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Consider generalized eigenvalue problem

Ax = A\Bzx

Goal|: counting the eigenvalues inside a given circle I'.

When A = A*, B= B*, and B > 0 s )\. are real-valued.
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‘Herrmtlan problem‘ \
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The standard method for Hermitian problem:
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' Compute A —aB=L,D,L: and A—bB = LyDyL;

Let u, and up be the Nos of negative entries of diag(D,) and diag(D3)-

Sylvester law of inertia mmp #eigs inside [a,b] = pp — 1a ‘/
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Estimating the number of eigenvalues inside I

Consider the most common generalized eigenvalue problems

matrix pencil zB — A is regular <§mmdet(A — zB) £ 0

Weierstrass canonical form for the regular matrix pencil:

Theorem: Let zB — A be a regular matrix pencil of order n. Then there exist
nonsingular matrices S,7 € C™"*" such that
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where J,; is a d X d matrix in Jordan canonical form, N,,_; is an (n—d) x (n—d)
Nilpotent matrix.




Suppose the considered eigenproblem is semi-simple.

¥

J4 1s a diagonal matrix and N,,_; 1S a zero matrix.

A1 0
0 Az

8 0 - X

) ]
where A; are eigenvalues, are not necessarily distinct and can be
repeated according to their multiplicities.




Let Y, ~ N, xp, an n X p random matrix with i.i.d. Gaussian entries.

One can easily verify that

%E[trace(Yp’“QYp)] = trace(Q) = trace(S(.1:5)(S ™" ) (1:s,))

— trace((S_l)(1;3,:)5(:,1:8))
= trace(fs) :E

I
P 5o = %trace(Y;QYp) gives estimation of s.




Experiment 1:

Test matrices: downloaded from the Matrix Market collection.
Table 1: A group of data selected from the Matrix Market.

Matrix

Size

nnz

Porperty

Condition Number

BFW398A
BFW398B

398
398

3678
2910

unsymmetric
symmetric indefinite

7.58 x 10°
3.64 x 10!

BFWT782A
BFW7828B

782
782

7514
5982

unsymmetric
symmetric indefinite

4.63 x 10°
3.05 x 10*

PLAT1919
PLSK1919

1919
1919

17159
4831

symmetric indefinite
skew symmetric

1.40 x 10'®
1.07 x 1018

BCSSTK13
BCSSTM13

2003
2003

42943
11973

symmetric positive definite
symmetric positive semi-definite

4.57 x 100
Inf

BCSSTK27
BCSSTM27

1224
1224

28675
28675

symmetric positive definite
symmetric indefinite

7.71 x 10*
1.14 x 101©

MHD3200A
MHD3200B

3200
3200

68026
18316

unsymmetric
symmetric indefinite

2.02 x 10¥
2.02 x 103

A:
B:
A:
B:
A:
B:
A:
B:
A:
B:
A:
B:
A:
B:

MHD4800A
MHDA4800B

4800
4800

102252
27520

unsymmetric
symmetric indefinite

2.54 x 10°°
1.03 x 104

They are the real-world GEP coming from scientific and engineering

applications.







Finding an upper bound of the number of eigenvalues inside[”

For the contour-integral based eigensolvers, such as SS and FEAST,

we must select a parameter|s; satisfying s; > s|before starting.

An algorithm based on sy to seek an s, that is slightly > s
(Yin, Chan and Yeung ’15 )

Recall
Q= 21“])__1 f[‘(ZB - A)_leZ - S(:,l:s)(s—l)(l:s,:)°

Thus, I

Q? =Q = ( is a spectral projector ontolspan{S(;.lzs)}}




Let s' be a positive integer and Y,+ ~ N,,,. (0, 1). Consider
Us’ - QY;* - S(:,l:s) (S—l)(lzs,:))/.s'f'

=3 [/,: is the projection of Y,: onto span{S. 1.5}

rank(U,:) < s

¥ N

[rank(Usf) = sTmp sT < 3“ Irank(Usf) < s'wPp 5 = rank(U,;) I

2

‘Lemma: Let Y € R™*%. If the entries of Y are random numbers from a con- \

tinuous distribution and that they are independent and identically distributed
(ii.d.), then the matrix (S~ ')(;.;.)Y is almost surely nonsingular.
I




Function (U, s, = SEARCH(A, B,T, a, p, J) '

. Pick Y, ~ Npxp(0,1) and compute|U = o/ =1 r(ZB — A) ' BdzY,

by the g-point Gauss-Legendre quadrature rule.
. Set|sg = [;—,trace(Yl;Uﬂ and s* = min(max(p, o), n).
5 & P

Pick Y ~ N, x(s*—p)(0,1) and compute U=

1
2w/ —1
by the g-point Gauss-Legendre quadrature rule.

. Augment U to U to form U = [U,U] € C***".

. Else

: Set s* = p.

. End
Compute the rank-revealing QR decomposition of U with column

I
pivoting strategy: UII = [Uy, Us] [ROI : 212] , here ||Ra2|| < 4.
22

10. Set s; = rank(R;1).
11. If[s; < s™| stop. Otherwise, set p = s; and s* = [as;|. Then go to Step 3.

f(zB — A)"'BdzY
A




Experiment 2:

/" No.




