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Gradient histograms

Model t 7→ logP({x | ‖∇u(x)‖ = t}) by −αtq, (α, q > 0).
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For recollection: Bayesian interpretation

The denoising problem with prior R and Gaussian noise

min
u

1
2
‖u − f ‖2L2(Ω) + αR(u)

corresponds to the MAP estimate

max
u

P(f |u)P(u)
P(f )

where P(f |u) is the Gaussian noise distribution, and the prior

P(u) = C exp(−αR(u)).



The TVq model

This leads us to the image prior

TVq(u) :=
∫

Ω
‖∇u(x)‖q dx , (q ∈ (0, 1)),

studied in (Huang and Mumford 1999; Hintermüller and Wu 2013;
Hintermüller and Wu 2014; Ochs et al. 2013).

Related models for enforcing piecewise constant solutions: ( Geman
and Geman 1984; Nikolova 2002; Nikolova et al. 2008; Chen and Zhou
2010).

However, are such models theoretically justified?

And is tq the full story in terms of statistics?



Edge detection, histogram, and tq fit

0 50 100 150
−14

−12

−10

−8

−6

−4

−2

0

 

 

Smooth part
Edge part
Smooth fit; q=0.36
Edge fit; q=1.44



Linearised model fit

Varying M, α, q, we fit to the the function −αϕ for

ϕM,q(t) :=

{
tq 0 ≤ t ≤ M,

(1− q)Mq + qMq−1t, t > M.

We also define the asymptotic alpha, α∞ := αϕ∞.

Is this theoretically justified?
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Fit (man); q=0.32, M=30, α∞=0.059

Fit (opt); q=0.42, M=69, α∞=0.050

Fit (emp); q=0.40, M=15, α∞=0.021



The TVq model

For an energy functional ϕ, define

T̃Vϕ
c (u) =

∫
Ω

ϕ(‖∇u(x)‖) dx , (u ∈ C 1(Ω)),

and extend this weak* lsc. to u ∈ BV(Ω) by

TVϕ
c (u) := lim inf

ui
∗⇀u,

ui∈C1(Ω)

T̃Vϕ
c (u

i ).

Theorem
If ϕ(t) = tq for q ∈ (0, 1), then TVϕ

c (u) ≡ 0.



How about the linearised model?

Theorem
Even for the linearised model ϕ = ϕM,q with

ϕM,q(t) :=

{
tq 0 ≤ t ≤ M,

(1− q)Mq + qMq−1t, t > M,

we have TVϕ
c (u) ≡ ϕ∞TV(u) = qMq−1TV(u).



Difficulties

We need to replace weak* convergence – but with what?
I Weak* convergence is too weak; it demands convex integrands

(cf. Bouchitté and Buttazzo 1990; Fonseca and Leoni 2007).
I Strict convergence is also not enough.
I Strong convergence in BV(Ω) does not allow approximating

piecewise constant functions by smooth functions, so too strong.



Area-strict convergence

Definition
Suppose Ω ⊂ Rn with n ≥ 2. Then ui → u area-strictly in BV(Ω) if

U i → U strictly in BV(Ω;Rn+1)

with the notation U(x) := (x/‖x‖, u(x)).

In other words ui → u strongly in L1(Ω), Dui ∗⇀ Du weakly* in
M(Ω;Rn), and A(ui )→ A(u) for the area functional

A(u) :=
∫

Ω

√
1+ ‖∇u(x)‖2 dx + |Dsu|(Ω).

It can be shown that area-strict convergence is stronger than strict
convergence, but weaker than norm convergence.



Area-strict continuity

Theorem (Rindler and Shaw 2013)

Let Ω be a bounded domain with Lipschitz boundary. Let
f ∈ C (Rn) satisfy

|f (A)| ≤ C (1+ |A|),

and suppose f ∞ exists. Then the functional

F (u) :=
∫

Ω
f (∇u(x)) dx +

∫
Ω
f ∞(

dDsu

d |Dsu| (x)) d |D
su|(x)

is area-strictly continuous on BV(Ω).



