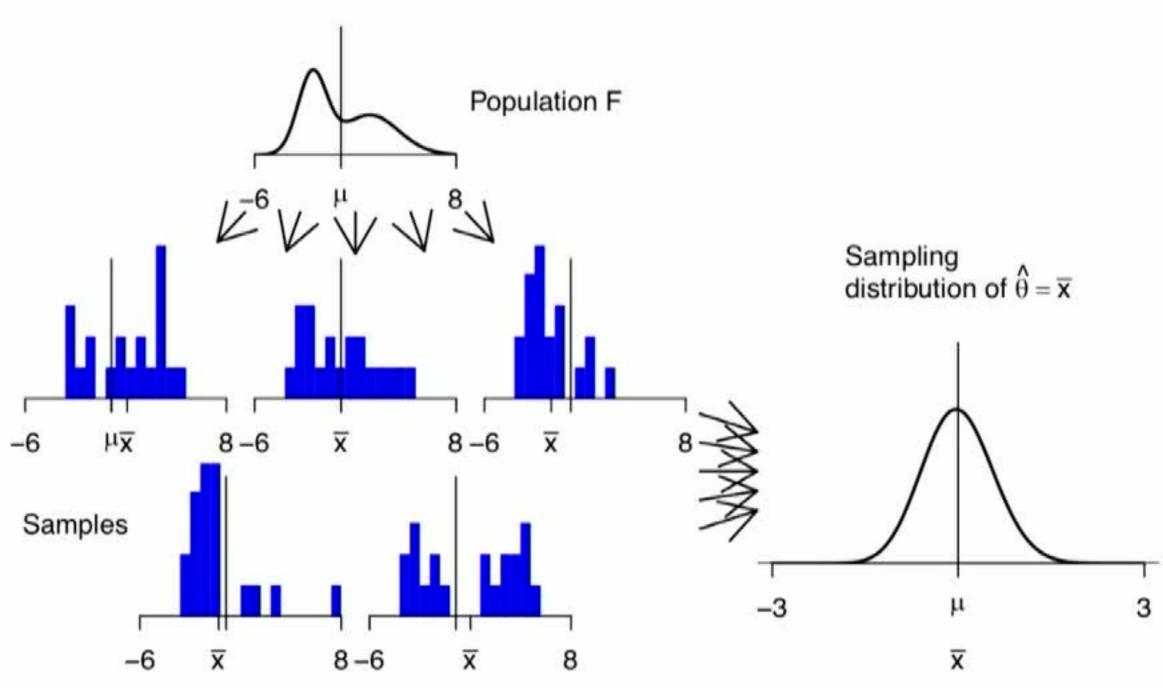
Bootstrap world



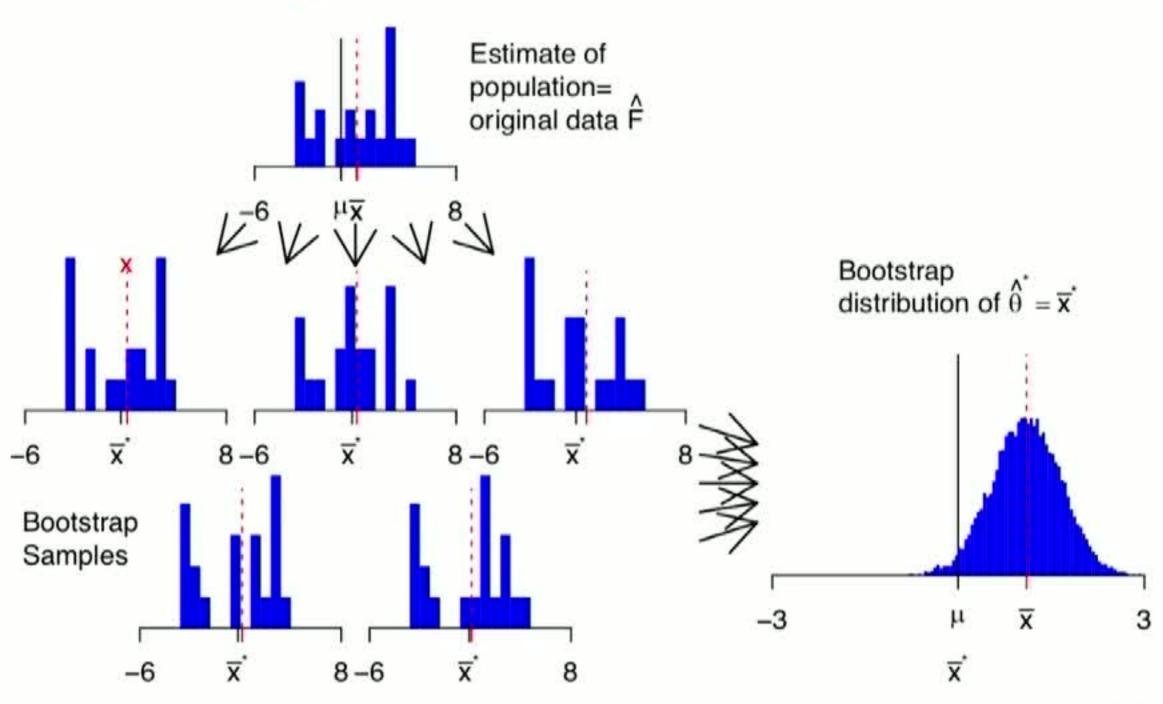
1-51

Google

Ideal world



Bootstrap world



What to substitute?

Plug-in principle

- Underlying distribution is unknown
- Substitute your best guess

What to substitute?

- Empirical distribution ordinary bootstrap
- Smoothed distribution smoothed bootstrap
- Parametric distribution parametric bootstrap
- Satisfy assumptions, e.g. null hypothesis

Fundamental Bootstrap Principle

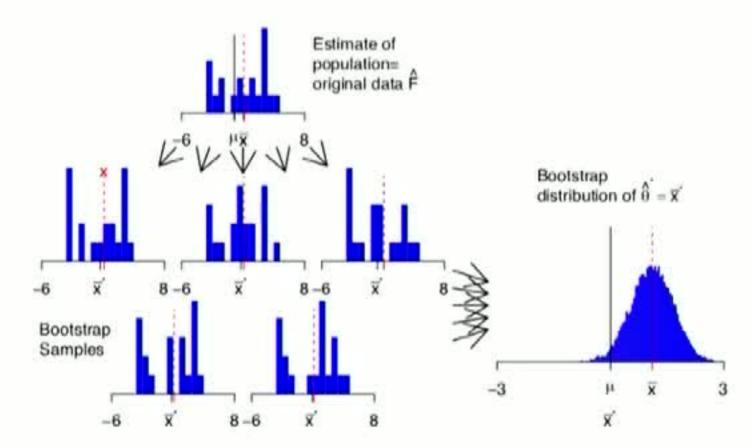
Plug-in principle

- Underlying distribution is unknown
- Substitute your best guess
- Fundamental Bootstrap Principle
- This substitution works ©
- Not always ⊗
 - Bootstrap distribution centered at statistic, not parameter
 - Too narrow for small n

Bootstrap Implementation

Nonparametric bootstrap

- Exact: nⁿ samples
- Monte Carlo, typically 10000 samples



Two-sample Bootstrap

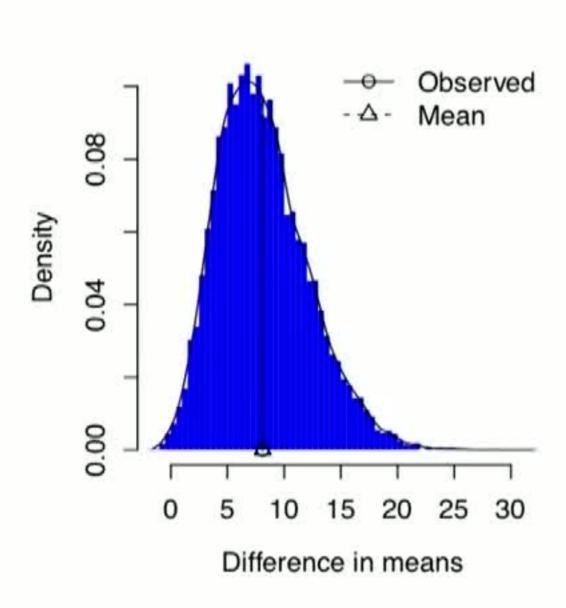
Given independent SRSs from two populations:

Repeat 10000 times

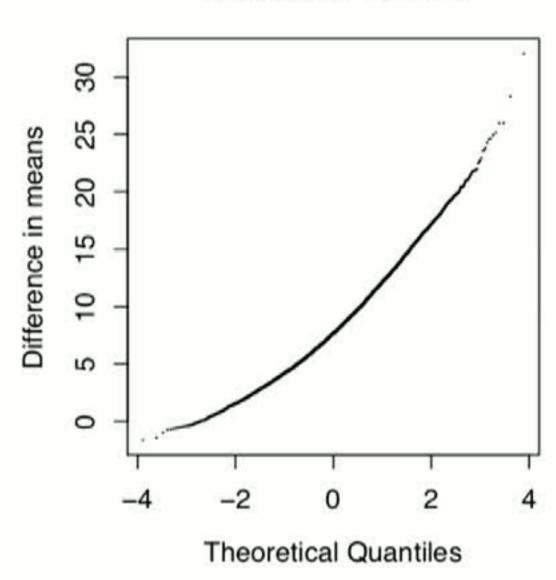
- Draw sample size n₁ from sample 1
- Draw sample size n_2 from sample 2, independently
- Compute statistic, e.g. difference in means

The 10000 bootstrap statistics comprise the bootstrap distribution.

