Optimal-order multigrid preconditioners for linear systems arising in the semi-smooth Newton solution of certain PDE-constrained optimization problems

Andrei Drăgănescu¹, Jyoti Saraswat²

¹Department of Mathematics and Statistics, UMBC ²Department of Mathematics, Thomas More College

2015 SIAM Conference on Applied Linear Algebra Atlanta, October 26 - 30

Continuous piecewise linear constraints

Problem formulation

Model problem:

$$\mathcal{K}: L^2(\Omega) \to L^2(\Omega)$$
 linear, compact, $y_d, a, b \in L^2(\Omega)$

Optimal control problem

minimize
$$J_{\beta}(u) \stackrel{\text{def}}{=} \frac{1}{2} \|\mathcal{K}u - y_d\|^2 + \frac{\beta}{2} \|u\|^2$$

subject to: $u \in L^2(\Omega), \ a \le u \le b$ (1)

- Examples:
 - $\mathcal{K} = -\Delta^{-1}$ elliptic-constrained optimal control problem
 - \(\mathcal{K} \) is an explicit integral operator (image deblurring)

Outline

- Motivation and problem formulation
- Background
 - The unconstrained problem
 - The constrained problem
- Piecewise constant controls
 - Algorithm design
 - Numerical results
- Continuous piecewise linear constraints

Page 3 of 55

The coarse space

New coarse inactive index set:

$$\mathcal{I}_{2h} \stackrel{\text{def}}{=} \left\{ i \in \{1, \dots, N_{2h}\} : \mu(\operatorname{supp}(\varphi_i^{2h}) \cap \Omega_h^{\text{in}}) > 0 \right\}.$$

- Coarse inactive space: Uⁱⁿ_{2h} = span{φ^{2h}_i : i ∈ I_{2h}}
- Coarse-level footprint: $\Omega_{2h}^{in} = \bigcup_{i \in \mathcal{I}_{2h}} \operatorname{supp}(\varphi_i^{2h})$.
- Remarks:

1.
$$\Omega_h^{\text{in}} \subseteq \Omega_{2h}^{\text{in}}$$
. (new)

- 2. It may be that $\mathcal{U}_{2h}^{\text{in}} \nsubseteq \mathcal{U}_{h}^{\text{in}}$. (new)
- 3. We have $\mathcal{U}_{2h}^{\text{in}} \subseteq \mathcal{U}_{h}^{\text{in}}$ iff $\Omega_{h}^{\text{in}} = \Omega_{2h}^{\text{in}}$.

Numerical example: elliptic-constrained problem

PDE-constrained optimal control problem

minimize
$$\frac{1}{2} \|y - y_d\|^2 + \frac{\beta}{2} \|u\|^2$$

subject to: $-\Delta y = u$
 $a \le u \le b$

Elliptic control problem

Target control u_d vs. optimal control u_{min} ($\beta = 10^{-6}$)

