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Goal: Autonomy for mobile robots

Premise: autonomy = appropriately-coordinated behaviors

Consider navigation as a prototypical behavior
(go to a goal set while avoiding obstacles)  Navigation function

So how to do the composition?

Like to encode navigation in vector fields
F=—-Vg

Can we do the same for composition?

|dea: use pitchfork bifurcation as a switch




Honeybee

Democracy

- Pick nest site

. With high quality (value, V)

- Quickly (avoid deadlock)

. Two-site model: (on simplex A2)
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Motivation system architecture

Seeley et al. model embeds an unfolded pitchfork;

converges to high-value option
+ Values evolve as tasks are completed

Physical dynamics are a linear
combination of task vector fields

- Appropriate value dynamics
vields repetitive two-point patrol

( )
Physical dynamics

X = -m’ F(x)

. J
fm

( )

Motivation dynamics

m = f,(m,v)

. J
Tv

( )

Value dynamics

v = fy(v,x,u)
\_ _J
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Human or
sensor input
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Value dynamics

-+ N goals (locations), each with navigation functions
w; D — 10,1 ©wi bt €4{1,...,N}
-+ Value v; > 0 with dynamics
v; =N (v] — ) — o (1 — () Ao >0
Stable growth  Decay at goal

Motivation state m = (mq,...my,my) € AY

m; = v;my —m; (1/v; —vymy — o(1 —mymy))

Physical dynamics
X =—m' Dy® combination
—(m1Vp1 + -« +mpyVey)of vector fields
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+ Numerically, we find a limit cycle
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The limit cycle is quite robust!

Purely reactive: No model of obstacle behavior, just good
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Implementation: it works!

With Vasilis Vasilopoulos, D. E. Koditschek

(application paper under revision)



Analytical results

Phase diagram
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Adding sensors




Next steps

- More general tasks (e.q., patrol around a region)

Craig’s talk: CP18, Tuesday 3:10 pm

+ Gontrol of limit cycle geometry and timing (control the
unfolding of the pitchfork) |

ACC 19, CDC ’19 papers J
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behavioral specifications
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Thank you!

preverdy@email.arizona.edu
http://www.paulreverdy.com/

Funding: Air Force Research Laboratory
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Craig’s talk: CP18, Tuesday 21 May 3:10 pm



Continuous action selection

Simultaneous action selection and movement planning

Ability to update smoothly XPZ_EVT;(X)
Weights - g
DyﬂamiCS T = m‘1/171 (Qf) —|—>TLQF2(£E) - Tm \

Motivation dynamics

m = f,(m,v)

Vector fields

Vary weights to pick high-value actions| | )
h di TV
Stable fixed point g Value dynamics 411_
X 5’ — fv (V7 % u)J seHnuer?innth

. 'PBR, Koditschek,
SIAM J. Appl. Dyn. Systems (2018) 14




Additional slides



Grid task: abstraction of spatial search

You just earned 30 points mean

Study human behavior in ———— —+random noise
spatial search tasks B :

Discretize space

Earn points based on location
(unknown to subject a priori)

Subject’s goal: earn points by R e

navigating through the grid
(i.e., find peak quickly)

Restricted movement or
allow jumping in space

Spatial multi-armed bandit task




The multi-armed bandit problem

A canonical representation of the explore-exploit tradeoff
N options (arms), indexed by ¢
Each arm has an associated distribution p; () with mean m,; (unknown)

For each sequential decision time ¢ € {1,...,T}, pick arm 4,
receive reward ry ~ p; (1)

Objective: maximize cumulative expected reward

T

t=1

max J, J =K
{i¢}

Sequential decisions
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Regret

Bounds on optimal performance more easily formulated in terms of regret:

Define my = maxm; and R; = m, —m,;, expected regret at time t

Objective: minimize cumulative expected regret (analytical quantity)
Omniscient optimal Mean value of
T \ T decisions made
t—1 tzl\Sum over decisions

N A; = m, —m,; . EXpected regret
— Z AEn!] n? . Number of times

Ai=1 option I chosen
Sum over options 18



BSounds on optimal performance

A fundamental result of Lai and Robbins (1985) shows pi = N(m;, Uf )
Pix = N(mi*,ai)
1

E [n; 2( —I—Ol)logT A?