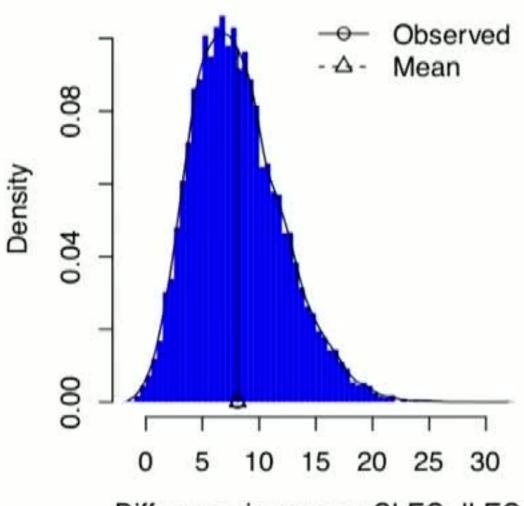
Bootstrap Distns for Verizon



Normal Q-Q Plot



Trimmed Means



Observed Mean 0.10 Density 0.05 0.00 15 20 25 10 30

Difference in means: CLEC-ILEC

Difference in trimmed means: CLEC-ILEC

Observed SE Mean Bias
Difference in means 8.097 3.979 8.113 0.01594
Difference in trimmed means 10.336 2.728 10.35 0.02298

Confidence Intervals

Quick & Dirty:

Bootstrap Percentile Interval = Middle 95% of the bootstrap distribution (1.63, 17.00)

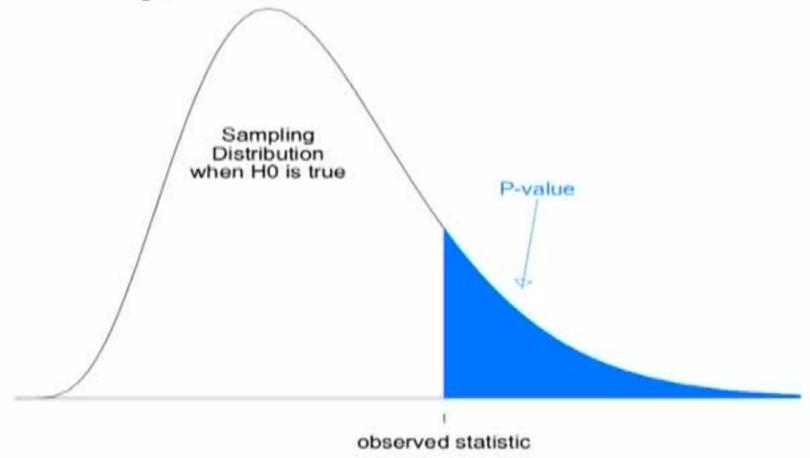
t interval (with bootstrap SE) = Observed \pm 2 SE = (-0.16, 16.35)

Later: better interval – bootstrap t

Resampling for Hypothesis Tests

Sample in a manner consistent with H₀

P-value = P₀(random value exceeds observed)



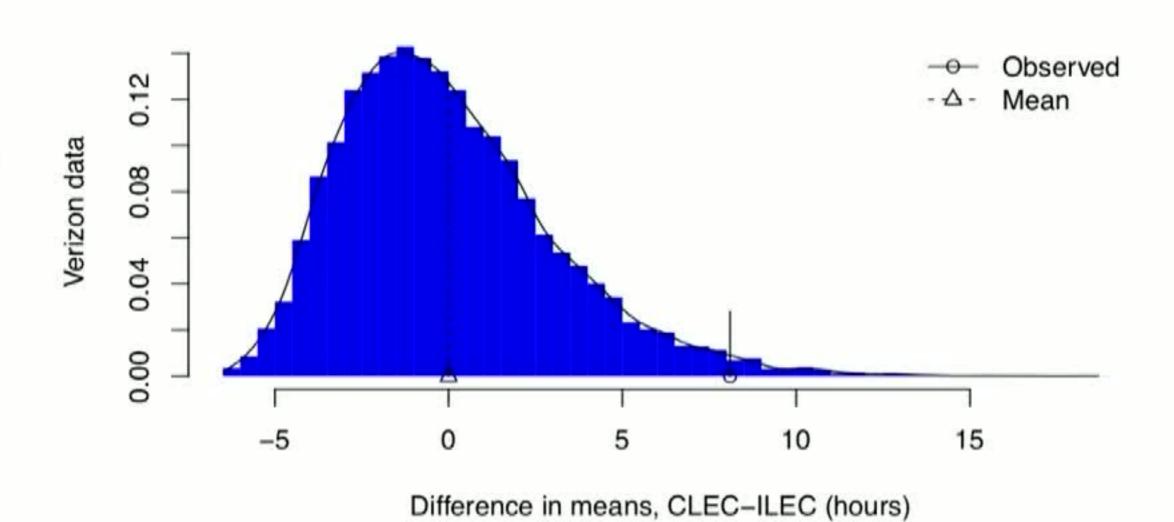
Permutation Test for 2-samples

H₀: no real difference between groups; observations could come from one group as well as the other

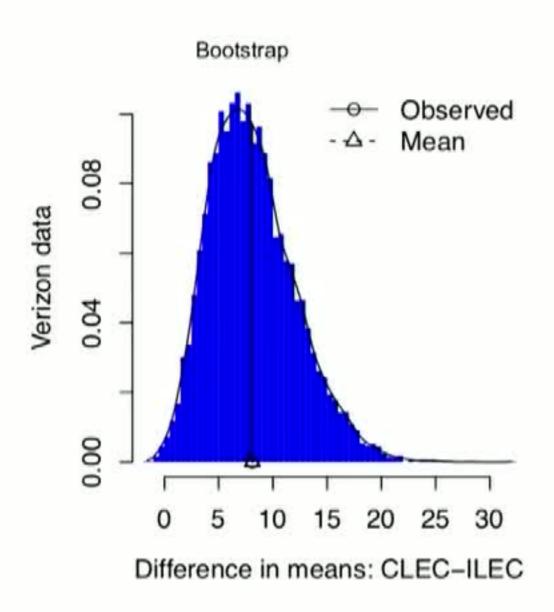
Resample: randomly choose n_1 observations for group 1, rest for group 2.

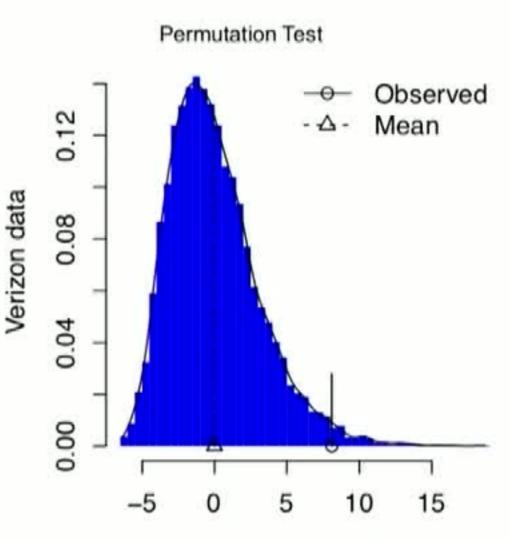
Equivalent to permuting all n, first n_1 into group 1.

Verizon permutation test



Bootstrap & Permutation





Difference in means, CLEC-ILEC (hours)

Permutation Test P-value

Results

```
Replications: 9999
Two samples, sample sizes are 23 1664
```

```
Summary Statistics for the difference between samples 1 and 2:

Observed Mean Alternative PValue
mean: CLEC-ILEC 8.09752 -0.0006686392 greater 0.0171
```

Comment: Work directly with difference in means; don't need *t*-statistic. More natural.

Assumptions

Permutation Test:

- Same distribution for two populations
 - When H₀ is true
 - Population variances must be the same; sample variances may differ
- Does not require normality
- Does not require that data be a random sample from a larger population

Permutation vs Pooled Bootstrap Pooled

Pooled bootstrap test

- Pool all n observations
- Choose n₁ with replacement for group 1
- Choose n₂ with replacement for group 2

Permutation test is better

Same number of outliers as observed data

Easy to Understand

Concrete Analogs to Abstract Concepts:

- Sampling variability
- Standard Error
- Bias
- Confidence Interval
- P-value for a significance test
- Central Limit Theorem (normality)

Outline

- Case Study, Basics
- Accuracy
 - Outrageous example
 - Pictures
 - Large n
 - Small n
 - Sample Median
 - Skewness
 - How many resamples
 - Coverage
 - Small n
 - Skewness

Meta goals:

Understand when bootstrap works or not.

How accurate is the bootstrap?

How accurate are formula methods?

SE of Variance Estimates

- CLEC data skewed
- Verizon CLEC data: n=23, s²=380
- Classical
 - chi-square CI: (227, 762)
 - SE = 114 (Assume normality)
- Bootstrap
 - Percentile CI: (59, 931)
 - SE = 267 (Don't assume normality)
- George Box: To make the preliminary test on variances is rather like putting to sea in a rowing boat to find out whether conditions are sufficiently calm for an ocean liner to leave port!

Two Sources of Variation in Bootstrap Distribution

Original sample is chosen randomly from the population

Bootstrap samples are chosen randomly from the original sample: "Monte Carlo implementation variability"

Permutation vs Pooled Bootstrap Pooled

Pooled bootstrap test

- Pool all n observations
- Choose n₁ with replacement for group 1
- Choose n₂ with replacement for group 2

Permutation test is better

Same number of outliers as observed data

Permutation vs Pooled Bootstrap Pooled

Pooled bootstrap test

- Pool all n observations
- Choose n₁ with replacement for group 1
- Choose n₂ with replacement for group 2

Permutation test is better

Same number of outliers as observed data

Permutation Test P-value

Results

```
Replications: 9999
Two samples, sample sizes are 23 1664
```

```
Summary Statistics for the difference between samples 1 and 2:

Observed Mean Alternative PValue
mean: CLEC-ILEC 8.09752 -0.0006686392 greater 0.0171
```

Comment: Work directly with difference in means; don't need *t*-statistic. More natural.