Application of area-strict continuity

Corollary

Suppose ϕ ∈ C (R0,+), ϕ∞ exists, and ϕ(t) ≤ C (1+ t), (t ∈ R0,+).
Then the functional

TVϕ
as(u) :=

∫
Ω

ϕ(‖∇u(x)‖) dx + ϕ∞|Dsu|(Ω), (u ∈ BV(Ω)),

is area-strictly continuous on BV(Ω).

The problem now is: how do we obtain area-strict convergence of a
minimising sequence to the denoising problem

min
u∈BV(Ω)

1
2
‖f − u‖2L2(Ω) + TVϕ

as(u)?



Annihilation

Question: What strict convergence lacks that weak* can exhibit?

Answer: Annihilation effects.
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How to avoid them?



Multiscale analysis

With η0 > 0 and {ρε}ε>0 a family of mollifiers satisfying the semigroup
property ρε+δ = ρε ∗ ρδ, we define

η(µ) := η0

∞

∑
`=1

∫
Rn
(|µ| ∗ ρ2−i )(x)−|µ ∗ ρ2−i |(x) dx , (µ ∈ M(Ω;Rn)).

Theorem (T.V. 2011; T.V. 2012)

If supi η(µ) < ∞ and µi ∗⇀ µ, then |µi |(Ω)→ |µ|(Ω).
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The fixed TV q model

Theorem
Let ϕ = ϕM,q be the linearised tq integrand. Suppose Ω ⊂ Rn is
bounded with Lipschitz boundary. Then the functional

G (u) :=
1
2
‖f − u‖2L2(Ω) + αTVϕ

as(u) + η(DU), (u ∈ BV(Ω)),

admits a minimiser u ∈ BV(Ω).

Remark (convergence of minimising sequences)

The linearisation of ϕ is needed for a bound in BV(Ω) and weak*
convergence. Then a bound on η gives area-strict convergence.



For numerical experiments
I We use a modification of the method of (Hintermüller and Wu

2013; Hintermüller and Wu 2014).
I We vary the cut-off M while keeping the asymptotic α fixed.

I Defined by α∞ := αϕ∞.
I Justification: for TV, α∞ = α, so same edge regularisation.

I Empirically optimal q discovered by trial and error.



(a) Original (b) Noisy image (c) M = 0

(d) M = 10 (PSNR-optimal) (e) M = 40 (SSIM-optimal) (f) M = ∞

Figure: Pier photo denoising results with noise level σ = 30 (Gaussian), for
varying cut-off M, fixed q = 0.4 and fixed α∞ = 0.0207.



(a) Original (b) Noisy image (c) M = 0 (PSNR-optimal)

(d) M = 15 (SSIM-optimal) (e) M = 40 (f) M = ∞

Figure: Parrot photo denoising results with noise level σ = 30 (Gaussian), for
varying cut-off M, fixed q = 0.5 and fixed α∞ = 0.0253.



(a) Original (b) Noisy image (c) M = 0 (d) M =
20 (PSNR-optimal)

Figure: Summer photo denoising results with noise level σ = 60 (Gaussian), for
varying cut-off M, fixed q = 0.3 and fixed α∞ = 0.00430.



Effect of the η term

(a) η0 = 7e−03, ε1 = 1 (b) η0 = 7e−03, ε1 = 2 (c) η0 = 7e−04, ε1 = 1

(d) η0 = 7e−04, ε1 = 2 (e) η0 = 7e−05, ε1 = 1 (f) η0 = 7e−05, ε1 = 2



Conclusion

We may conclude:
I The cut-off M for linearising tq

I Is required theoretically
I Can be seen in image gradient statistics
I Improves results in practise

I The multiscale regularisation η is a “theoretical artefact” that
has yet to be justified in practise.

Thank you for your attention!


	Introduction
	Histograms

	Theory
	The TVq model
	Area-strict convergence
	Annihilation
	Multiscale analysis

	Numerical results
	Setup
	Denoising results
	Conclusion