] D(pi||ps~) b N D(pillpi) = 5=5

Horizon . 205

So regret grows at least logarithmically in time: Kullback-Liebler

divergence

Jr(T) > ClogT

Lai-Robbins is an asymptotic result; the literature seeks uniform bounds (in T')

Uniform logarithmic regret is considered optimal

Jr(T) < C'logT  (C', C differ by a constant factor

19




Observed human performance phenotypes

3000

Data from grid task; short horizon

2500 -

Fit models to observed regret:

R(t)= a+bt
R(t) — atb S 1500
R(t)= a+blogt )

This set of models captures most
observed performance

Some people display logarithmic
regret: “optimal” performance!

Can we capture these three classes
in a model?
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The Upper Credible Limit Algorithm (UCL)

e.g., length scale )\

Mean reward values

Covariance belief: smoothness

v
Prior belief m ~ N (o, Xo)
/

Mean belief

\

Heuristic

AI{’ Info gain

“

Qi = pi + i@ (1 — ay)

N———— —

For ay = 1/(V2met)  achieve
logarithmic regret for good priors

And linear regret for bad priors

Prior quality depends on
accuracy and certainty

Reverdy et al. Proc. IEEE (é001 4)
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Stochastic UCL

Human decision making is stochastic, so extend UCL to stochastic policies

]
Py

Use Boltzmann/softmax action selectior), Heuristic value
Py = SP(@i/v)
Selection probability’ Z j=1 eXP(Q;/ Uyt\)
Use dynamic temperature parameter “Temperature”

AQ! .

mln

2logt

VU —

— Q)

where AQY,;, = min |Q; — Q%|is the minimum gap between heurlstlc values, D > 0

17

Stochastic UCL achieves logarithmic regret with a slightly larger constant

But gains potential robustness to wrong priors

Reverdy et al. Proc. IEEE (2014) *



Parameter estimation for UCL

Have a model; need an observer

Stochastic UCL defines a maximum likelihood estimator; requires solving hard
non-convex optimization problem

If the heuristic is a linear function of the unknown parameters, we get a
generalized linear model (GLM)

P, — exp(01x?t)

Z;\f:l exp(071'x")

Reduces to convex problem=- estimators with provable convergence

Can be applied to stochastic UCL via linearization

Reverdy and Leonard, TASE 2016 23



Parameter estimates

Data from subjects with high performance

Use GLLM-based estimator Y 299

210 25.3

Find statistically-significant | of |3.32E+05
difference between 53 subjects
parameters for different landscapes

Evidence for adapted strategies/priors

1Y 29.5

Lo 6.08

o5 |3.35E+05| ",
17 subjects

PR and Leonard, TASE 2016 . T T




Navigation: a prototypical task

Navigation function framework: .
X ©®
x(t) € D C R? -Vo
Potential function ¢ : D — R )

differentiable, unique minimum

Task: lim x(t) = argmin ¢(x)

{——+ 00 X

|deal dynamics:

o ©o o o

X = —uVeo,u € Ry (~potential flow)

..
-0.5

Cf. Lyapunov functions

: 0.5
05 Source: Wikipedia

05



A simple multi-goal task

- Say the robot has several goals ®

+ Task: stay close to all of them

- Let f;(x) measure distance to each goal; close = f;(x) < ¢

- Pose as a constraint satisfaction problem:

min 0
re X

s.t. f(x) <0

+ Solve using saddle-point algorithm



Optimization problem

-+ Suppose fp: X € R" — Ris an objective function
. Nconstraints fi : X CR" = R,i€{1,...,N}

+ Solve problem anIél;{l fo(x)

s.t. f(x) <0

- Introduce Lagrange multipliers A € A = ]R{ﬂf and define
the Lagrangian

L(z,A) = fo(z) + A" f(z)

27



Nonlinear dynamics can yield limit cycles

-+ Seek a new system for Lagrange multiplier dynamics

- Specialize to N = 2 constraints, use bio-inspired dynamics
from Passino and Seeley, 2012:

y1 = —1/(Kfi(z)) + Kfi(z)yo(1 +y1) — oy1y2
Y2 = —1/(K fa(x)) + K fa(2)yo (1 + y2) — oy1y2
y€A2:{$ER32$i>O,ZZEi:1} K,o0>0

+ Same decision variable dynamics as saddle point:
& =Y1f1,0(®) + y2f2,2(2)

- This system can exhibit limit cycles!