Permutation vs t test

Pooled-variance t-test

T tests

```
t = -2.6125, df = 1685, p-value = 0.0045

Non-pooled-variance t-test
t = -1.9834, df = 22.3463548265907, p-value = 0.0299
```

Permutation test

Number of Replications: 499999

Summary Statistics:

```
Observed Mean SE alternative p.value
Var -8.098 -0.001288 3.105 less 0.01825
```


Assumptions

Permutation Test:

- Same distribution for two populations
 - When H₀ is true
 - Population variances must be the same; sample variances may differ
- Does not require normality
- Does not require that data be a random sample from a larger population

Two Sources of Variation in Bootstrap Distribution

Original sample is chosen randomly from the population

Bootstrap samples are chosen randomly from the original sample: "Monte Carlo implementation variability"

Two Sources of Variation in Bootstrap Distribution

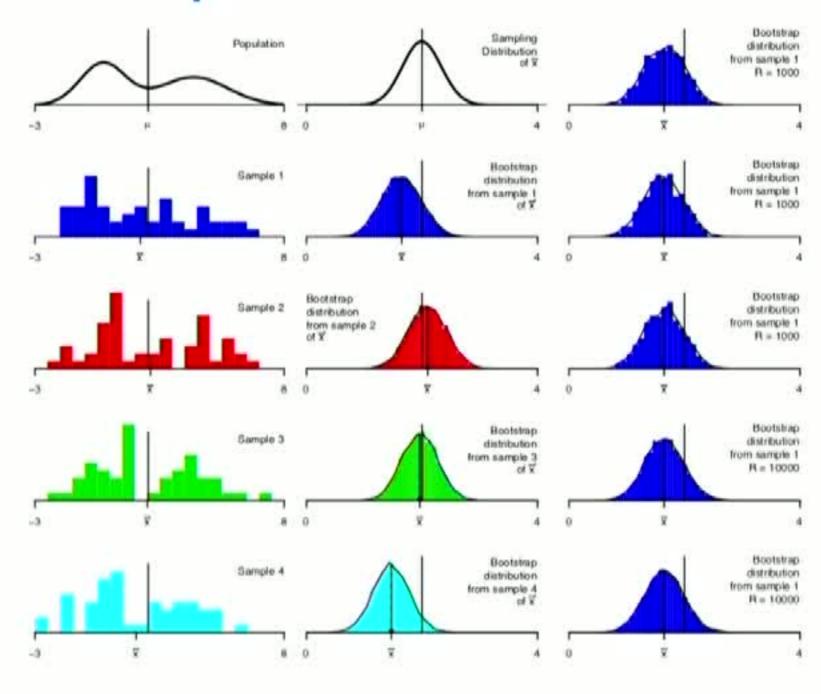
Original sample is chosen randomly from the population

Bootstrap samples are chosen randomly from the original sample: "Monte Carlo implementation variability"

Bootstrap distributions are centered close to statistic values

Shape and spread of bootstrap distribution vary a bit, due to shape and spread of original sample

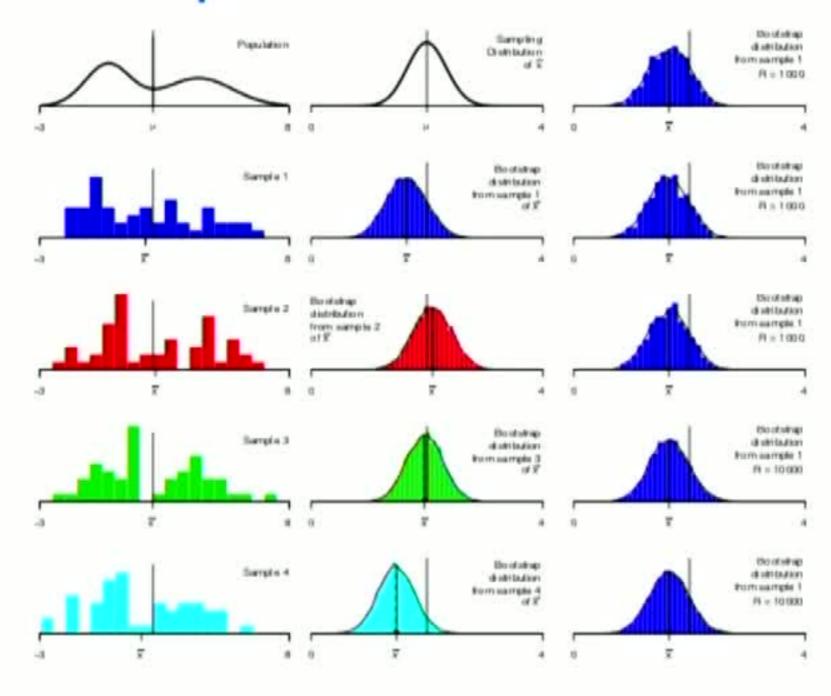
With $R = 10^4$, MC variability is small



Bootstrap distributions are centered close to statistic values

Shape and spread of bootstrap distribution vary a bit, due to shape and spread of original sample

With $R = 10^4$, MC variability is small



Small samples

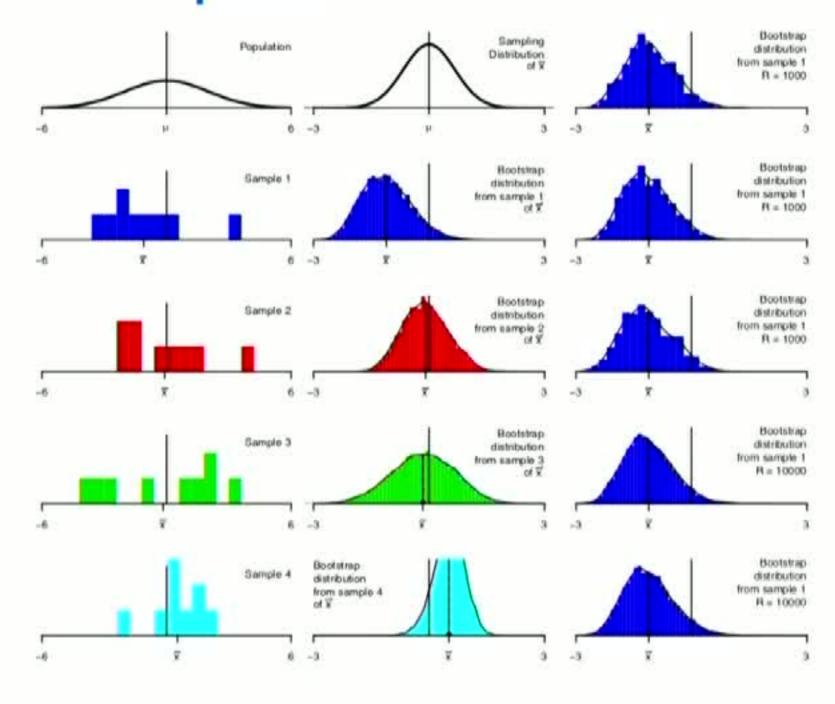
Bootstrap distributions are centered close to statistic values

Shape and spread of bootstrap distn vary substantially, due to shape and spread of original sample

Bootstrap distributions too narrow

With $R = 10^4$, MC variability is small

Small samples



Sample Median

Bootstrap distribution poor estimate of sampling distribution (except for large n)

Depends heavily on middle values of empirical distribution

Empirical distn is discrete (underlying distn continuous?).

Remedy: smoothed bootstrap

With $R = 10^4$, MC variability is small

Mean-variance relationship; spread of bootstrap distribution depends on statistic

Need to adjust confidence intervals

- Bootstrap percentile is better than t
- But still not good enough

$$t = \frac{\hat{\theta} - \theta}{s_{\hat{\theta}}} = \frac{\overline{x} - \mu}{s/\sqrt{n}}$$

$$t^* = \frac{\hat{\theta}^* - \hat{\theta}}{s_{\hat{\theta}^*}} = \frac{\overline{x}^* - \overline{x}}{s^*/\sqrt{n}}$$

Mean-variance relationship; spread of bootstrap distribution depends on statistic

Need to adjust confidence intervals

- Bootstrap percentile is better than t
- But still not good enough

$$t = \frac{\hat{\theta} - \theta}{s_{\hat{\theta}}} = \frac{\overline{x} - \mu}{s/\sqrt{n}}$$

$$t^* = \frac{\hat{\theta}^* - \hat{\theta}}{s_{\hat{\theta}^*}} = \frac{\overline{x}^* - \overline{x}}{s^*/\sqrt{n}}$$

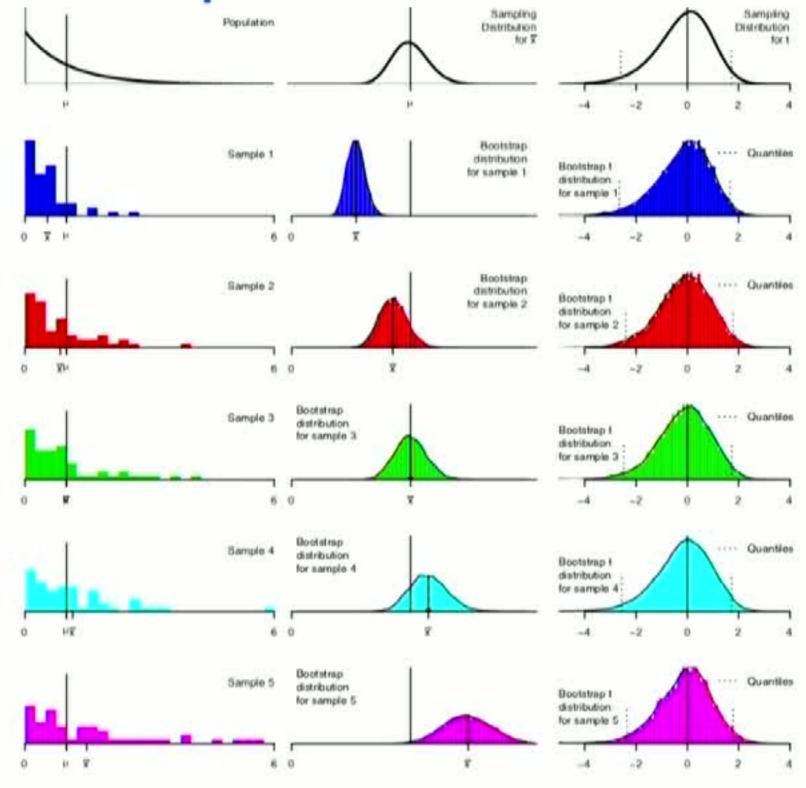
Mean-variance relationship; spread of bootstrap distribution depends on statistic

Need to adjust confidence intervals

- Bootstrap percentile is better than t
- But still not good enough

$$t = \frac{\hat{\theta} - \theta}{s_{\hat{\theta}}} = \frac{\overline{x} - \mu}{s/\sqrt{n}}$$

$$t^* = \frac{\hat{\theta}^* - \hat{\theta}}{s_{\hat{\theta}^*}} = \frac{\overline{x}^* - \overline{x}}{s^*/\sqrt{n}}$$