Counting the eigenvalues inside I’

Recall the spectral operator defined by contour integral:

Q= gy fo(aB — )7 Bz = § [ f{DGe| 5 j[{) 8] -

Note that residue theorem

0],




: _ I, 0] o
Q= 5ty $(2B — A)7'Bdz = § | b= §. D(2)dz]| S 1=s[0 0]5

Applying the Gauss-Legendre quadrature rule to

s $p D(2)dz = D = ; 371_, wj(z; — €)D(2;).

—~

We see that Do =v(N), t=1,...,d

'4

A; inside I

Getting s via counting the R[D; ;)] that are >




Call function [/, s;| = SEARCH(A, B,T’, a, p)

Theorem: Let U; be the projection matrix computed by function SEARCH.
Define projection matrix

1
2wy —1

and compute it by the g-point Gauss-Legendre quadrature rule to get approxi-
mation /5. Define the s; x s; matrix

U =QU; =

f(zB — A)~'BdzU,,
r

.’\I — L’: (‘}-_),

then the eigenvalues of M are {D; ; }icz, where T is an index set and its
cardinality is s;, and {1,2,...,s} C Z. .

v ,‘

Getting s by counting the R|eig(M)| that > l




Experiment 3:

Let A =diag([0.1:0.1:0.8|), S = rand(8),Y = randn(8,6). Define

A= SAS™,

Eigs: 0.1,0.2,0.3,0.4,0.5,...,0.8

B = eye(8).

[:e=0, p=0.401.

~

R[(Di))]

Rleig(M)]

00 =~J O O & QO DN | =,

1.000000000003949
1.000000000000000
0.999999999999999
0.801581787659601
0.000000002525684
0.000000000004379
0.000000000000001
—0.000000000000051

1.000000000003965
1.000000000000012
0.999999999999999

0.801581787659610
0.000000002525620
0.000000000004380
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A contour-integral based method for computing the number of
eigenvalues inside I'

Function s = CouNnT_EI1GS(A, B,T', a,p)
Call [U,, s;] = SEARCH(A, B, T, a,p);

Compute U, = QU, = 27\1/—1 $-(zB — A)~'BdzU, by the g¢-point
Gauss-Legendre quadrature rule to get U,, and set M = U Us:

Compute the eigenvalues of M, and set s to be the number of the
computed eigenvalues whose real parts are larger than %

1




Experiment 4: Determine the number of eigenvalues inside I’

- ™

No. c p S S0 s; Cont_Eigs
—50x10° 2.0x10° | 123 122 137 123
—6.0x10° 3.0x10° | 230 231 262 230
0 1.0x1073 | 270 277 328 270
0 6.0x 10° | 172 173 183 172
50x10% 2.0x10%® | 107 107 118 107
—40x%x 10 30x10' | 162 118 178 162
—6.0 3.0 169 3667 186 169

s

s: the exact number of eigenvalues insideII‘;
sg: the estimation of s;

s1: an upper bound of s;
Cont_Eigs: the number of R[eig(M)] > 3.




An application

The contour-integral based eigensolvers are recent efforts for computing
the eigenvalues inside a given curve.

Attractive feature|: they are very easily parallelizable.




Drawback!: the nimber s has to be known in advance.

The first reason The second reason

Choose a starting matrix Guarantee all desired
Y € R™"*%! satisfying s; > s. eigenvalues are found

Ui, s1] = SEARCH(A, B,T, o, p) 8= COUfIT_EIGS(A, B,T',a,p)




A FEAST algorithm for non-Hermitian problems (Yin, Chan and Yeung '15)

U=QY, Y ~Nuxs (0,1),5 > s.

~

A= (BU)*AU and B = (BU)*BU

Theorem: Let {( A; yz)} °_, be eigenpairs of pr(I)Jected eigenproblem
Ay = ABy, then {(X\;, Uy;)}_, are exact eigenpairs of Az = ABz

that are located m51de | 1




Function [A, X] = Cior(A, B,T', a, p, maz_iter) L>lsa.lsoa:)*nec ion matrix I
1. Call [Uy, 8] = SEARCH(A B,T',a,p). I

2. Compute U = ;- \/_1 $-.(zB — A)~' Bd=zU, by the Gauss-Legendre
quadrature rule.

3. Set M = U[U;, set s to be the number of eigenvalues of M
satisfying R[eig(M)] > 3.
. For k =2,..., maz_iter

Form A = (BU)* AU, and B = (BU;)* BUx.
Solve the projected eigenproblem Ay = ABy of size s; to
obtain eigenpairs {(\i,yi)}:L,. Set x; = Uryi,i =1,2,...,8;
If there are s eigenpairs (\;, x;) satisfy convergence criteria, stop.
Otherwise, compute Ug4; = 5= \1/_—1 (2B — A)~'BdzU, by the
Gauss-Legendre quadrature rule.

. End