28



m;

The limit cycle Is quite robust! (2)
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Analysis: Shift to mean-difference coordinates
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Limit cycles via Hopf analysis

Phase diagram

- First route to limit cycles: find a Hopf bifurcation - sseseses
as gain K = 1/e, Is increased e

Stable limit cycle |

THEOREM 1. Set o = 4. The system z,. = f.(2r, €,) defined by (19) has a deadlock
equilibrium z.q given by (22). For sufficiently small n > 0, the dynamics undergo a
Hopf bifurcation resulting in stable periodic solutions at (zrq,€y.0(n)), where n <K 1 is
the saturation constant. In the limit n — 0, €,,0(0) ~ 0.262 is the smaller of the two
real-valued solutions of (1 — 4€2)? — 2¢, = 0.

- Sufficiently high gain = limit cycle

1.0
08F

o.4}

/N N\
‘v’ X X/

PBR, Kod, SIAM J. Appl. Dyn. Systems, 2018 31



Phase diagram

12] Stable fixed point

Limit cycles via singular perturbation

Stable limit cycle |

The limit cycle is in fact structurally stable &= f(z,p =€)

THEOREM 2. Accepting Conjecture 21, below, for o = 4, there exists a stable limit I—l |gh gal N
cycle of (12) for sufficiently small, but finite, values of €x and €,. FEquivalently, fixing

A, there exists a stable limit cycle of (12) for sufficiently large, but finite, values of — |j '
= limit cycle
Proof sketch:

~ T~

Start with 6-D system in Am, m, Ay, @, Av, v { PE———

. . _ . . o I [/
Eliminate @, U using asymptotic stability R

— Y —

Eliminate Aw, 7n by singular perturbationine = 1/v™ 7= |

Resulting planar system has a limit cycle (Poincare-Bendixson)

Fenichel lets us relax away from the limit € — 0

Limit cycle = repeatedly visit goals 32
PBR, Kod, SIAM J. Appl. Dyn. Systems, 2018



Multiple tasks via trees

- The decision mechanism only accounts for N = 2 goals

- The case N > 3 is significantly harder; need biturcations
on the N-simplex

- One feasible workaround: use binary trees

Feed mean navigation function

of child nodes back oo = 200 ‘g 0.1 NCE ; P11
to parent /\
(0,0) (0,1) (1,0) (1,1)

UO,Oj 900707 m070 ,UO’]" (700717 m071

33



Four tasks
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Patrol and inspection (alerts)

Overall supervisor 08
07F ¢
0.6 |
Patrol supervisor 05l
Alert
0.4}
0.3
Waypoint 1 Waypoint 2 AT
0.1}
0.0 - ‘ i
Use trees again 50 o1 02 03 o1 o5 05 07 o

When an event occurs, spike alert value, robot visits it

Once visited, returns to patrol

35



Questions

How can we program this thing”?

In the multi-task case, how are the tree topology and the
limit cycle topology related?

- How to connect this with formal synthesis methods?

- \We have a way to express (Eventually)(Always)(Go to
location 1 (And) Go to location 2).

- How to incorporate external stimuli”? Multiple agents”?

36



Conclusions

Defined autonomy as prioritized behaviors

- Adopted navigation as prototypical behavior, encoded In
vector fields

-+ Developed bio-inspired dynamical system to compose
multiple vector fields

+ Proved existence of limit cycle in the dynamical system

.t | Physical dynamics | Phase diagram
Oa rO x = —m’ F(x)
2 Stable fixed point
m

Motivation dynamics

m = fp,(m,v)

A
A"

2| Stable limit cycle |
Value dynamics u 0 |ferrrrpnnomy
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Democracy
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Motivational dynamics

Pais et al. models one-off decisions: “value” Is static

Value associated with a goal should:
Increase when far from goal
Decay once reached (satiation)

Idea: nav. function modulates value

Then use value as input to motivation

X

-

~ )
Physical dynamics
x = —m! F(x)
- v,
tm
~ )

Motivation dynamics

m = fi,(m,v)

- y,
Tv

~ )

Value dynamics

v = fu(v,x,u)
. W,

Want to encode recurrent patrol tasks in limit cycles

<

Human or
sensor input
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Value dynamics

-+ N goals (locations), each with navigation functions
w; D — 10,1 ©wi bt €4{1,...,N}
-+ Value v; > 0 with dynamics
v; =N (v] — ) — o (1 — () Ao >0
Stable growth  Decay at goal

Motivation state m = (mq,...my,my) € AY

m; = v;my —m; (1/v; —vymy — o(1 —mymy))

Physical dynamics
X =—m' Dy® combination
—(m1Vp1 + -« +mpyVey)of vector fields
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