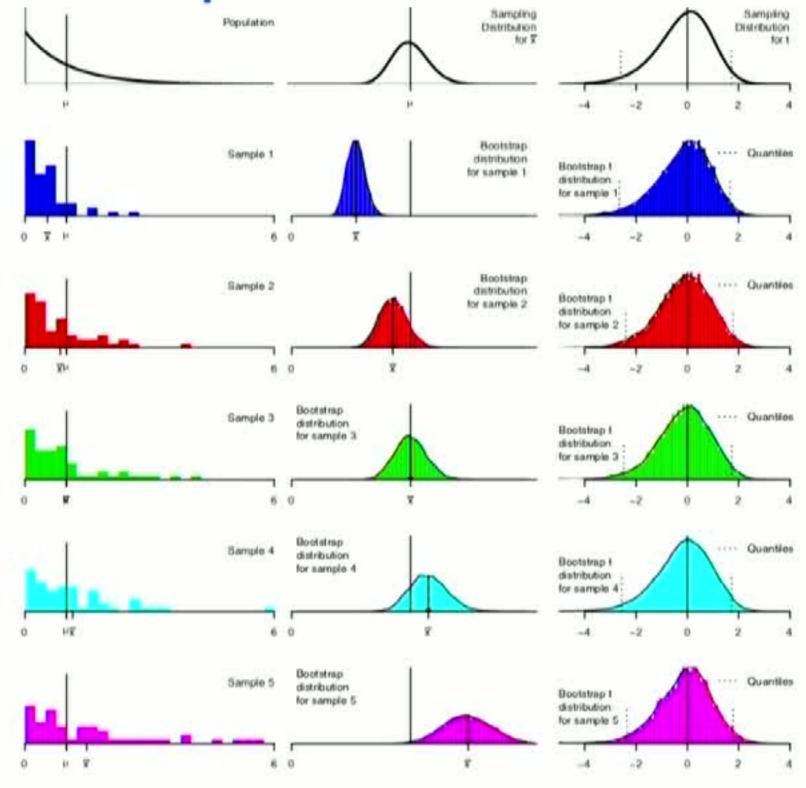
Mean-variance relationship; spread of bootstrap distribution depends on statistic

Need to adjust confidence intervals

- Bootstrap percentile is better than t
- But still not good enough

$$t = \frac{\hat{\theta} - \theta}{s_{\hat{\theta}}} = \frac{\overline{x} - \mu}{s/\sqrt{n}}$$

$$t^* = \frac{\hat{\theta}^* - \hat{\theta}}{s_{\hat{\theta}^*}} = \frac{\overline{x}^* - \overline{x}}{s^*/\sqrt{n}}$$



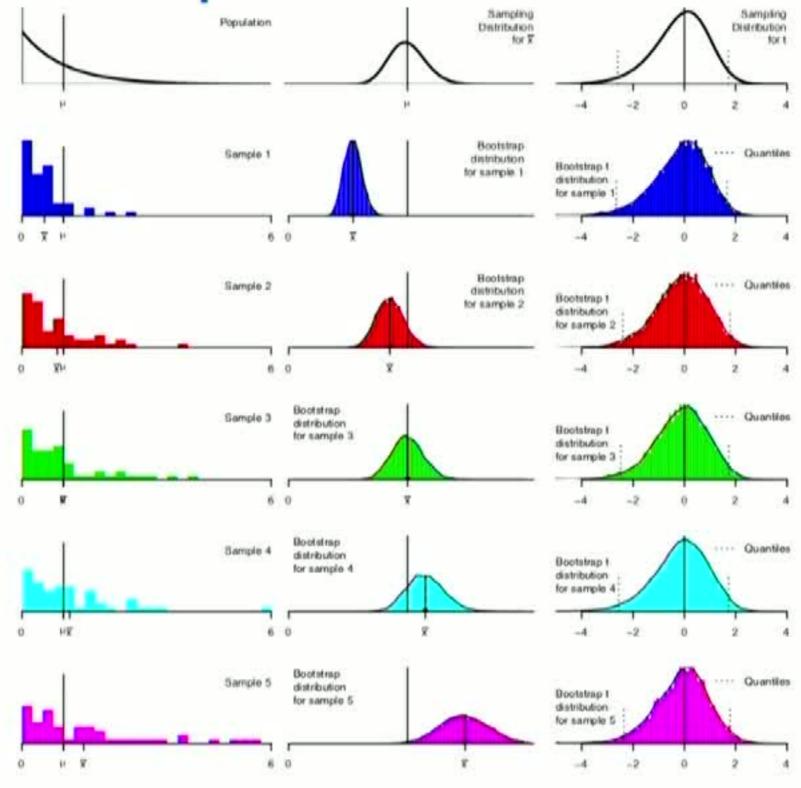
Mean-variance relationship; spread of bootstrap distribution depends on statistic

Need to adjust confidence intervals

- Bootstrap percentile is better than t
- But still not good enough

$$t = \frac{\hat{\theta} - \theta}{s_{\hat{\theta}}} = \frac{\overline{x} - \mu}{s/\sqrt{n}}$$

$$t^* = \frac{\hat{\theta}^* - \hat{\theta}}{s_{\hat{\theta}^*}} = \frac{\overline{x}^* - \overline{x}}{s^*/\sqrt{n}}$$



How many bootstrap samples? Google

Sample of size R from theoretical n^n distribution Accuracy improves at rate $1/\sqrt{R}$ How many

- Quick and dirty: 1000
- Better: 10000

Why more?

- Faster computers
- Treat data as fixed; small MC variation

Accuracy for small n

Percentile CI ~
$$\overline{x} \pm z_{\alpha/2} \frac{s}{\sqrt{n}} \sqrt{(n-1)/n}$$

Too narrow!

bootstrap SE for mean =
$$\hat{\sigma}/\sqrt{n}$$

where
$$\hat{\sigma}^2 = (1/n) \sum (x_i - \overline{x})^2$$

Expanded Percentile Interval:

Adjusted percentiles ($\alpha'/2$, 1- $\alpha'/2$)

Pick α' to mimic usual t interval

Accuracy for skewness

Much worse!

Not only problem for bootstrap – ordinary *t* intervals are poor.

Bootstrap t works well.

Common Statistical Practice

Is $n \ge 30$, and data not too skewed?

- Yes: use t intervals and tests
- No: use them anyway

How big a problem is this?

Common Statistical Practice

Is $n \ge 30$, and data not too skewed?

- Yes: use t intervals and tests
- No: use them anyway ⊗

How big a problem is this?

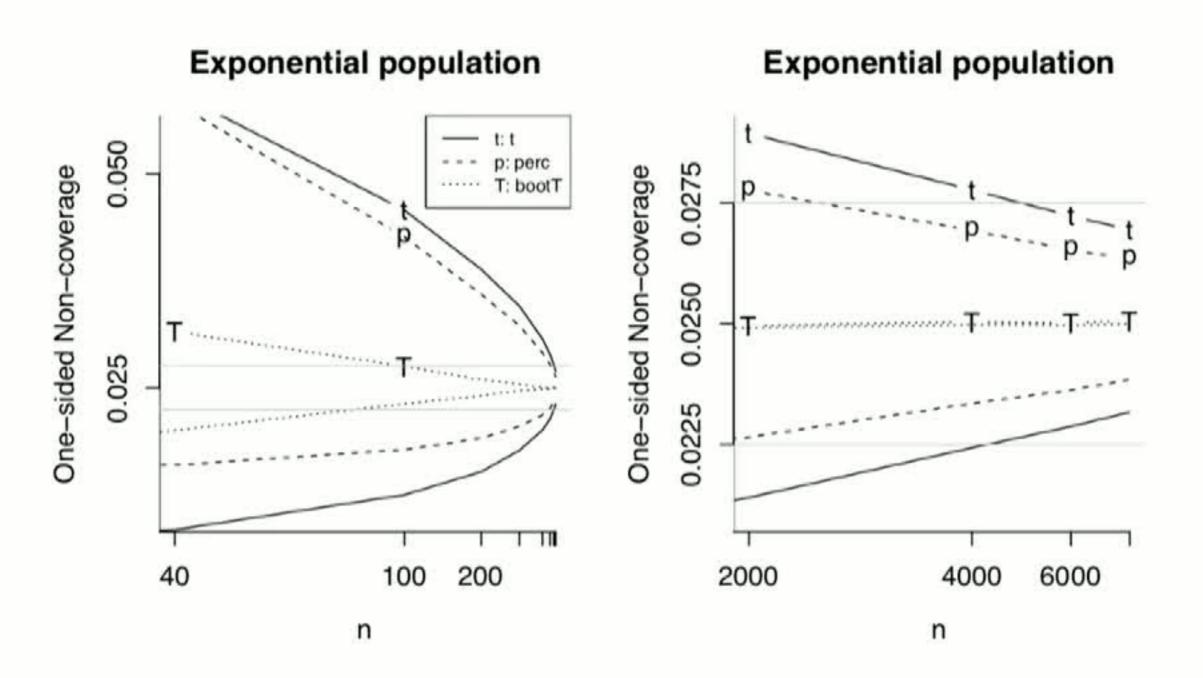
Common Statistical Practice

Is $n \ge 30$, and data not too skewed?

- Yes: use t intervals and tests
- No: use them anyway

How big a problem is this?

Need n > 5000 for t accuracy!



Why isn't this known?

Inertia

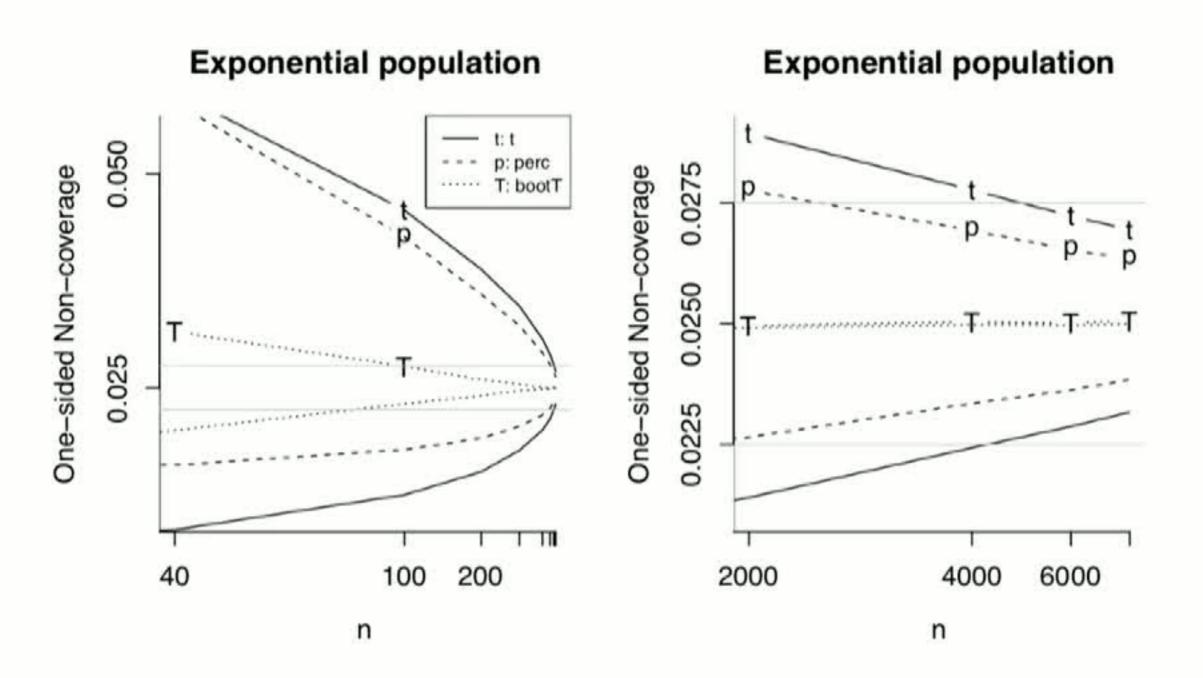
Need bootstrap diagnostics

Need 64,000 bootstrap samples

Need fast computers

20,000 hours for simulations in 1981

Need n > 5000 for t accuracy!



Why isn't this known?

Inertia

Need bootstrap diagnostics

Need 64,000 bootstrap samples

Need fast computers

20,000 hours for simulations in 1981

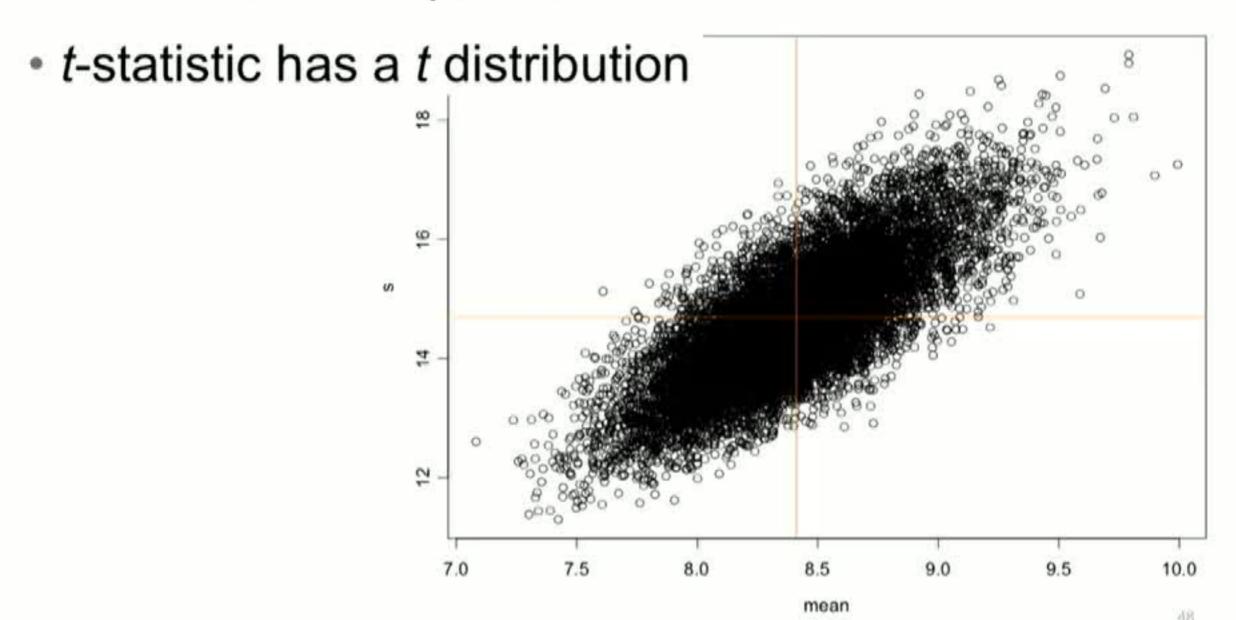
Sampling distribution of t-statistic

If population Normal,

 $\bullet \ \overline{x}$ and s are independent

Not if skewed!

ILEC data (n=1664)



Bootstrap t interval

Do not assume a *t*-statistic has a *t* distribution.

Instead, bootstrap to estimate quantiles, and solve for μ ,

Interval:
$$\left(\overline{x} - t_{.975}^* \frac{s}{\sqrt{n}}, \overline{x} - t_{.025}^* \frac{s}{\sqrt{n}}\right)$$

bootstrapT tWithBootSE percentile

```
2.5% 7.77 7.71 7.73

97.5% 9.17 9.11 9.13

=xbar + (-.65, .76) (-.7, .7) (-.68, .72)

=xbar + (-1.79, 2.11)s/sqrt(n), ...
```


More Accurate Intervals

Percentile and t interval:

- first-order correct
- Consistent, coverage error O(1/sqrt(n))

Bootstrap t, BCa, ...

- second-order correct
- coverage error O(1/n)
- Handle bias, skewness, and transformations

Diagnosing Accuracy

Look at bootstrap distributions for nonnormality.

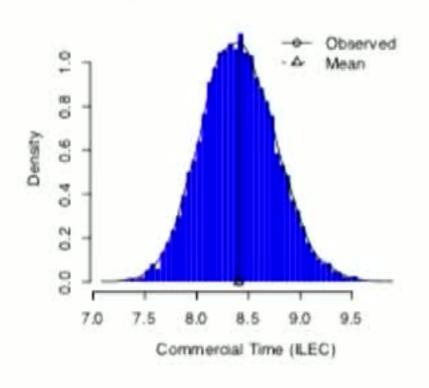
Is the amount of non-normality/asymmetry a cause for concern?

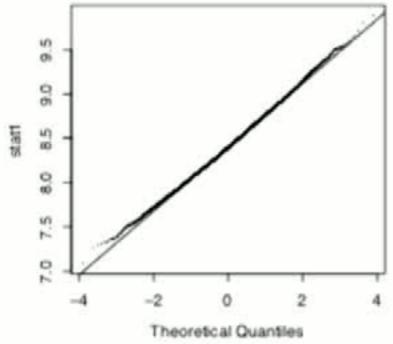
Note – we're looking at a sampling distribution, not data. This is *after* the CLT effect!

Measure – not just eyeball.

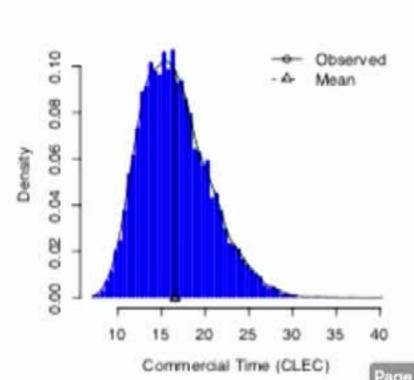
Bootstrap Distns for Verizon

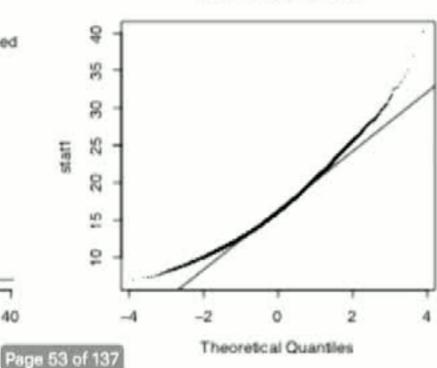
Normal Q-Q Plot





Normal Q-Q Plot





Summary So Far

- Reasons to resample
 - Easy
 - Communicate results
 - Flexible e.g. robust statistics
 - More accurate
 - Bootstrap t
 - Diagnostics

Outline

- Case Study, Basics
- Accuracy
- Bootstrap Regression
- Bootstrap Sampling Methods
- Permutation Tests

Meta goals:

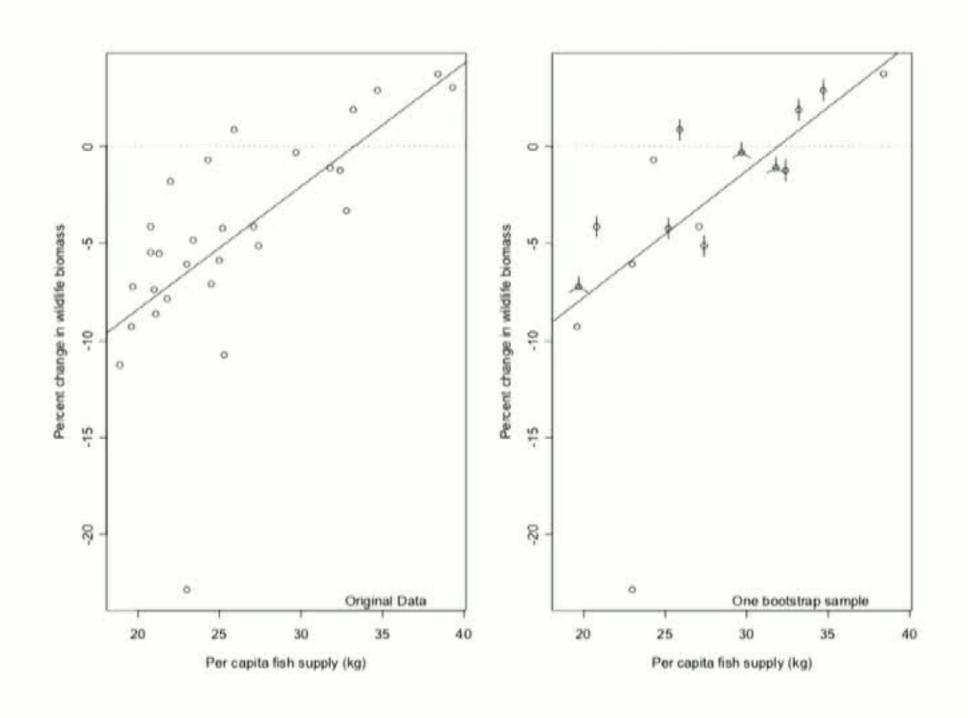
Visual Resampling

Variety of approaches

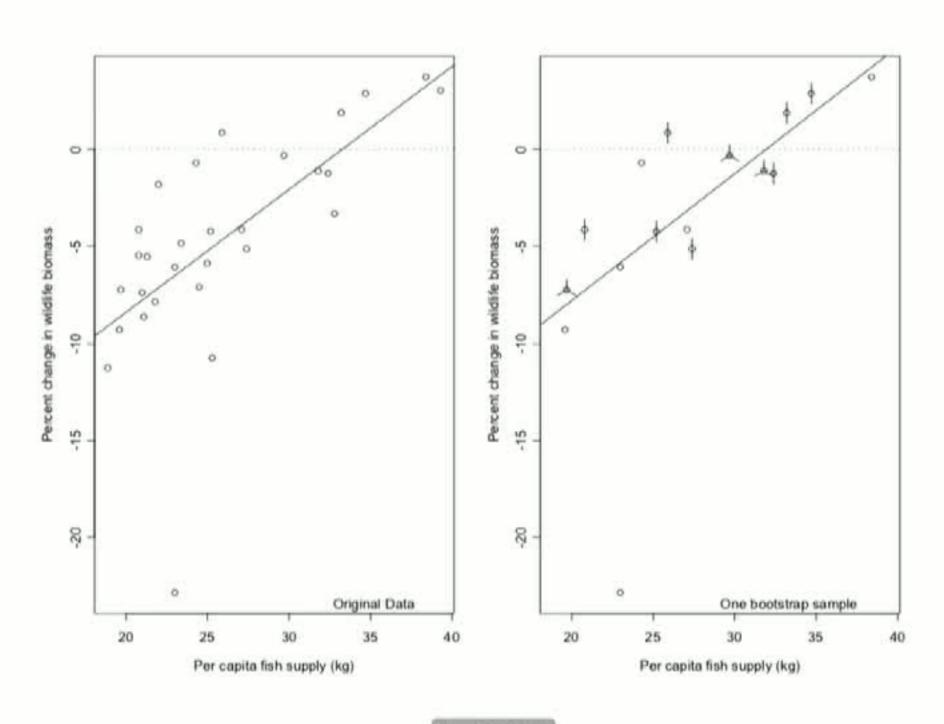
Summary So Far

- Reasons to resample
 - Easy
 - Communicate results
 - Flexible e.g. robust statistics
 - More accurate
 - Bootstrap t
 - Diagnostics

Bushmeat, \(\Delta \text{Biomass vs Fish} \)

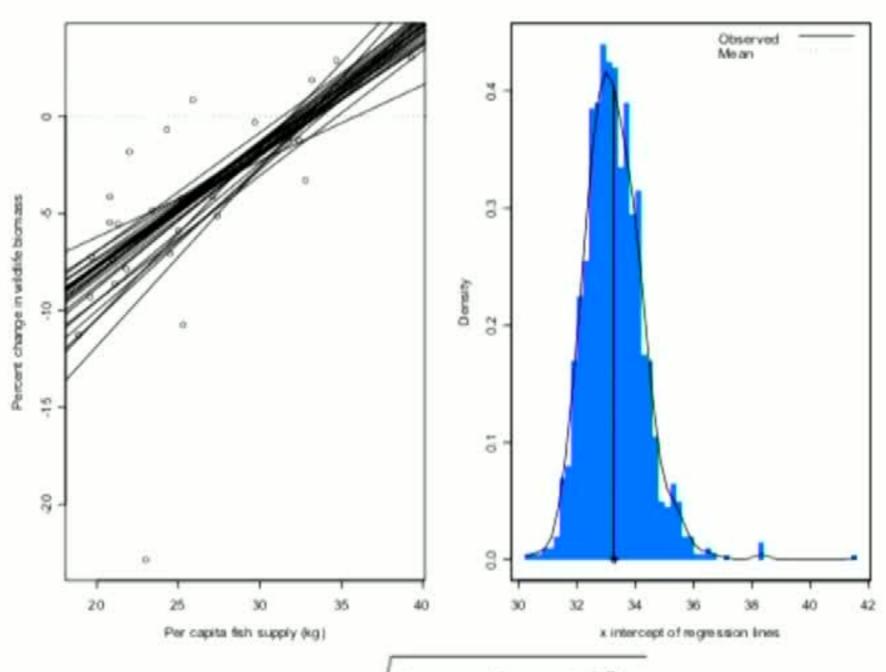


Bushmeat, \(\Delta \text{Biomass vs Fish} \)



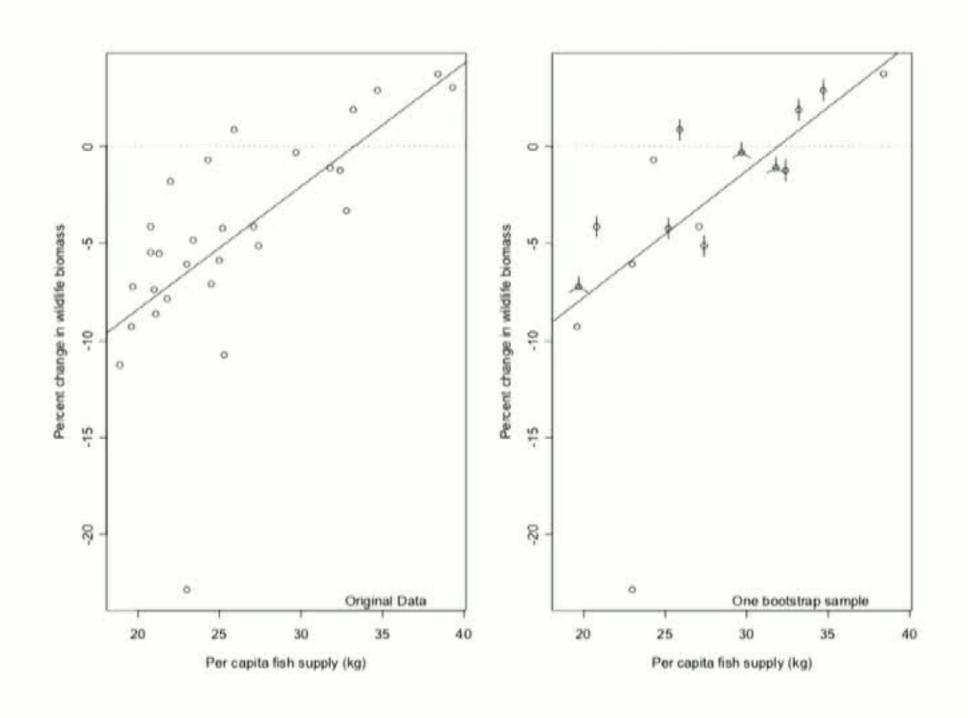
Google

Bootstrap Bushmeat



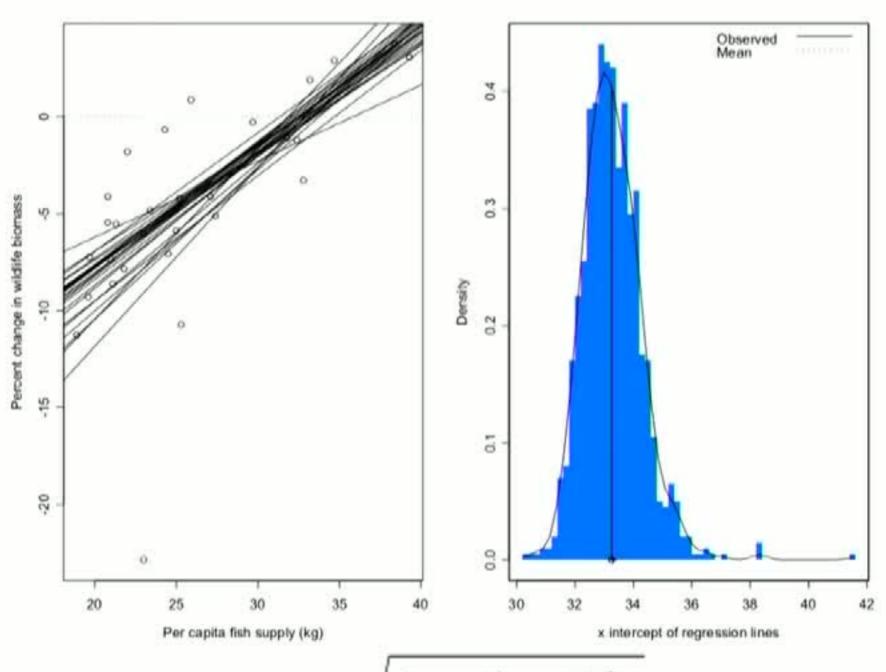
Compare:
$$\hat{y} \pm ts\sqrt{\frac{1}{n} + \frac{(x - \overline{x})^2}{\sum_{z \in SO \text{ of all } \overline{z}} (x_i - \overline{x})^2}}$$

Bushmeat, \(\Delta \text{Biomass vs Fish} \)



Google

Bootstrap Bushmeat



Compare:
$$\hat{y} \pm ts\sqrt{\frac{1}{n}} + \frac{(x-\overline{x})^2}{\sum (x_i - \overline{x})^2}$$

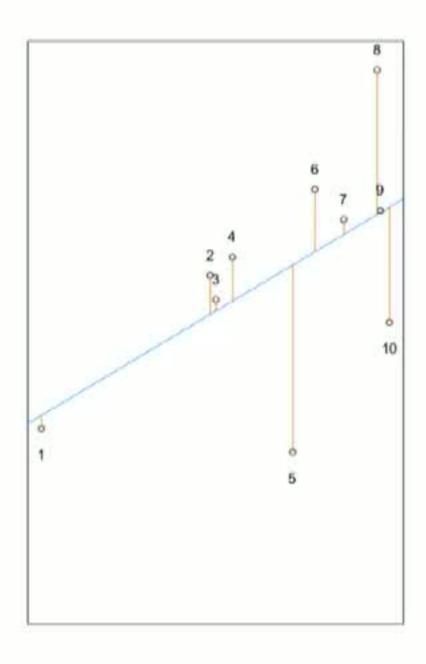
Resampling Linear Regression

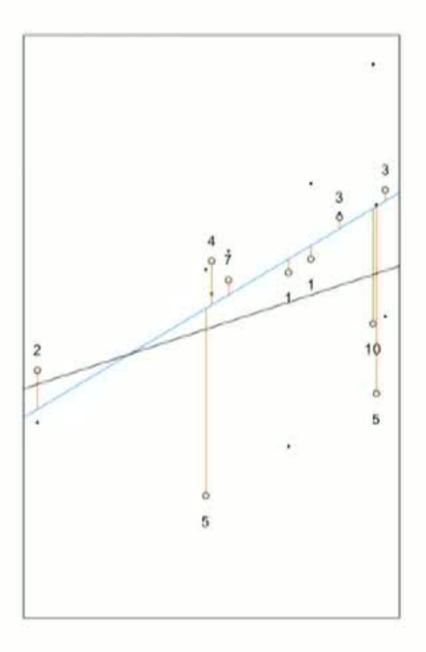
Resample observations

Problem with factors

Resample residuals

- Fit model
- Resample residuals, with replacement
- Add to fitted values
- Problems with heteroskedasticity, lack of fit





Resampling Linear Regression

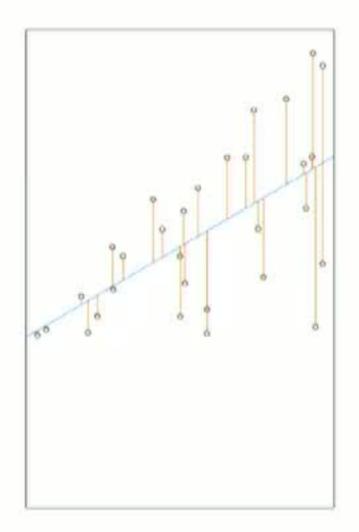
Resample observations

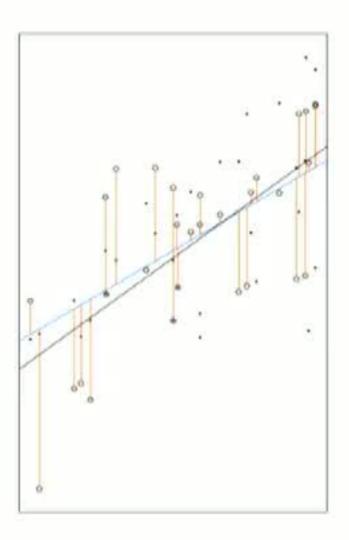
Problem with factors

Resample residuals

- Fit model
- Resample residuals, with replacement
- Add to fitted values
- Problems with heteroskedasticity, lack of fit

Problem: heteroskedasticity





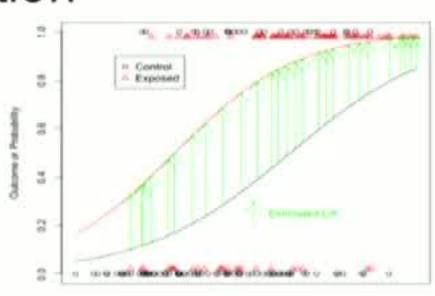
Remedy: "Wild bootstrap" = resample ± residual

Resampling Regression

Resample observations (random effects)

Resample Y from conditional distribution given X's (fixed effects)

- Special case: resampling residuals
- For logistic regression, P(Y=1) = prediction
- Condition on observed information



Recommendations for Regression

Coefficients / Predictions at fixed X

(see next page)

Causal Modeling / Predictions at Random X

Resample observations

Recommendations for Regression (coefficients)

Quick-and-dirty

Resample observations

Large samples

Any method

Medium samples

Resample Y from conditional distribution given X's

Small samples

Parametric bootstrap

Outline

- Case Study / Basics
- Accuracy
- Bootstrap Regression
- Bootstrap Sampling Methods
- Permutation Tests

Meta goals:

Variety of options

Big Data

Recommendations for Regression (coefficients)

Quick-and-dirty

Resample observations

Large samples

Any method

Medium samples

Resample Y from conditional distribution given X's

Small samples

Parametric bootstrap

1 V 0 0

Recommendations for Regression (coefficients)

Quick-and-dirty

Resample observations

Large samples

Any method

Medium samples

Resample Y from conditional distribution given
 Small samples

Recommendations for Regression (coefficients)

Quick-and-dirty

Resample observations

Large samples

Any method

Medium samples

Resample Y from conditional distribution given X's

Small samples

Parametric bootstrap

Outline

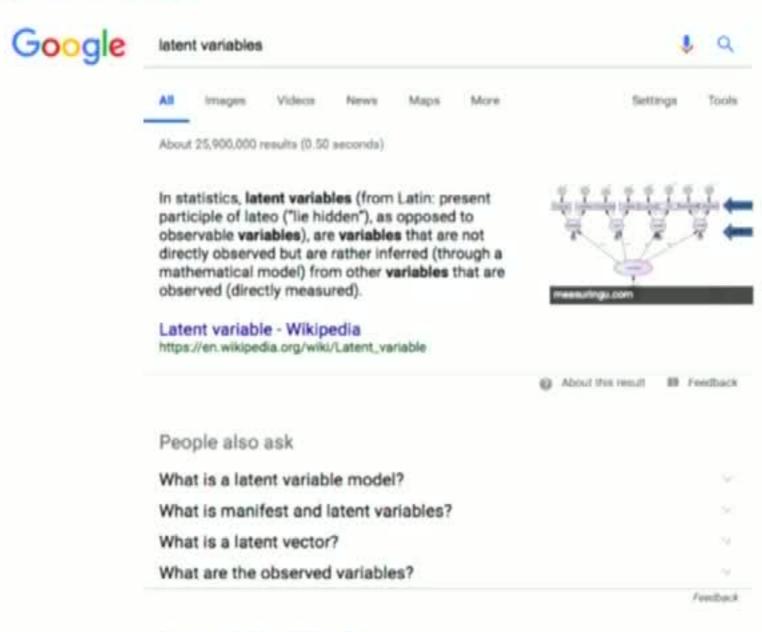
- Case Study / Basics
- Accuracy
- Bootstrap Regression
- Bootstrap Sampling Methods
- Permutation Tests

Meta goals:

Variety of options

Big Data

In contrast...



Latent variable - Wikipedia

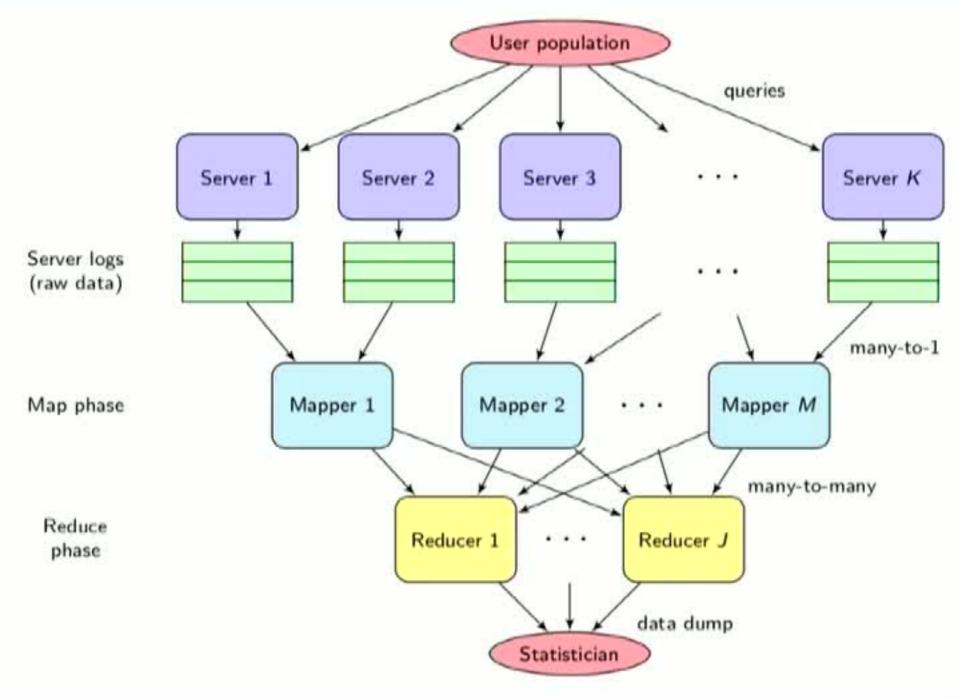
https://en.wikipedia.org/wiki/Latent_variable *
In statistics, latent variables (from Latin: present participle of lateo ("lie hidden"), as opposed to
observable variables), are variables that are not directly observed but are rather inferred (through a
mathematical model) from other variables that are observed (directly measured).

Examples of latent variables Psychology Economics Common methods for _____

Structural Equation Modeling: What is a Latent Variable?

https://www.theanalysisfact.page 69 of 127 ant-variable/ *
My favourite image to explain the relationship between latent and observed variables comes from the "Myth of the Cave" from Plato's The Republic. In this myth a

A cartoon Google data stream



Cost per Click Standard Error

Cost per click (by country, time period, ...)

- = sum(cost) / number(clicks)
- $= sum(Y_i) / sum(N_i)$

where $Y_i = \text{cost}$, $N_i = \text{clicks for user } i$.

Can't compute!

Can't calculate formula standard error.

Bootstrap!

 $Var(sum(f_i Y_i) / sum(f_i N_i))$

where $f \sim Poisson(1)$

$$\begin{bmatrix} f_{1,1} & f_{1,2} & \dots & f_{1,r} \\ f_{2,1} & f_{2,2} & \dots & f_{2,r} \\ \vdots & \vdots & \ddots & \vdots \\ f_{n,1} & f_{n,1} & \dots & f_{n,r} \end{bmatrix}$$

Resampling Variations

Ordinary bootstrap

Sample with replacement

Frequencies are Bi(n, 1/n)

Poisson bootstrap

Frequencies are Poisson(lambda = 1)

Independent

Half-Sampling

Sample without replacement, size n/2

Same SE as bootstrap (but not skewness)

Bag of Little Bootstraps

Jackknife, group jackknife, cross-validation, ...

Cost per Click Standard Error

Cost per click (by country, time period, ...)

- = sum(cost) / number(clicks)
- $= sum(Y_i) / sum(N_i)$

where $Y_i = \text{cost}$, $N_i = \text{clicks for user } i$.

Can't compute!

Can't calculate formula standard error.

Bootstrap!

 $Var(sum(f_i Y_i) / sum(f_i N_i))$

where $f \sim Poisson(1)$

$$\begin{bmatrix} f_{1,1} & f_{1,2} & \dots & f_{1,r} \\ f_{2,1} & f_{2,2} & \dots & f_{2,r} \\ \vdots & \vdots & \ddots & \vdots \\ f_{n,1} & f_{n,1} & \dots & f_{n,r} \end{bmatrix}$$

Resampling Variations

Ordinary bootstrap

Sample with replacement

Frequencies are Bi(n, 1/n)

Poisson bootstrap

Frequencies are Poisson(lambda = 1)

Independent

Half-Sampling

Sample without replacement, size n/2

Same SE as bootstrap (but not skewness)

Bag of Little Bootstraps

Jackknife, group jackknife, cross-validation, ...

Different Sampling Procedures

Two-sample

Regression

Stratified sampling

Finite Population

Hierarchical

Time Series (in reserve)

Other Sampling Situations

Stratified Sampling

Resample within strata

Finite Population

 Create finite population, resample without replacement (repeat each observation N/n times)

General Idea:

- Resampling should mirror real life
- Except condition on observed information
 - Like sample sizes, x in regression

Complex Sampling

Resampling should mimic how the data was produced

There are some twists

- Downward bias in bootstrap SE
- Finite-population sampling
- Regression
- Time Series (omit in this talk)

Bootstrap SE too small

Usual SE for mean is s/\sqrt{n}

Theoretical bootstrap corresponds to using divisor of *n* instead of *n-1*.

Bias factor for each sample, each stratum

$$s^{2} = (n-1)^{-1} \sum_{i} (x_{i} - \overline{x})^{2}$$
$$\hat{\sigma}^{2} = n^{-1} \sum_{i} (x_{i} - \overline{x})^{2}$$

Example - TV

Student data, commercial minutes in cable TV, comparing standard and extended channels.

```
Basic mean = 9.21

7.0 10.0 10.6 10.2 8.6 7.6 8.2 10.4 11.0 8.5

Extended mean = 6.87

3.4 7.8 9.4 4.7 5.4 7.6 5.0 8.0 7.8 9.6
```

Usual standard error for difference: .798

Bootstrap Standard error: .758 (5% smaller)

 $\sigma_{\text{kernel}} = s / \sqrt{n}$

Remedies for small SE

Multiply SE by $\sqrt{n/(n-1)}$

- Equal strata sizes only
- Sample with reduced size, (n-1)
- Bootknife sampling
- Omit random observation
- Sample size n from remaining n-1

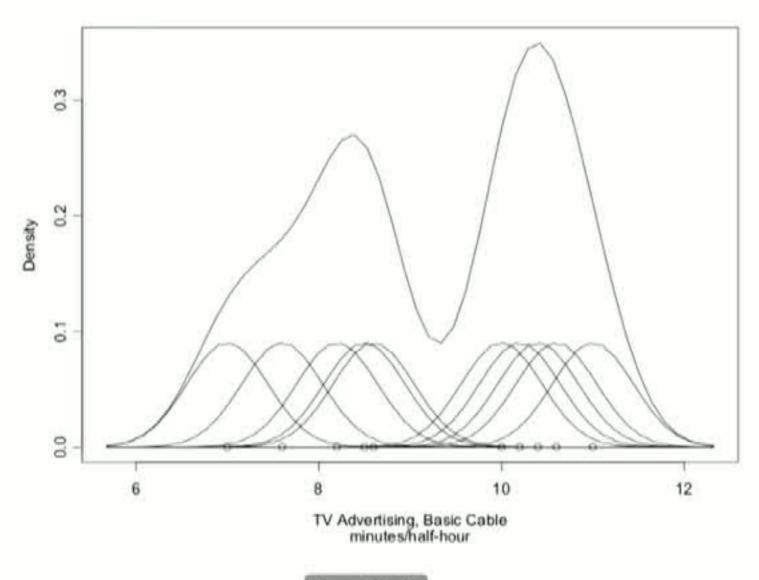
Smoothed bootstrap

- Choose smoothing parameter to correct variance
- Continuous data only.

Expanded percentile interval

Smoothed bootstrap

Kernel Density Estimate = Nonparametric bootstrap + random noise



Page 79 of 137

Stratified Sampling

Bootstrap Sampling: independent within each stratum

Caution – bootstrap SE may be very small

- Sample with reduced stratum size
- Bootknife sampling
- Smoothing
- ?Does statistic depend on sample size?

Outline

- Case Study / Basics
- Accuracy
- Bootstrap Regression
- Bootstrap Sampling Methods
- Permutation Tests

Permutation Tests

Hypothesis test: sample consistent with H_0

2-sample example

- General procedure
 - Matched pairs
 - Bivariate relationship
 - Regression

Meta goals:

Handle some situations

Understand when it doesn't work

Permutation Test for 2-samples

H₀: no real difference between groups; observations could come from one group as well as the other

Resample: randomly choose *n*₁ observations for group 1, rest for group 2.

Equivalent to permuting all n, first n_1 into group 1.

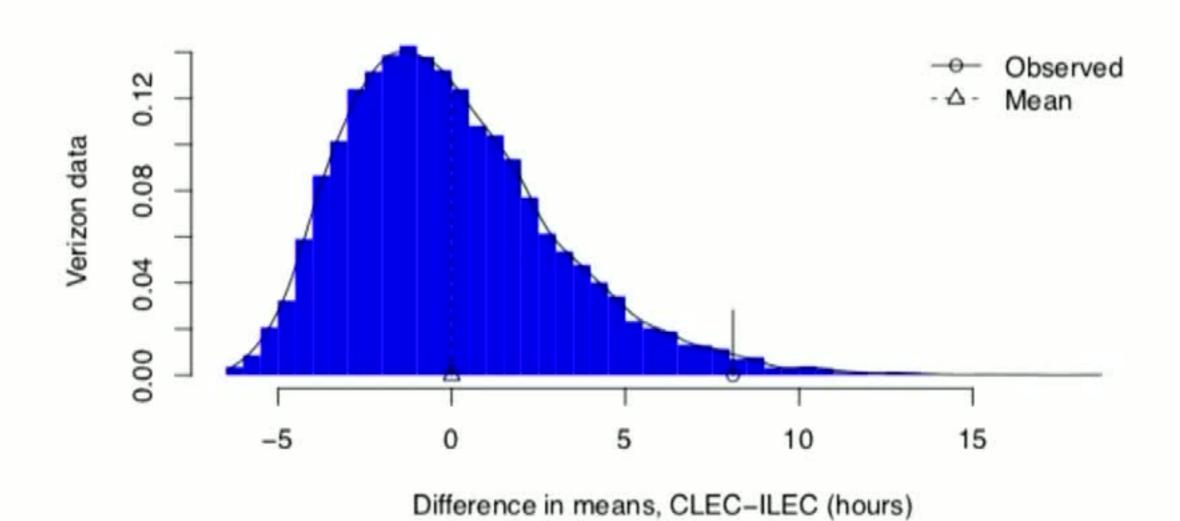
Permutation Test for 2-samples

H₀: no real difference between groups; observations could come from one group as well as the other

Resample: randomly choose *n*₁ observations for group 1, rest for group 2.

Equivalent to permuting all n, first n_1 into group 1.

Verizon permutation test



General Permutation Tests

- Compute Statistic for data
- Resample consistent with H_0 and study design
- Construct permutation distribution
- P-value = percentage of resampled statistics that exceed original statistic
- One-sided P: $(\# \ge \text{original} + 1) / (R + 1)$
- Two-sided P: 2 * smaller of one-sided P

Perm Test for Matched Pairs or Stratified Sampling

Permute within each pair

Permute within each stratum

Permutation Test of Relationship

To test H₀: X and Y are independent

Permute either X or Y

Test statistic may be correlation, slope, chisquare statistic (Fisher's exact test), ...

In contrast, to bootstrap (for SE or CI), resample whole rows, X and Y together

Permutation Test of Relationship

To test H₀: X and Y are independent

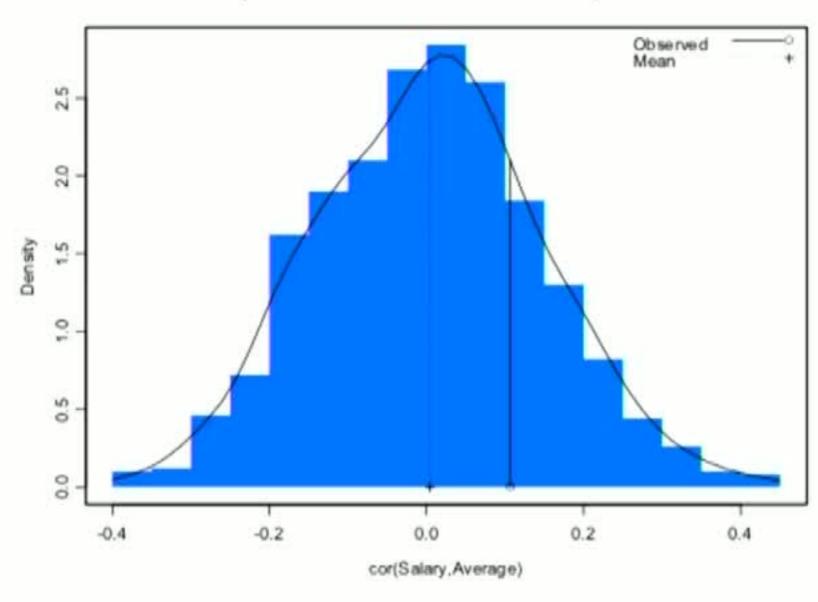
Permute either X or Y

Test statistic may be correlation, slope, chisquare statistic (Fisher's exact test), ...

In contrast, to bootstrap (for SE or CI), resample whole rows, X and Y together

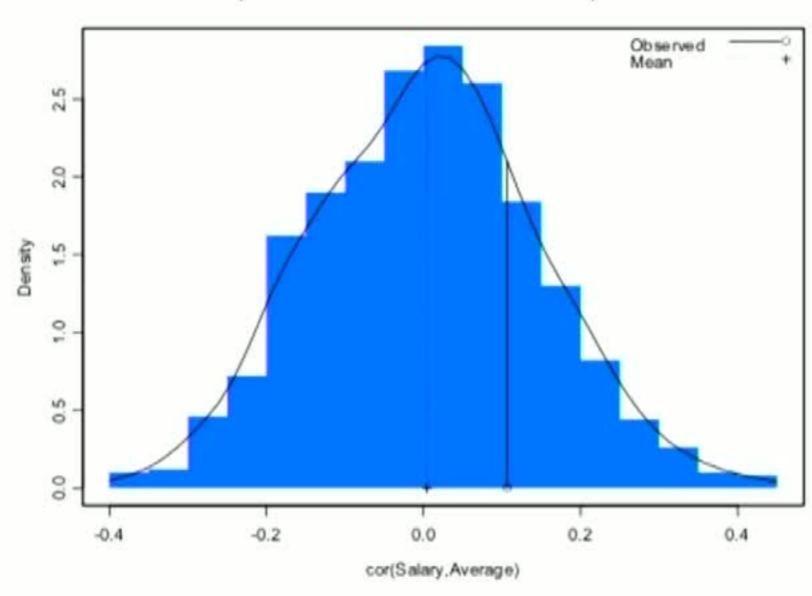
Test: Baseball correlation

permutation : Baseball : resampCor



Test: Baseball correlation

permutation : Baseball : resampCor



Test terms in Multiple Regression

To test incremental contribution of X₁

- No exact test exists
- Best (usually) approximate test:
 - Permute residuals of reduced model
 - Test statistic ~pivotal: t or F statistic
 - Depends on model correctness,

• Y -
$$(\beta_{0:1} + \beta_{2:1}X_2 + ... + \beta_{p:1}X_p)$$
 are exchangeable

Anderson 2001 Canadian J. Fish. Aquat. Sci.

Google

Summary

- Reasons to Resample
 - Easy
 - Communicate results
 - Flexible e.g. robust statistics
 - More accurate
- Examples
 - Easy to use for variety of statistics
 - Easy for independent data; less easy otherwise
- Sampling Methods
 - Non-iid situations
- Permutation Tests
 - Two samples, relationship

Further Information

http://www.timhesterberg.net/bootstrap

Mathematical Statistics with Resampling and

R, Chihara & Hesterberg

Intro stats

Software

Mathematical Statistics with Resampling and R Laura Chihara and Tim Hesterberg

Bootstrap Methods and Permutation Tests*